Что такое абиотические факторы среды перечислите их?

11 ответов на вопрос “Что такое абиотические факторы среды перечислите их?”

  1. Lady_ChokoOlate Ответить

    1. Перечислите основные абиотические факторы.
    Температура, свет, влажность.
    2. Укажите соответствие.
    А. Узкие пределы выносливости.
    Б. Широкие пределы выносливости.
    1. Водные организмы.
    2. Наземные организмы.
    А: 1.
    Б: 2.
    3. Закончите предложение.
    По способности поддерживать температуру тела живые организмы подразделяются на две группы:
    1. Теплокровные (с постоянной температурой тела).
    2. Холоднокровные (с непостоянной температурой тела).
    4. Охарактеризуйте физиологические механизмы растений и животных с непостоянной температурой тела, препятствующие их переохлаждению.
    С наступлением зимы животные и растения впадают в состояние зимнего покоя. Интенсивность обмена веществ у них резко снижается. В тканях у них запасается много жиров и углеводов. Количество воды в клетках уменьшается, накапливаются сахара и глицерин, препятствующие замерзанию. Морозостойкость зимующих организмов увеличивается в течение зимы.
    5. Перечислите ароморфозы, позволившие птицам и млекопитающим обеспечивать постоянную температуру тела.
    Четырехкамерное сердце, наличие одной дуги аорты, обеспечивающее полное разделение артериального и венозного кровотока, интенсивный обмен веществ благодаря снабжению тканей артериальной кровью, перьевой и волосяной покров тела для сохранения тепла, регуляция теплоотдачи кожными сосудами, хорошо развитая высшая нервная деятельность.
    6. Укажите эволюционные и экологические преимущества так называемых теплокровных животных.
    Сохранение активности при очень резких перепадах температуры, освоение практически всех мест обитания.
    7. Охарактеризуйте значение света для жизнедеятельности растительных и животных организмов.
    Для растений: солнечный свет используется для процесса фотосинтеза.
    Для животных: под воздействием солнечного света в организме образуется витамин Д. Насекомые зрительно различают ультрафиолетовые лучи и пользуются этим при ориентации на местности.

  2. OH Ответить

    Содержание
    Введение
    . Основные абиотические факторы и их характеристика
    Литература
    Введение
    Абиотические факторы среды – это компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы. Естественно, что эти факторы действуют одновременно и значит, что все живые организмы попадают под их влияние. Степень присутствия или отсутствия каждого из них существенно отражается на жизнеспособности организмов, причем на разные их виды неодинаково. Надо отметить, что это очень сильно влияет на всю экосистему в целом, на ее устойчивость.
    Факторы среды как по отдельности, так и в комплексе при воздействии на живые организмы заставляют их изменяться, адаптироваться к этим факторам. Эта способность носит название экологической валентности или пластичности. Пластичность, или экологическая валентность, каждого вида различна и по-разному сказывается на способности живых организмов выживать в условиях меняющихся факторов среды. Если к биотическим факторам организмы не только приспосабливаются, но и могут на них воздействовать, изменяя другие живые организмы, то с абиотическими факторами среды это невозможно: организм может к ним приспособиться, но не в состоянии оказать на них сколько-нибудь значимое обратное влияние.
    Абиотическими факторами среды называются условия, напрямую не связанные с жизнедеятельностью организмов. К числу наиболее важных абиотических факторов можно отнести температуру, свет, воду, состав атмосферных газов, структуру почвы, состав биогенных элементов в ней, рельеф местности и т.п. Эти факторы могут воздействовать на организмы как непосредственно, например свет или тепло, так и косвенно, например рельеф местности, обусловливающий действие прямых факторов, света, ветра, влаги и пр. Совсем недавно было открыто влияние изменений солнечной активности на биосферные процессы.
    1. Основные абиотические факторы и их характеристика
    Среди абиотических факторов выделяют:
    . Климатические (влияние температуры, света и влажности);
    . Геологические (землетрясение, извержение вулканов, движение ледников, сход селей и лавин и др.);
    . Орографические (особенности рельефа местности, где обитают изучаемые организмы).
    Рассмотрим действие основных прямодействующих абиотических факторов: света, температуры и наличия воды. Температура, свет и влажность являются наиболее важными факторами внешней среды. Эти факторы закономерно изменяются как в течение года и суток, так и в связи с географической зональностью. К этим факторам организмы обнаруживают зональный и сезонный характер приспособления.
    Свет как экологический фактор
    Солнечное излучение является основным источником энергии для всех процессов, происходящих на Земле. В спектре солнечного излучения можно выделить три области, различные по биологическому действию: ультрафиолетовую, видимую и инфракрасную. Ультрафиолетовые лучи с длиной волны менее 0,290 мкм губительны для всего живого, но они задерживаются озоновым слоем атмосферы. До поверхности Земли доходит лишь небольшая часть более длинных ультрафиолетовых лучей (0,300 – 0,400 мкм). Они составляют около 10% лучистой энергии. Эти лучи обладают высокой химической активностью – при большой дозе могут повреждать живые организмы. В небольших количествах, однако, они необходимы, например, человеку: под влиянием этих лучей в организме человека образуется витамин Д, а насекомые зрительно различают эти лучи, т.е. видят в ультрафиолетовом свете. Они могут ориентироваться по поляризованному свету.
    Видимые лучи с длиной волны от 0,400 до 0,750 мкм (на их долю приходится большая часть энергии – 45% – солнечного излучения), достигающие поверхности Земли, имеют особенно большое значение для организмов. Зеленые растения за счет этого излучения синтезируют органическое вещество (осуществляют фотосинтез), которое используют в пищу все остальные организмы. Для большинства растений и животных видимый свет является одним из важных факторов среды, хотя есть и такие, для которых свет не является обязательным условием существования (почвенные, пещерные и глубоководные виды приспособления к жизни в темноте). Большинство животных способны различать спектральный состав света – обладать цветовым зрением, а у растений цветки имеют яркую окраску для привлечения насекомых-опылителей.
    Инфракрасные лучи с длиной волны более 0,750 мкм глаз человека не воспринимает, но они являются источником тепловой энергии (45% лучистой энергии). Эти лучи поглощаются тканями животных и растений, вследствие чего ткани нагреваются. Многие хладнокровные животные (ящерицы, змеи, насекомые) используют солнечный свет для повышения температуры тела (некоторые змеи и ящерицы являются экологически теплокровными животными). Световые условия, связанные с вращением Земли, имеют отчетливую суточную и сезонную периодичность. Почти все физиологические процессы у растений и животных имеют суточный ритм с максимумом и минимумом в определенные часы: например, в определенные часы суток цветок у растений открывается и закрывается, а у животных возникли приспособления к ночной и дневной жизни. Длина дня (или фотопериод), имеет огромное значение в жизни растений и животных.
    Растения, в зависимости от условий обитания, адаптируются к тени – теневыносливые растения или, напротив, к солнцу – светолюбивые растения (к примеру, хлебные злаки). Однако сильное яркое солнце (яркость выше оптимальной) подавляет фотосинтез, поэтому в тропиках трудно получить высокий урожай культур, богатый белком. В умеренных зонах (выше и ниже экватора) цикл развития растений и животных приурочен к сезонам года: подготовка к изменению температурных условий осуществляется на основе сигнала – изменения длины дня, которая в определенное время года в данном месте всегда одинакова. В результате этого сигнала включаются физиологические процессы, приводящие к росту, цветению растений весной, плодоношения летом и сбрасывания листьев осенью; у животных – к линьке, накоплению жира, миграции, размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых. Изменение длины дня животные воспринимают с помощью органов зрения. А растения – с помощью специальных пигментов, расположенных в листьях растений. Раздражения воспринимаются с помощью рецепторов, вследствие чего происходит ряд биохимических реакций (активация ферментов или выделение гормонов), а затем проявляются физиологические или поведенческие реакции.
    Изучение фотопериодизма растений и животных показало, что реакция организмов на свет основана не просто на количестве получаемого света, а на чередовании в течение суток периодов света и темноты определенной длительности. Организмы способны измерять время, т.е. обладают биологическими часами – от одноклеточных до человека. Биологические часы – также управляются сезонными циклами и другими биологическими явлениями. Биологические часы определяют суточный ритм активности как целых организмов, так и процессов, происходящих даже на уровне клеток, в частности клеточных делений.
    Температура как экологический фактор
    Все химические процессы, протекающие в организме, зависят от температуры. Изменения тепловых условий, часто наблюдаемые в природе, глубоко отражаются на росте, развитии и других проявлениях жизнедеятельности животных и растений. Различают организмы с непостоянной температурой тела – пойкилотермные и организмы с постоянной температурой тела – гомойтермные. Пойкилотермные животные целиком зависят от температуры окружающей среды, тогда как гомойтермные способны поддерживать постоянную температуру тела независимо от изменений температуры окружающей среды. Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов – редко выше 40-45 оС. Некоторые цианобактерии и бактерии обитают при температурах 70-90 оС, в горячих источниках могут жить и некоторые моллюски (до 53 оС). Для большинства наземных животных и растений оптимум температурных условий колеблется в довольно узких пределах (15-30 оС). Верхний порог температуры жизни определяется температурой свертывания белков, поскольку необратимое свертывание белков (нарушение структуры белков) возникает при температуре около 60 oС.
    Пойкилотермные организмы в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главным источником поступления тепловой энергии у пойкилотермных животных – внешнее тепло. У пойкилотермных организмов выработались различные приспособления к низкой температуре. Некоторые животные, например, арктические рыбы, обитающие постоянно при температуре -1,8 oС, содержат в тканевой жидкости вещества (гликопротеиды), препятствующие образованию кристаллов льда в организме; у насекомых накапливается для этих целей глицерин. Другие животные, наоборот, увеличивают теплопродукцию организма за счет активного сокращения мускулатуры – так они повышают температуру тела на несколько градусов. Третьи регулируют свой теплообмен за счет обмена тепла между сосудами кровеносной системы: сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь (такое явление свойственно холодноводным рыбам). Адаптивное поведение проявляется в том, что многие насекомые, рептилии и амфибии выбирают места на солнце для обогрева или меняют различные позы для увеличения поверхности обогрева.
    У ряда холоднокровных животных температура тела может меняться в зависимости от физиологического состояния: к примеру, у летающих насекомых внутренняя температура тела может подниматься на 10-12 oС и более вследствие усиленной работы мышц. У общественных насекомых, особенно у пчел, развился эффективный способ поддержания температуры путем коллективной терморегуляции (в улье может поддерживаться температура 34-35 oС, необходимая для развития личинок).
    Пойкилотермные животные способны приспосабливаться и к высоким температурам. Это происходит также разными способами: теплоотдача может происходить за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей, а также за счет подкожной сосудистой регуляции (например, у ящериц скорость тока крови по сосудам кожи увеличивается при повышении температуры).
    Наиболее совершенная терморегуляция наблюдается у птиц и млекопитающих – гомойтермных животных. В процессе эволюции они приобрели способность поддерживать постоянную температуру тела благодаря наличию четырехкамерного сердца и одной дуги аорты, что обеспечило полное разделение артериального и венозного кровотока; высокого обмена веществ; перьевого или волосяного покрова; регуляции теплоотдачи; хорошо развитой нервной системы приобрели способность к активной жизни при разной температуре. У большинства птиц температура тела несколько выше 40 oС, а у млекопитающих – несколько ниже. Весьма важное значение для животных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнезд, выбор места с более благоприятной температурой и т.п. Они также способны приспосабливаться к низким температурам несколькими путями: кроме перьевого или волосяного покрова, теплокровные животные с помощью дрожи (микросокращения внешне неподвижных мышц) уменьшают теплопотери; при окислении бурой жировой ткани у млекопитающих образуется дополнительная энергия, поддерживающая обмен веществ.
    Приспособление теплокровных к высоким температурам во многом сходно с аналогичными приспособлениями холоднокровных – потоотделение и испарение воды со слизистой рта и верхних дыхательных путей, у птиц – только последний способ, так как у них нет потовых желез; расширение кровеносных сосудов, расположенных близко к поверхности кожи, что усиливает теплоотдачу (у птиц этот процесс протекает в неоперенных участках тела, например через гребень). Температура, как и световой режим, от которого она зависит, закономерно меняется в течение года и в связи с географической широтой. Поэтому все приспособления более важны для обитания при отрицательных температурах.
    Вода как экологический фактор
    Вода играет исключительную роль в жизни любого организма, поскольку она является структурным компонентом клетки (на долю воды приходится 60-80% массы клетки). Значение воды в жизни клетки определяется ее физико-химическими свойствами. Вследствие полярности молекула воды способна притягиваться к любым другим молекулам, образуя гидраты, т.е. является растворителем. Многие химические реакции могут протекать происходить только в присутствии воды. Вода является в живых системах тепловым буфером, поглощая тепло при переходе из жидкого состояния в газообразное, тем самым предохраняя неустойчивые структуры клетки от повреждения при кратковременном освобождении тепловой энергии. В связи с этим она производит охлаждающий эффект при испарении с поверхности и регулирует температуру тела. Теплопроводные свойства воды определяют ее ведущую роль терморегулятора климата в природе. Вода медленно нагревается и медленно охлаждается: летом и днем вода морей океанов и озер нагревается, а ночью и зимой также медленно охлаждается. Между водой и воздухом происходит постоянный обмен углекислым газом. Кроме того, вода выполняет транспортную функцию, перемещая вещества почвы сверху вниз и обратно. Роль влажности для наземных организмов обусловлена тем, что осадки распределяются на земной поверхности в течение года неравномерно. В засушливых районах (степи, пустыни) растения добывают себе воду с помощью сильно развитой корневой системы, иногда очень длинных корней (у верблюжьей колючки – до 16 м), достигающих влажного слоя. Высокое осмотическое давление клеточного сока (до 60-80 атм), увеличивающее сосущую силу корней, способствует удержанию воды в тканях. В сухую погоду растения снижают испарение воды: у пустынных растений утолщаются покровные ткани листа, либо на поверхности листьев развивается восковой слой или густое опушение. Ряд растений достигает снижения влаги уменьшением листовой пластинки (листья превращаются в колючки, часто растения полностью теряют листья – саксаул, тамариск и др.).
    В зависимости от требований, предъявляемых к водному режиму, среди растений различают следующие экологические группы:
    Гидратофиты – растения постоянно живущие в воде;
    Гидрофиты – растения лишь частично погружаемые в воду;
    Гелофиты – болотные растения;
    Гигрофиты – наземные растения, обитающие в чрезмерно увлажненных местах;
    Мезофиты – предпочитают умеренное увлажнение;
    Ксерофиты – растения, приспособленные к постоянном недостатку влаги; среди ксерофитов различают:
    Суккуленты – накапливающие воду в тканях своего тела (сочные);
    Склерофиты – теряющие значительное количество воды.
    Многие животные пустынь способны обходиться без питьевой воды; некоторые быстро и долго могут бегать, совершая длинные миграции на водопой (сайгаки, антилопы, верблюды и др.); часть животных добывает воду из пищи (насекомые, пресмыкающиеся, грызуны). Жировые отложения пустынных животных могут служить своеобразным резервом воды в организме: при окислении жиров образуется вода (отложения жира в горбе верблюдов или подкожные отложения жира у грызунов). Малопроницаемые покровы кожи (например, у пресмыкающихся) защищают животных от потери влаги. Многие животные перешли к ночному образу жизни или скрываются в норах, избегая иссушающего действия низкой влажности и перегрева. В условиях периодической сухости ряд растений и животных переходят в состояние физиологического покоя – растения приостанавливают рост и сбрасывают листья, животные впадают в спячку. Эти процессы сопровождаются пониженным обменом веществ в период сухости.
    абиотический природа биосферный солнечный
    Литература
    1. http://burenina.narod.ru/3-2.htm
    . http://ru-ecology.info/term/76524/
    . http://festival.1september.ru/articles/517948/
    . http://www.ecology-education.ru/index.php?action=full&id=257
    . http://bibliofond.ru/view.aspx?id=484744

  3. Артистан Ответить

    Видимые лучи с длиной волны от 0,400 до 0,750 мкм (на их долю приходится большая часть энергии – 45% – солнечного излучения), достигающие поверхности Земли, имеют особенно большое значение для организмов. Зеленые растения за счет этого излучения синтезируют органическое вещество (осуществляют фотосинтез), которое используют в пищу все остальные организмы. Для большинства растений и животных видимый свет является одним из важных факторов среды, хотя есть и такие, для которых свет не является обязательным условием существования (почвенные, пещерные и глубоководные виды приспособления к жизни в темноте). Большинство животных способны различать спектральный состав света – обладать цветовым зрением, а у растений цветки имеют яркую окраску для привлечения насекомых-опылителей.
    Инфракрасные лучи с длиной волны более 0,750 мкм глаз человека не воспринимает, но они являются источником тепловой энергии (45% лучистой энергии). Эти лучи поглощаются тканями животных и растений, вследствие чего ткани нагреваются. Многие хладнокровные животные (ящерицы, змеи, насекомые) используют солнечный свет для повышения температуры тела (некоторые змеи и ящерицы являются экологически теплокровными животными). Световые условия, связанные с вращением Земли, имеют отчетливую суточную и сезонную периодичность. Почти все физиологические процессы у растений и животных имеют суточный ритм с максимумом и минимумом в определенные часы: например, в определенные часы суток цветок у растений открывается и закрывается, а у животных возникли приспособления к ночной и дневной жизни. Длина дня (или фотопериод), имеет огромное значение в жизни растений и животных.
    Растения, в зависимости от условий обитания, адаптируются к тени – теневыносливые растения или, напротив, к солнцу – светолюбивые растения (к примеру, хлебные злаки). Однако сильное яркое солнце (яркость выше оптимальной) подавляет фотосинтез, поэтому в тропиках трудно получить высокий урожай культур, богатый белком. В умеренных зонах (выше и ниже экватора) цикл развития растений и животных приурочен к сезонам года: подготовка к изменению температурных условий осуществляется на основе сигнала – изменения длины дня, которая в определенное время года в данном месте всегда одинакова. В результате этого сигнала включаются физиологические процессы, приводящие к росту, цветению растений весной, плодоношения летом и сбрасывания листьев осенью; у животных – к линьке, накоплению жира, миграции, размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых. Изменение длины дня животные воспринимают с помощью органов зрения. А растения – с помощью специальных пигментов, расположенных в листьях растений. Раздражения воспринимаются с помощью рецепторов, вследствие чего происходит ряд биохимических реакций (активация ферментов или выделение гормонов), а затем проявляются физиологические или поведенческие реакции.
    Изучение фотопериодизма растений и животных показало, что реакция организмов на свет основана не просто на количестве получаемого света, а на чередовании в течение суток периодов света и темноты определенной длительности. Организмы способны измерять время, т.е. обладают “биологическими часами” – от одноклеточных до человека. “Биологические часы” – также управляются сезонными циклами и другими биологическими явлениями. “Биологические часы” определяют суточный ритм активности как целых организмов, так и процессов, происходящих даже на уровне клеток, в частности клеточных делений.
    Температура как экологический фактор
    Все химические процессы, протекающие в организме, зависят от температуры. Изменения тепловых условий, часто наблюдаемые в природе, глубоко отражаются на росте, развитии и других проявлениях жизнедеятельности животных и растений. Различают организмы с непостоянной температурой тела – пойкилотермные и организмы с постоянной температурой тела – гомойтермные. Пойкилотермные животные целиком зависят от температуры окружающей среды, тогда как гомойтермные способны поддерживать постоянную температуру тела независимо от изменений температуры окружающей среды. Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов – редко выше 40-45 оС. Некоторые цианобактерии и бактерии обитают при температурах 70-90 оС, в горячих источниках могут жить и некоторые моллюски (до 53 оС). Для большинства наземных животных и растений оптимум температурных условий колеблется в довольно узких пределах (15-30 оС). Верхний порог температуры жизни определяется температурой свертывания белков, поскольку необратимое свертывание белков (нарушение структуры белков) возникает при температуре около 60 oС.
    Пойкилотермные организмы в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главным источником поступления тепловой энергии у пойкилотермных животных – внешнее тепло. У пойкилотермных организмов выработались различные приспособления к низкой температуре. Некоторые животные, например, арктические рыбы, обитающие постоянно при температуре -1,8 oС, содержат в тканевой жидкости вещества (гликопротеиды), препятствующие образованию кристаллов льда в организме; у насекомых накапливается для этих целей глицерин. Другие животные, наоборот, увеличивают теплопродукцию организма за счет активного сокращения мускулатуры – так они повышают температуру тела на несколько градусов. Третьи регулируют свой теплообмен за счет обмена тепла между сосудами кровеносной системы: сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь (такое явление свойственно холодноводным рыбам). Адаптивное поведение проявляется в том, что многие насекомые, рептилии и амфибии выбирают места на солнце для обогрева или меняют различные позы для увеличения поверхности обогрева.
    У ряда холоднокровных животных температура тела может меняться в зависимости от физиологического состояния: к примеру, у летающих насекомых внутренняя температура тела может подниматься на 10-12 oС и более вследствие усиленной работы мышц. У общественных насекомых, особенно у пчел, развился эффективный способ поддержания температуры путем коллективной терморегуляции (в улье может поддерживаться температура 34-35 oС, необходимая для развития личинок).
    Пойкилотермные животные способны приспосабливаться и к высоким температурам. Это происходит также разными способами: теплоотдача может происходить за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей, а также за счет подкожной сосудистой регуляции (например, у ящериц скорость тока крови по сосудам кожи увеличивается при повышении температуры).
    Наиболее совершенная терморегуляция наблюдается у птиц и млекопитающих – гомойтермных животных. В процессе эволюции они приобрели способность поддерживать постоянную температуру тела благодаря наличию четырехкамерного сердца и одной дуги аорты, что обеспечило полное разделение артериального и венозного кровотока; высокого обмена веществ; перьевого или волосяного покрова; регуляции теплоотдачи; хорошо развитой нервной системы приобрели способность к активной жизни при разной температуре. У большинства птиц температура тела несколько выше 40 oС, а у млекопитающих – несколько ниже. Весьма важное значение для животных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнезд, выбор места с более благоприятной температурой и т.п. Они также способны приспосабливаться к низким температурам несколькими путями: кроме перьевого или волосяного покрова, теплокровные животные с помощью дрожи (микросокращения внешне неподвижных мышц) уменьшают теплопотери; при окислении бурой жировой ткани у млекопитающих образуется дополнительная энергия, поддерживающая обмен веществ.
    Приспособление теплокровных к высоким температурам во многом сходно с аналогичными приспособлениями холоднокровных – потоотделение и испарение воды со слизистой рта и верхних дыхательных путей, у птиц – только последний способ, так как у них нет потовых желез; расширение кровеносных сосудов, расположенных близко к поверхности кожи, что усиливает теплоотдачу (у птиц этот процесс протекает в неоперенных участках тела, например через гребень). Температура, как и световой режим, от которого она зависит, закономерно меняется в течение года и в связи с географической широтой. Поэтому все приспособления более важны для обитания при отрицательных температурах.
    Вода как экологический фактор
    Вода играет исключительную роль в жизни любого организма, поскольку она является структурным компонентом клетки (на долю воды приходится 60-80% массы клетки). Значение воды в жизни клетки определяется ее физико-химическими свойствами. Вследствие полярности молекула воды способна притягиваться к любым другим молекулам, образуя гидраты, т.е. является растворителем. Многие химические реакции могут протекать происходить только в присутствии воды. Вода является в живых системах “тепловым буфером”, поглощая тепло при переходе из жидкого состояния в газообразное, тем самым предохраняя неустойчивые структуры клетки от повреждения при кратковременном освобождении тепловой энергии. В связи с этим она производит охлаждающий эффект при испарении с поверхности и регулирует температуру тела. Теплопроводные свойства воды определяют ее ведущую роль терморегулятора климата в природе. Вода медленно нагревается и медленно охлаждается: летом и днем вода морей океанов и озер нагревается, а ночью и зимой также медленно охлаждается. Между водой и воздухом происходит постоянный обмен углекислым газом. Кроме того, вода выполняет транспортную функцию, перемещая вещества почвы сверху вниз и обратно. Роль влажности для наземных организмов обусловлена тем, что осадки распределяются на земной поверхности в течение года неравномерно. В засушливых районах (степи, пустыни) растения добывают себе воду с помощью сильно развитой корневой системы, иногда очень длинных корней (у верблюжьей колючки – до 16 м), достигающих влажного слоя. Высокое осмотическое давление клеточного сока (до 60-80 атм), увеличивающее сосущую силу корней, способствует удержанию воды в тканях. В сухую погоду растения снижают испарение воды: у пустынных растений утолщаются покровные ткани листа, либо на поверхности листьев развивается восковой слой или густое опушение. Ряд растений достигает снижения влаги уменьшением листовой пластинки (листья превращаются в колючки, часто растения полностью теряют листья – саксаул, тамариск и др.).
    В зависимости от требований, предъявляемых к водному режиму, среди растений различают следующие экологические группы:
    Гидратофиты – растения постоянно живущие в воде;
    Гидрофиты – растения лишь частично погружаемые в воду;
    Гелофиты – болотные растения;
    Гигрофиты – наземные растения, обитающие в чрезмерно увлажненных местах;
    Мезофиты – предпочитают умеренное увлажнение;
    Ксерофиты – растения, приспособленные к постоянном недостатку влаги; среди ксерофитов различают:
    Суккуленты – накапливающие воду в тканях своего тела (сочные);
    Склерофиты – теряющие значительное количество воды.
    Многие животные пустынь способны обходиться без питьевой воды; некоторые быстро и долго могут бегать, совершая длинные миграции на водопой (сайгаки, антилопы, верблюды и др.); часть животных добывает воду из пищи (насекомые, пресмыкающиеся, грызуны). Жировые отложения пустынных животных могут служить своеобразным резервом воды в организме: при окислении жиров образуется вода (отложения жира в горбе верблюдов или подкожные отложения жира у грызунов). Малопроницаемые покровы кожи (например, у пресмыкающихся) защищают животных от потери влаги. Многие животные перешли к ночному образу жизни или скрываются в норах, избегая иссушающего действия низкой влажности и перегрева. В условиях периодической сухости ряд растений и животных переходят в состояние физиологического покоя – растения приостанавливают рост и сбрасывают листья, животные впадают в спячку. Эти процессы сопровождаются пониженным обменом веществ в период сухости.
    абиотический природа биосферный солнечный
    Литература
    1. http://burenina.narod.ru/3-2.htm
    2. http://ru-ecology.info/term/76524/
    3. http://festival.1september.ru/articles/517948/
    4. http://www.ecology-education.ru/index.php?action=full&id=257
    5. http://bibliofond.ru/view.aspx?id=484744

  4. PUTIBUFY Ответить

    Абиотические факторы среды — это компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы. Естественно, что эти факторы действуют одновременно и значит, что все живые организмы попадают под их влияние. Степень присутствия или отсутствия каждого из них существенно отражается на жизнеспособности организмов, причем на разные их виды неодинаково. Надо отметить, что это очень сильно влияет на всю экосистему в целом, на ее устойчивость.[ …]
    Факторы среды как по отдельности, так и в комплексе при воздействии на живые организмы заставляют их изменяться, адаптироваться к этим факторам. Эта способность носит название экологической валентности или пластичности. Пластичность, или экологическая валентность, каждого вида различна и по-разному сказывается на способности живых организмов выживать в условиях меняющихся факторов среды. Если к биотическим факторам организмы не только приспосабливаются, но и могут на них воздействовать, изменяя другие живые организмы, то с абиотическими факторами среды это невозможно: организм может к ним приспособиться, но не в состоянии оказать на них сколько-нибудь значимое обратное влияние.[ …]
    Абиотическими факторами среды называются условия, напрямую не связанные с жизнедеятельностью организмов. К числу наиболее важных абиотических факторов можно отнести температуру, свет, воду, состав атмосферных газов, структуру почвы, состав биогенных элементов в ней, рельеф местности и т. п. Эти факторы могут воздействовать на организмы как непосредственно, например свет или тепло, так и косвенно, например рельеф местности, обусловливающий действие прямых факторов, света, ветра, влаги и пр. Совсем недавно было открыто влияние изменений солнечной активности на биосферные процессы.[ …]
    Абиотическими факторами среды называется совокупность условий неорганической среды, влияющих на организмы. Абиотические факторы делятся на химические (химический состав атмосферы, морских и пресных вод, почвы или донных отложений) и физические или климатические (температура и влажность воздуха, осадки, снежный покров, барометрическое давление, ветер, лучистая и тепловая энергия Солнца и др.).[ …]
    АБИОТИЧЕСКИЕ ФАКТОРЫ СРЕДЫ – это компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы. Среди них главенствующую роль играют климатические (солнечная радиация, световой режим, температура, влажность, атмосферные осадки, ветер, давление и др.); затем идут эдафические (почвенные), важные для обитающих в почве животных; и ,наконец, гидрографические, или факторы водной среды. Солнечная радиация является основным источником энергии, определяющим тепловой баланс и термический режим биосферы. Так, суммарная солнечная радиация, поступающая на земную поверхность, в направлении от экватора к полюсам уменьшается примерно в 2,5 раза (от 180-220 до 60-80 ккал/см2 -год). На основе радиационного режима и характера циркуляции атмосферы выделяются на поверхности Земли климатические пояса. Однако солнечная радиация в свою очередь служит и важнейшим экологическим фактором, влияющим на физиологию и морфологию живых организмов. Существование на поверхности нашей планеты крупных зональных типов растительности (тундра, тайга, степи, пустыни, саванны, влажные тропические леса и др.) обусловлено в основном климатическими причинами; причем они тесно связаны с климатической зональностью.[ …]
    Многие абиотически« факторы играют» как и свет, дополнительную роль в жизни разных видов — сигнальную. Так, атмосферное давление и температура воздуха у некоторых видав перелетных птиц влияют на точное время прилета к местам гнездования. Даже такой редко регистрируемый фактор, как инфразвук, может выступать в роли сигнального фактора: некоторые морские животные, например медузы, чувствуют инфра-звуковые колебания воды, порождаемые волнением в зоне приближающегося шторма, и опускаются из поверхностных слоев воды на глубины, слабо подверженные влиянию поверхностных волн- Таким образом, каждый вид растений и животных, каждая экосистема постоянно находятся под воздействием еложного комплекса абиотических факторов среды обитания. Роль и «вес» разных факторов различны для видов, которые в разной степени достигли в течение своей эволюции большей или меньшей независимости от •отдельных факторов среды.[ …]
    Если изменения среды имеют необратимый характер или отмечена устойчивая тенденция к приобретению средой именно такого характера, то происходит направленная смена типов сообществ. В целом регулируется смена уровня стабилизации биоценотической системы. Особенно точно это прослеживается при оценках в масштабах геологического времени, что нами уже отмечалось при описаниях изменения таких абиотических факторов среды, как климат, параметры рельефа, трансгрессии моря и его гидрологические режимы на протяжении таких значительных отрезков истории Земли, как геологические периоды и даже эры. Влияние этих факторов на динамику типов биоценотических сообществ уже достаточно точно установлено палеонтологическими и палинологическими исследованиями и подтверждает его наличие уже в весьма отдаленные геологические эпохи. В частности, показано, что специализированная охота палеолитического населения на крупных травоядных млекопитающих (слоны, мамонты, носороги и др.) стала причиной резкого снижения их численности и при наложившихся факторах потепления климата в межледниковьях привела к почти полному их исчезновению. Это послужило причиной коренного изменения общего облика фитоценозов. В плейстоцене крупные травоядные выступали в качестве эдификаторов (основателей) биоценозов, создавая мозаичность растительного покрова путем постоянного повреждения сомкнутых древостоев и сплошных массовых кустарников и поддержания на их месте ассоциаций злаков и разнотравья. С гибелью мамонтовой и подобной фауны сомкнутые древостой стали широко распространяться, и растительный покров Земли принял близкий к современному зональный облик (С.П. Маслов и др., 1995).[ …]
    Человек по отношению к абиотическим факторам среды — ярко выраженный эврибионт. Широта приспособления к разным условиям и широкое расселение человека по планете достигнуты за счет умения технологически кондиционировать окружающую среду. Однако в биологическом смысле, по крайней мере в отношении температурного фактора, человек, лишенный минимальных средств защиты от холода (убежища, одежды, огня) и не располагающий шерстным покровом, — настоящий стенотерм: примат тропического происхождения.[ …]
    Схема действия п абиотических факторов | среды на живые организ-мыНаряду с термином «экологический фактор» в экологической и биогеоценотической литературе используют термины «экологическое условие», «экологический ресурс». Термином «экологическиересурсы» обозначают средообразующие компоненты, которые могут быть использованы организмами в процессе их жизнедеятельности. Так, например, экологическим ресурсом для растений (особи, популяции, фитоценоза — природного или аграрного) служат элементы минерального питания в почве (азот, калий, фосфор, бор, кобальт и др.). Пастбищная трава — кормовой ресурс для пасущихся животных (особи, стада, зооценоза). Под экологическим условием подразумевают абиотический фактор среды обитания организма, например температуру, относительную влажность воздуха. В отличие от ресурсов экологические условия организмами не расходуются. Экологические условия неисчерпаемы. Ни один вид растений или животных не способен сделать их недоступными для других организмов.[ …]
    Живые организмы находятся между собой и абиотическими условиями среды обитания в определенных отношениях, образуя тем самым, так называемые, экологические системы. Биоценоз — совокупность популяций разных видов, обитающих на определенной территории. Растительный компонент биоценоза называют фитоценозом, животный — зооценозом, микробный — микробоценозом. Ведущим компонентом в биоценозе является фитоценоз. Он определяет, каким будет зооценоз и микробоценоз. Биотоп — определенная территория со свойственными ей абиотическими факторами среды обитания (климат, почва). Биогеоценоз — совокупность биоценоза и биотопа (рис. 16). Экосистема (экологическая система) — система совместно обитающих живых организмов и условий их существования, связанных потоком энергии и круговоротом веществ (рис. 17). Экосистема» и «биогеоценоз» — понятия близкие, но не синонимы. Биогеоценоз — это экосистема в границах фитоценоза. Экосистема — понятие более общее. Каждый биогеоценоз — это экосистема, но не каждая экосистема — биогеоценоз. Единая экосистема нашей планеты называется биосферой. Биосфера — экосистема высшего порядка.[ …]
    Оказывая прямое повреждающее действие на рыб, абиотические факторы среды вызывают гипоксию или асфиксию (замор), газопузырьковую болезнь, температурный шоки простудные явления, незаразный некроз жабр. При кормлении рыб неполноценными и недоброкачественными кормами в условиях индустриального рыбоводства часто наблюдаются гиповитаминозы, болезни обмена веществ, дистрофия печени, алиментарные токсикозы и др.[ …]
    Порой довольно трудно провести границу между Б.ф. и абиотическими факторами. Так, содержание кислорода в водной среде, с формальной точки зрения,— абиотический фактор, но на самом деле оно во многом зависит от деятельности организмов (прежде всего различных бактерий), потребляющих кислород при разложении органического вещества. БИОТОП (Б.) — однородное по абиотическим и биотическим факторам местообитание, занятое одним и тем же сообществом (на суше — биогеоценозом). В Б. абиотические факторы среды преобразованы влиянием организмов (из материнской породы сформирована почва, изменен режим освещения, температуры, потребление ресурсов ограничено конкуренцией с организмами со сходным типом питания и т. д.). Примеры Б.: склон оврага, городской лесопарк, небольшое озеро (или часть большого озера с однородными условиями — прибрежная отмель, глубоководная часть).[ …]
    Биотоп — определенная территория со свойственными ей абиотическими факторами среды обитания (климат, почва).[ …]
    БИОТ0П [био… +гр. topos местность] — 1) относительно однородное по абиотическим факторам среды пространство, занятое биоценозом-, 2) синоним местообитания вида.[ …]
    Также существенную роль в жизни организмов играют и почвенные факторы, в частности разнообразие и видовой состав растений определяется такими свойствами почв, как структура и состав, кислотность (pH), содержание гумуса, наличие определенных химических элементов и пр. Основные составляющие абиотических факторов среды более подробно будут рассмотрены ниже.[ …]
    Важную роль в регуляции численности популяций играют не только абиотические факторы среды, но и взаимоотношения между живыми организмами в сообществе, т. е. биотические факторы.[ …]
    САМООЧШЦЙНИЕ ВОДЬ! (почвы и т. д.) — ликвидация загрязенений природными абиотическими факторами среды и в ходе жизнедеятельности организмов, естественно обитающих в ней.[ …]
    НИША (ЭКОЛОГИЧЕСКАЯ) — совокупность связей организма с биотическими и абиотическими факторами среды его обитания.[ …]
    При бассейновом содержании рыбы обязательны систематические наблюдения за абиотическими факторами среды и состоянием зимующей рыбы. Необходим ежедневный контроль за содержанием растворенного в воде кислорода, углекислотой, показателями окисляемости и pH среды в водоподающей системе и в бассейнах. Нужно постоянно удалять из бассейнов погибших рыб. При загрязнении воды органическими веществами, повышенном содержании нитратов и нитритов, содержании кислорода ниже 50..40 % насыщения проводят полную очистку бассейнов. Для этого воду в бассейне сбрасывают до слоя 50…60 см и создают усиленную проточность (за 30…60 мин должна произойти полная смена воды в бассейне), а рыбу пересаживают в заранее приготовленный чистый и продезинфицированный бассейн.[ …]
    Самоочищающаяся способность водоемов, почвы и т. д.—ликвидация загрязнений абиотическими факторами среды в ходе жизнедеятельности природных организмов. Длительность самоочищения резко меняется в зависимости от географического места; в маргинальных зонах и на Севере оно идет очень медленно. Для многих стойких загрязнителей самоочистительная способность природы равна пулю.[ …]
    СТАБЙЛЬНОСТЬ ЭКОЛОГИЧЕСКАЯ — способность экосистемы противостоять внутренним абиотическим факторам среды и антропогенным воздействиям.[ …]
    Поскольку биоценозы исторически сложились на отдельных участках территории путем приспособлений организмов к абиотическим факторам среды и друг к другу, в биотопах идет совместная эволюция всего комплекса организмов. Все же взаимные приспособления организмов (к о а д а и т а ц и и) относительны и противоречивы. Это проявляется прежде всего в колебаниях относительной численности особей отдельных видов. Всякое равновесие лишь относительно и временно»-2.[ …]
    Иначе говоря, присутствие или отсутствие каждого вида диатомовых водорослей напрямую связано с конкретным набором абиотических факторов среды. Если бы диатомовые водоросли создавали устойчивые межвидовые симбиотические связи, то виды, принадлежащие, например, к чистоводному комплексу, могли бы “удерживаться” в этом биотопе за счет встроенности в сообщество диатомовых водорослей, даже при повышении уровня загрязнения. Однако это не происходит. При изменении “набора” абиотических факторов в негативную (для конкретного вида) сторону последний практически мгновенно “выпадает” из комплекса, а его место занимают другие виды, для которых подобный “набор” оптимален.[ …]
    Физическое загрязнение связано с отклонением за пределы нормального диапазона колебаний параметров (уровня) физических абиотических факторов среды обитания. Теоретически это относится абсолютно ко всем климатическим и топографическим экологическим факторам. Реально в наше время ощущается антропогенное воздействие на такие физические факторы, как температура, уровень звука и вибрации, интенсивность различных электромагнитных излучений, включая ионизирующее и световое. Это воздействие стало столь значительно, что соответствующие физические загрязнения выходят за рамки локальных и ощущаются на глобальном уровне.[ …]
    При изучении размножения редких видов в природных условиях следует выделять в специальный раздел исследование сопутствующих абиотических факторов среды – температуры, влажности, длины светового дня и т.д. Эта информация крайне нужна при моделировании условий и режимов при искусственном разведении редких видов в зоопитомниках и зоопарках.[ …]
    Экологическая ниша — положение вида, которое он занимает в общей системе биоценоза, комплекс его биоценотических связей и требований к абиотическим факторам среды.[ …]
    Однако следует отметить, что перифитонные комплексы, распространенные на большей глубине (0,8 м), несколько “запаздывают” в своей реакции на изменение абиотических факторов среды по сравнению с приповерхностными (0,2 м) комплексами. Кроме того, сезон вегетационной активности первых заканчивается раньше.[ …]
    Схема взаимодействия механизмов организации биоценоза (по Дж. Коннеллу)Иначе говоря, “видовые множества” в группах частично пересекались. Это делалось для сопоставления и уточнения частоты совместной встречаемости видов под воздействием абиотических факторов среды антропогенного генезиса (рис. 13-15).[ …]
    Динамика плотности популяций отражает сложные закономерности взаимоотношений между различными животными, между животными и растениями, поскольку все они являются экологическими факторами по отношению друг к другу. Кроме того (и в первую очередь), плотность может меняться в зависимости от колебаний абиотических факторов среды.[ …]
    Поэтому факторный анализ для донных комплексов Волго-Ахтубинского междуречья был проведен в целях выяснения их взаиморасположения в едином биотопическом пространстве под воздействием абиотических факторов среды антропогенного происхождения.[ …]
    Таким образом, с помощью представленной ботанической тропы посетители могут получить наглядное представление о разнообразии флоры и растительности, взаимосвязях растительного мира с различными абиотическими факторами среды, увидеть в природе редкие виды Урала.[ …]
    Основным свойством популяции является ее беспрерывное изменение, движение, динамика, что сильно влияет на структурнофункциональную организованность, продуктивность, биологическое разнообразие и устойчивость системы. Особи одной популяции оказывают друг на друга не меньшее воздействие, чем абиотические факторы среды или другие обитающие совместно виды организмов.[ …]
    ВЕЩЕСТВО АНТРОПОГЕННОЕ — химическое соединение, включенное н геосферы благодаря деятельности человека. Отличают В. а-ные, входящие в биологический круговорот, а потому рано или поздно утилизируемые в экосистемах, и искусственные соединения, чуждые природе, очень медленно разрушаемые живыми организмами и абиотическими факторами среды и остающиеся вне биосферного обмена веществ. Эти последние накапливаются в биосфере и служат угрозой жизни.[ …]
    Любой популяции присуща определенная организация. Распре-деление.особей по территории, соотношение групп особей по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают соответствующую структуру популяции: пространственную, половую, возрастную и т.д. Структура формируется, с одной стороны, на основе общих биологических свойств видов, а с другой — под влиянием абиотических факторов среды и популяций других видов. Поэтому важно подчеркнуть откровенно приспособительный характер структуры популяции.[ …]
    Отбор проб со стержневой части осуществлялся комплексным методом с помощью стратометра и речного дночерпателя вырезного действия. Последний также применялся отдельно (как при работе с лодки, так и с понтонов) на тех участках русла, где скорость течения в стержневой части была наибольшей. Кроме того, начиная с июня отбор проб проводился по схеме опорных створов, которая полностью себя оправдала, позволив дифференцировать степень воздействия абиотических факторов среды не только вдоль русловых потоков, но и в их поперечном разрезе.[ …]

  5. я катя Ответить


    Рис. 374. Цветение и рост
    растений в зависимости
    от продолжительности дня и ночи.
    У животных во второй половине лета и осенью происходит накопление жировых запасов, осенняя линька, кочующие и перелетные начинают свои сезонные миграции. Осенью у насекомых формируются зимующие стадии, например, бабочка-капустница зимует на стадии куколки, и если гусениц весной содержать при длине дня короче 14 часов, то к середине лета сформируется зимующая куколка, которая будет находиться в состоянии покоя несколько теплых месяцев.
    Температура. Важнейший и часто ограничивающий для многих организмов абиотический фактор. Жизнедеятельность большинства организмов ограничена температурным интервалом от 0 до 40ºС, но некоторые организмы живут в горячих гейзерах, температура воды в которых достигает 70ºС, многие способны переносить отрицательные температуры в неактивном состоянии. Для того, чтобы переносить неблагоприятные температуры, у растений и животных выработались различные приспособления:
    Теплокровность птиц и млекопитающих снимает влияние небольших колебаний температуры, такие животные, способные поддерживать температуру на определенном уровне получили название гомойотермные. Животные, не способные поддерживать постоянную температуру тела, называются пойкилотермными.
    Зимняя спячка у грызунов, летучих мышей. При этом резко замедляется интенсивность обмена веществ, уменьшается частота дыхательных движений и частота сердечных сокращений, понижается температура тела.
    Зимний сон. Осенью животные накапливают большое количество жировых запасов и засыпают на несколько месяцев. При этом не происходит глубокого изменения обмена веществ, животное можно разбудить, например, можно разбудить медведя в берлоге. Такое состояние помогает перенести отсутствие пищи в зимнее время.
    Анабиоз. Временное состояние организма, при котором все жизненные процессы замедлены до минимума, отсутствуют все видимые признаки жизни.
    Состояние зимнего покоя. Наблюдается у многолетних растений, направлено на перенесение низких температур. Растения накапливают различные «антифризы», чтобы в цитоплазме клеток не образовались кристаллики льда и не разрушили клеточные структуры.
    Состояние летнего покоя. Характерно для многих раннецветущих растений (тюльпаны), для свежесобранных семян, клубней, луковиц. Наблюдается и у пустынных животных во время жаркого и сухого периода (у некоторых грызунов, черепах).
    Влажность.Важным экологическим фактором является и влажность. Живые организмы приспособились к сезонному изменению влажности, к жизни в зонах с различным содержанием воды в почве и воздухе. Растения засушливых зон, ксерофиты, имеют мелкие жесткие листья с хорошо развитой кутикулой, длинные корни, высокое осмотическое давление в клетках. Суккуленты (кактусы, агавы) имеют сильно развитую водозапасающую ткань, листья редуцированы в колючки и фотосинтез идет за счет стебля, корневая система расположена у поверхности и позволяет во влажные периоды запасти большое количество воды. Эфемеры — однолетние растения, успевают за короткий влажный период отцвести и образовать плоды и семена. Эфемероиды — многолетние растения, цветение которых происходит ранней весной, а летом надземные побеги полностью отмирают, засушливый период переносят под землей в виде луковиц, клубней, корневищ. Гигрофиты, напротив, приспособились к избыточной влажности и произрастают около водоемов, у них крупные листья с большим количеством устьиц слабо развитой кутикулой, слабая корневая система.
    Животные также приспособились к жизни в условиях с различной влажностью. Для сохранения влаги в организме в условиях ее дефицита многие животные ведут ночной образ жизни, имеют плотные покровы и пониженное потоотделение. Некоторым животным достаточно воды, которая содержится в пище (кенгуровая крыса), некоторые могут долгое время обходиться без воды, используя метаболическую воду (верблюд около недели может не пить, используя воду, образующуюся при окислении запасов жира в горбах). Многие животные степей и пустынь могут переносить недостаток воды и высокую температуру, впадая в состояние летней спячки.

  6. Vicage Ответить


    Рис. 374. Цветение и рост
    растений в зависимости
    от продолжительности дня и ночи.
    У животных во второй половине лета и осенью происходит накопление жировых запасов, осенняя линька, кочующие и перелетные начинают свои сезонные миграции. Осенью у насекомых формируются зимующие стадии, например, бабочка-капустница зимует на стадии куколки, и если гусениц весной содержать при длине дня короче 14 часов, то к середине лета сформируется зимующая куколка, которая будет находиться в состоянии покоя несколько теплых месяцев.
    Температура. Важнейший и часто ограничивающий для многих организмов абиотический фактор. Жизнедеятельность большинства организмов ограничена температурным интервалом от 0 до 40ºС, но некоторые организмы живут в горячих гейзерах, температура воды в ко-
    торых достигает 70ºС, многие способны переносить отрицательные температуры в неактивном состоянии. Для того, чтобы переносить неблагоприятные температуры, у растений и животных выработались различные приспособления:
    © Теплокровность птиц и млекопитающих снимает влияние небольших колебаний температуры, такие животные, способные поддерживать температуру на определенном уровне получили название гомойотермные. Животные, не способные поддерживать постоянную температуру тела, называются пойкилотермными.
    © Зимняя спячка у грызунов, летучих мышей. При этом резко замедляется интенсивность обмена веществ, уменьшается частота дыхательных движений и частота сердечных сокращений, понижается температура тела.
    © Зимний сон. Осенью животные накапливают большое количество жировых запасов и засыпают на несколько месяцев. При этом не происходит глубокого изменения обмена веществ, животное можно разбудить, например, можно разбудить медведя в берлоге. Такое состояние помогает перенести отсутствие пищи в зимнее время.
    © Анабиоз. Временное состояние организма, при котором все жизненные процессы замедлены до минимума, отсутствуют все видимые признаки жизни.
    © Состояние зимнего покоя. Наблюдается у многолетних растений, направлено на перенесение низких температур. Растения накапливают различные «антифризы», чтобы в цитоплазме клеток не образовались кристаллики льда и не разрушили клеточные структуры.
    © Состояние летнего покоя. Характерно для многих раннецветущих растений (тюльпаны), для свежесобранных семян, клубней, луковиц. Наблюдается и у пустынных животных во время жаркого и сухого периода (у некоторых грызунов, черепах).
    Важным экологическим фактором является и влажность. Живые организмы приспособились к сезонному изменению влажности, к жизни в зонах с различным содержанием воды в почве и воздухе. Растения засушливых зон, ксерофиты, имеют мелкие жесткие листья с хорошо развитой кутикулой, длинные корни, высокое осмотическое давление в клетках. Суккуленты (кактусы, агавы) имеют сильно развитую водозапасающую ткань, листья редуцированы в колючки и фотосинтез идет за счет стебля, корневая система расположена у поверхности и позволяет во влажные периоды запасти большое количество воды. Эфемеры — однолетние растения, успевают за короткий влажный период отцвести и образовать плоды и семена. Эфемероиды — многолетние растения, цветение которых происходит ранней весной, а летом надземные побеги полностью отмирают, засушливый период переносят под землей в виде луковиц, клубней, корневищ. Гигрофиты, напротив, приспособились к избыточной влажности и произрастают около водоемов, у них крупные листья с большим количеством устьиц слабо развитой кутикулой, слабая корневая система.
    Животные также приспособились к жизни в условиях с различной влажностью. Для сохранения влаги в организме в условиях ее дефицита многие животные ведут ночной образ жизни, имеют плотные покровы и пониженное потоотделение. Некоторым животным достаточно воды, которая содержится в пище (кенгуровая крыса), некоторые могут долгое время обходиться без воды, используя метаболическую воду (верблюд около недели может не пить, используя воду, образующуюся при окислении запасов жира в горбах). Многие животные степей и пустынь могут переносить недостаток воды и высокую температуру, впадая в состояние летней спячки.

  7. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *