Что такое броуновское движение и как оно объясняется?

17 ответов на вопрос “Что такое броуновское движение и как оно объясняется?”

  1. Malajurus Ответить

    Когда в жидкую или газообразную среду помещено крупное тело, то толчки формируют постоянное давление. Если же среда окружает крупное тело со всех сторон, то давление уравновешивается, и на тело действует только сила Архимеда. Такое тело либо всплывает, либо тонет.

    Рис. 3. Броуновское движение пример.
    Основной физический принцип лежащий в основе законов броуновского движения заключается в том, что средняя кинетическая энергия движения молекул жидкого или газообразного вещества равна средней кинетической энергии любой частицы, подвешенной в этой среде. Поэтому среднюю кинетическую энергию $E$ поступательного движения броуновской частицы можно вычислить по формуле: $E = {m \over2} = {3kT \over2}$, где m- масса броуновской частицы, v- скорость броуновской частицы, k- постоянная Больцмана, T- температура. Из этой формулы становится ясно, что средняя кинетическая энергия броуновской частицы, а значит и интенсивность её движения растёт с увеличением температуры.
    Броуновское движение объясняется тем, что благодаря случайной неодинаковости количества ударов молекул жидкости о частицу с разных направлений возникает равнодействующая сила определенного направления.

  2. Tarn Ответить

    Шотландский ботаник Роберт Броун (иногда его фамилию транскрибируют как Браун) еще при жизни как лучший знаток растений получил титул «князя ботаников». Он сделал много замечательных открытий. В 1805 после четырехлетней экспедиции в Австралию привез в Англию около 4000 видов не известных ученым австралийских растений и много лет потратил на их изучение. Описал растения, привезенные из Индонезии и Центральной Африки. Изучал физиологию растений, впервые подробно описал ядро растительной клетки. Петербургская Академия наук сделала его своим почетным членом. Но имя ученого сейчас широко известно вовсе не из-за этих работ.
    В 1827 Броун проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella (кларкии хорошенькой) взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам».
    Наблюдение Броуна подтвердили другие ученые. Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой. Это удивительное явление никогда не прекращалось: его можно было наблюдать сколь угодно долго. Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более что пыльца – это мужские половые клетки растений, однако так же вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях. Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон (1707–1788), автор 36-томной Естественной истории. Это предположение отпало, когда Броун начал исследовать явно неживые объекты; сначала это были очень мелкие частички угля, а также сажи и пыли лондонского воздуха, затем тонко растертые неорганические вещества: стекло, множество различных минералов. «Активные молекулы» оказались повсюду: «В каждом минерале, – писал Броун, – который мне удавалось измельчить в пыль до такой степени, чтобы она могла в течение какого-то времени быть взвешенной в воде, я находил, в больших или меньших количествах, эти молекулы».
    Надо сказать, что у Броуна не было каких-то новейших микроскопов. В своей статье он специально подчеркивает, что у него были обычные двояковыпуклые линзы, которыми он пользовался в течение нескольких лет. И далее пишет: «В ходе всего исследования я продолжал использовать те же линзы, с которыми начал работу, чтобы придать больше убедительности моим утверждениям и чтобы сделать их как можно более доступными для обычных наблюдений».
    Сейчас чтобы повторить наблюдение Броуна достаточно иметь не очень сильный микроскоп и рассмотреть с его помощью дым в зачерненной коробочке, освещенный через боковое отверстие лучом интенсивного света. В газе явление проявляется значительно ярче, чем в жидкости: видны рассеивающие свет маленькие клочки пепла или сажи (в зависимости от источника дыма), которые непрерывно скачут туда и сюда.
    Как это часто бывает в науке, спустя многие годы историки обнаружили, что еще в 1670 изобретатель микроскопа голландец Антони Левенгук, видимо, наблюдал аналогичное явление, но редкость и несовершенство микроскопов, зачаточное состояние молекулярного учения в то время не привлекли внимания к наблюдению Левенгука, поэтому открытие справедливо приписывают Броуну, который впервые подробно его изучил и описал.

    Броуновское движение и атомно-молекулярная теория.

    Наблюдавшееся Броуном явление быстро стало широко известным. Он сам показывал свои опыты многочисленным коллегам (Броун перечисляет два десятка имен). Но объяснить это загадочное явление, которое назвали «броуновским движением», не смог ни сам Броун, ни многие другие ученые в течение многих лет. Перемещения частиц были совершенно беспорядочны: зарисовки их положения, сделанные в разные моменты времени (например, каждую минуту) не давали на первый взгляд никакой возможности найти в этих движениях какую-либо закономерность.
    Объяснение броуновского движения (как назвали это явление) движением невидимых молекул было дано только в последней четверти 19 в., но далеко не сразу было принято всеми учеными. В 1863 преподаватель начертательной геометрии из Карлсруэ (Германия) Людвиг Кристиан Винер (1826–1896) предположил, что явление связано с колебательными движениями невидимых атомов. Это было первое, хотя и очень далекое от современного, объяснение броуновского движения свойствами самих атомов и молекул. Важно, что Винер увидел возможность с помощью этого явления проникнуть в тайны строения материи. Он впервые попытался измерить скорость перемещения броуновских частиц и ее зависимость от их размера. Любопытно, что в 1921 в Докладах Национальной Академии наук США была опубликована работа о броуновском движении другого Винера – Норберта, знаменитого основателя кибернетики.
    Идеи Л.К.Винера были приняты и развиты рядом ученых – Зигмундом Экснером в Австрии (а спустя 33 года – и его сыном Феликсом), Джованни Кантони в Италии, Карлом Вильгельмом Негели в Германии, Луи Жоржем Гуи во Франции, тремя бельгийскими священниками-иезуитами Карбонелли, Дельсо и Тирьоном и другими. В числе этих ученых был и знаменитый впоследствии английский физик и химик Уильям Рамзай. Постепенно становилось понятным, что мельчайшие крупинки вещества испытывают со всех сторон удары еще более мелких частиц, которые в микроскоп уже не видны – как не видны с берега волны, качающие далекую лодку, тогда как движения самой лодки видны вполне отчетливо. Как писали в одной из статей 1877, «…закон больших чисел не сводит теперь эффект соударений к среднему равномерному давлению, их равнодействующая уже не будет равна нулю, а будет непрерывно изменять свое направление и свою величину».
    Качественно картина была вполне правдоподобной и даже наглядной. Примерно так же должны перемещаться маленькая веточка или жучок, которых толкают (или тянут) в разные стороны множество муравьев. Эти более мелкие частицы на самом деле были в лексиконе ученых, только их никто никогда не видел. Называли их молекулами; в переводе с латинского это слово и означает «маленькая масса». Поразительно, но именно такое объяснение дал похожему явлению римский философ Тит Лукреций Кар (ок. 99–55 до н.э.) в своей знаменитой поэме О природе вещей. В ней мельчайшие невидимые глазом частицы он называет «первоначалами» вещей.
    Первоначала вещей сначала движутся сами,
    Следом за ними тела из мельчайшего их сочетанья,
    Близкие, как бы сказать, по силам к началам первичным,
    Скрыто от них получая толчки, начинают стремиться,
    Сами к движенью затем побуждая тела покрупнее.
    Так, исходя от начал, движение мало-помалу
    Наших касается чувств, и становится видимым также
    Нам и в пылинках оно, что движутся в солнечном свете,
    Хоть незаметны толчки, от которых оно происходит…
    Впоследствии оказалось, что Лукреций ошибался: невооруженным глазом наблюдать броуновское движение невозможно, а пылинки в солнечном луче, который проник в темную комнату, «пляшут» из-за вихревых движений воздуха. Но внешне оба явления имеют некоторое сходство. И только в 19 в. многим ученым стало очевидно, что движение броуновских частиц вызвано беспорядочными ударами молекул среды. Движущиеся молекулы наталкиваются на пылинки и другие твердые частицы, которые есть в воде. Чем выше температура, тем быстрее движение. Если пылинка велика, например, имеет размер 0,1 мм (диаметр в миллион раз больше, чем у молекулы воды), то множество одновременных ударов по ней со всех сторон взаимно уравновешиваются и она их практически не «чувствует» – примерно так же, как кусок дерева размером с тарелку не «почувствует» усилий множества муравьев, которые будут тянуть или толкать его в разные стороны. Если же пылинка сравнительно невелика, она под действием ударов окружающих молекул будет двигаться то в одну, то в другую сторону.
    Броуновские частицы имеют размер порядка 0,1–1 мкм, т.е. от одной тысячной до одной десятитысячной доли миллиметра, потому-то Броуну и удалось разглядеть их перемещение, что он рассматривал крошечные цитоплазматические зернышки, а не саму пыльцу (о чем часто ошибочно пишут). Дело в том, что клетки пыльцы слишком большие. Так, у пыльцы луговых трав, которая переносится ветром и вызывает аллергические заболевания у людей (поллиноз), размер клеток обычно находится в пределах 20 – 50 мкм, т.е. они слишком велики для наблюдения броуновского движения. Важно отметить также, что отдельные передвижения броуновской частицы происходят очень часто и на очень малые расстояния, так что увидеть их невозможно, а под микроскопом видны перемещения, происшедшие за какой-то промежуток времени.
    Казалось бы, сам факт существования броуновского движения однозначно доказывал молекулярное строение материи, однако даже в начале 20 в. были ученые, и в их числе – физики и химики, которые не верили в существование молекул. Атомно-молекулярная теория лишь медленно и с трудом завоевывала признание. Так, крупнейший французский химик-органик Марселен Бертло (1827–1907) писал: «Понятие молекулы, с точки зрения наших знаний, неопределенно, в то время как другое понятие – атом – чисто гипотетическое». Еще определеннее высказался известный французский химик А.Сент-Клер Девилль (1818–1881): «Я не допускаю ни закона Авогадро, ни атома, ни молекулы, ибо я отказываюсь верить в то, что не могу ни видеть, ни наблюдать». А немецкий физикохимик Вильгельм Оствальд (1853–1932), лауреат Нобелевской премии, один из основателей физической химии, еще в начале 20 в. решительно отрицал существование атомов. Он ухитрился написать трехтомный учебник химии, в котором слово «атом» ни разу даже не упоминается. Выступая 19 апреля 1904 с большим докладом в Королевском Институте перед членами английского Химического общества, Оствальд пытался доказать, что атомов не существует, а «то, что мы называем материей, является лишь совокупностью энергий, собранной воедино в данном месте».
    Но даже те физики, которые принимали молекулярную теорию, не могли поверить, что таким простым способом доказывается справедливость атомно-молекулярного учения, поэтому выдвигались самые разнообразные альтернативные причины, чтобы объяснить явление. И это вполне в духе науки: пока причина какого-либо явления не выявлена однозначно, можно (и даже необходимо) предполагать различные гипотезы, которые следует по возможности проверять экспериментально или теоретически. Так, еще в 1905 в Энциклопедическом словаре Брокгауза и Ефрона была опубликована небольшая статья петербургского профессора физики Н.А.Гезехуса, учителя знаменитого академика А.Ф.Иоффе. Гезехус писал, что, по мнению некоторых ученых, броуновское движение вызывается «проходящими через жидкость световыми или тепловыми лучами», сводится к «простым потокам внутри жидкости, не имеющим ничего общего с движениями молекул», причем эти потоки могут вызываться «испарением, диффузией и другими причинами». Ведь уже было известно, что очень похожее движение пылинок в воздухе вызывается именно вихревыми потоками. Но объяснение, приведенное Гезехусом, легко можно было опровергнуть экспериментально: если в сильный микроскоп разглядывать две броуновские частички, находящиеся очень близко друг к другу, то их перемещения окажутся совершенно независимыми. Если бы эти движения вызывались какими-либо потоками в жидкости, то такие соседние частицы двигались бы согласованно.

    Теория броуновского движения.

    В начале 20 в. большинство ученых понимали молекулярную природу броуновского движения. Но все объяснения оставались чисто качественными, никакая количественная теория не выдерживала экспериментальной проверки. Кроме того, сами экспериментальные результаты были неотчетливы: фантастическое зрелище безостановочно мечущихся частиц гипнотизировало экспериментаторов, и какие именно характеристики явления нужно измерять, они не знали.
    Несмотря на кажущийся полный беспорядок, случайные перемещения броуновских частиц оказалось все же возможным описать математической зависимостью. Впервые строгое объяснение броуновского движения дал в 1904 польский физик Мариан Смолуховский (1872–1917), который в те годы работал в Львовском университете. Одновременно теорию этого явления разрабатывал Альберт Эйнштейн (1879–1955), мало кому известный тогда эксперт 2-го класса в Патентном бюро швейцарского города Берна. Его статья, опубликованная в мае 1905 в немецком журнале Annalen der Physik, называлась О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты. Этим названием Эйнштейн хотел показать, что из молекулярно-кинетической теории строения материи с необходимостью вытекает существование случайного движения мельчайших твердых частиц в жидкостях.
    Любопытно, что в самом начале этой статьи Эйнштейн пишет, что знаком с самим явлением, хотя и поверхностно: «Возможно, что рассматриваемые движения тождественны с так называемым броуновским молекулярным движением, однако доступные мне данные относительно последнего столь неточны, что я не мог составить об этом определенного мнения». А спустя десятки лет, уже на склоне жизни, Эйнштейн написал в свои воспоминаниях нечто иное – что вообще не знал о броуновском движении и фактически заново «открыл» его чисто теоретически: «Не зная, что наблюдения над „броуновским движением” давно известны, я открыл, что атомистическая теория приводит к существованию доступного наблюдению движения микроскопических взвешенных частиц». Как бы то ни было, а заканчивалась теоретическая статья Эйнштейна прямым призывом к экспериментаторам проверить его выводы на опыте: «Если бы какому-либо исследователю удалось вскоре ответить на поднятые здесь вопросы!» – таким необычным восклицанием заканчивает он свою статью.
    Ответ на страстный призыв Эйнштейна не заставил себя долго ждать.
    В соответствии с теорией Смолуховского-Эйнштейна, среднее значение квадрата смещения броуновской частицы (s2) за время t прямо пропорционально температуре Т и обратно пропорционально вязкости жидкости h, размеру частицы r и постоянной Авогадро
    NA: s2 = 2RTt/6phrNA,
    где R – газовая постоянная. Так, если за 1 мин частица диаметром 1 мкм сместится на 10 мкм, то за 9 мин – на 10= 30 мкм, за 25 мин – на 10= 50 мкм и т.д. В аналогичных условиях частица диаметром 0,25 мкм за те же отрезки времени (1, 9 и 25 мин) сместится соответственно на 20, 60 и 100 мкм, так как = 2. Важно, что в приведенную формулу входит постоянная Авогадро, которую таким образом, можно определить путем количественных измерений перемещения броуновской частицы, что и сделал французский физик Жан Батист Перрен (1870–1942).
    В 1908 Перрен начал количественные наблюдения за движением броуновских частиц под микроскопом. Он использовал изобретенный в 1902 ультрамикроскоп, который позволял обнаруживать мельчайшие частицы благодаря рассеянию на них света от мощного бокового осветителя. Крошечные шарики почти сферической формы и примерно одинакового размера Перрен получал из гуммигута – сгущенного сока некоторых тропических деревьев (он используется и как желтая акварельная краска). Эти крошечные шарики были взвешены в глицерине, содержащем 12% воды; вязкая жидкость препятствовала появлению в ней внутренних потоков, которые смазали бы картину. Вооружившись секундомером, Перрен отмечал и потом зарисовывал (конечно, в сильно увеличенном масштабе) на разграфленном листе бумаги положение частиц через равные интервалы, например, через каждые полминуты. Соединяя полученные точки прямыми, он получал замысловатые траектории, некоторые из них приведены на рисунке (они взяты из книги Перрена Атомы, опубликованной в 1920 в Париже). Такое хаотичное, беспорядочное движение частиц приводит к тому, что перемещаются они в пространстве довольно медленно: сумма отрезков намного больше смещения частицы от первой точки до последней.

    Последовательные положения через каждые 30 секунд трех броуновских частиц – шариков гуммигута размером около 1 мкм. Одна клетка соответствует расстоянию 3 мкм. Если бы Перрен смог определять положение броуновских частиц не через 30, а через 3 секунды, то прямые между каждыми соседними точками превратились бы в такую же сложную зигзагообразную ломаную линию, только меньшего масштаба.
    Используя теоретическую формулу и свои результаты, Перрен получил достаточно точное для того времени значение числа Авогадро: 6,8.1023. Перрен исследовал также с помощью микроскопа распределение броуновских частиц по вертикали (см. АВОГАДРО ЗАКОН) и показал, что, несмотря на действие земного притяжения, они остаются в растворе во взвешенном состоянии. Перрену принадлежат и другие важные работы. В 1895 он доказал, что катодные лучи – это отрицательные электрические заряды (электроны), в 1901 впервые предложил планетарную модель атома. В 1926 он был удостоен Нобелевской премии по физике.
    Результаты, полученные Перреном, подтвердили теоретические выводы Эйнштейна. Это произвело сильное впечатление. Как написал через много лет американский физик А.Пайс, «не перестаешь удивляться этому результату, полученному таким простым способом: достаточно приготовить взвесь шариков, размер которых велик по сравнению с размером простых молекул, взять секундомер и микроскоп, и можно определить постоянную Авогадро!» Можно удивляться и другому: до сих пор в научных журналах (Nature, Science, Journal of Chemical Education) время от времени появляются описания новых экспериментов по броуновскому движению! После публикации результатов Перрена бывший противник атомизма Оствальд признался, что «совпадение броуновского движения с требованиями кинетической гипотезы… дает теперь право самому осторожному ученому говорить об экспериментальном доказательстве атомистической теории материи. Таким образом, атомистическая теория возведена в ранг научной, прочно обоснованной теории». Ему вторит французский математик и физик Анри Пуанкаре: «Блестящее определение числа атомов Перреном завершило триумф атомизма… Атом химиков стал теперь реальностью».

    Броуновское движение и диффузия.

    Перемещение броуновских частиц внешне весьма напоминает перемещение отдельных молекул в результате их теплового движения. Такое перемещение называется диффузией. Еще до работ Смолуховского и Эйнштейна были установлены законы движения молекул в наиболее простом случае газообразного состояния вещества. Оказалось, что молекулы в газах движутся очень быстро – со скоростью пули, но далеко «улететь» не могут, так как очень часто сталкиваются с другими молекулами. Например, молекулы кислорода и азота в воздухе, двигаясь в среднем со скоростью примерно 500 м/с, испытывают каждую секунду более миллиарда столкновений. Поэтому путь молекулы, если бы могли за ним проследить, представлял бы собой сложную ломаную линию. Подобную же траекторию описывают и броуновские частицы, если фиксировать их положение через определенные промежутки времени. И диффузия, и броуновское движение являются следствием хаотичного теплового движения молекул и потому описываются сходными математическими зависимостями. Различие состоит в том, что молекулы в газах движутся по прямой, пока не столкнутся с другими молекулами, после чего меняют направление движения. Броуновская же частица никаких «свободных полетов», в отличие от молекулы, не совершает, а испытывает очень частые мелкие и нерегулярные «дрожания», в результате которых она хаотически смещается то в одну, то в другую сторону. Как показали расчеты, для частицы размером 0,1 мкм одно перемещение происходит за три миллиардные доли секунды на расстояние всего 0,5 нм (1 нм = 0,001 мкм). По меткому выражению одного автора, это напоминает перемещения пустой банки из-под пива на площади, где собралась толпа людей.
    Диффузию наблюдать намного проще, чем броуновское движение, поскольку для этого не нужен микроскоп: наблюдаются перемещения не отдельных частиц, а огромной их массы, нужно только обеспечить, чтобы на диффузию не накладывалось конвекция – перемешивание вещества в результате вихревых потоков (такие потоки легко заметить, капнув каплю окрашенного раствора, например, чернил, в стакан с горячей водой).
    Диффузию удобно наблюдать в густых гелях. Такой гель можно приготовить, например, в баночке из-под пенициллина, приготовив в ней 4–5%-ный раствор желатина. Желатин сначала должен несколько часов набухать, а затем его полностью растворяют при перемешивании, опустив баночку в горячую воду. После охлаждения получается нетекучий гель в виде прозрачной слегка мутноватой массы. Если с помощью острого пинцета осторожно ввести в центр этой массы небольшой кристаллик перманганата калия («марганцовки»), то кристаллик останется висеть в том месте, где его оставили, так как гель не дает ему упасть. Уже через несколько минут вокруг кристаллика начнет расти окрашенный в фиолетовый цвет шарик, со временем он становится все больше и больше, пока стенки баночки не исказят его форму. Такой же результат можно получить и с помощью кристаллика медного купороса, только в этом случае шарик получится не фиолетовым, а голубым.
    Почему получился шарик, понятно: ионы MnO4–, образующиеся при растворении кристалла, переходят в раствор (гель – это, в основном, вода) и в результате диффузии равномерно движутся во все стороны, при этом сила тяжести практически не влияет на скорость диффузии. Диффузия в жидкости идет очень медленно: чтобы шарик вырос на несколько сантиметров, потребуется много часов. В газах диффузия идет намного быстрее, но всё равно если бы воздух не перемешивался, то запах духов или нашатырного спирта распространялся в комнате часами.

    Теория броуновского движения: случайные блуждания.

    Теория Смолуховского – Эйнштейна объясняет закономерности и диффузии, и броуновского движения. Можно рассматривать эти закономерности на примере диффузии. Если скорость молекулы равна u, то, двигаясь по прямой, она за время t пройдет расстояние L = ut, но из-за столкновений с другими молекулами данная молекула не движется по прямой, а непрерывно изменяет направление своего движения. Если бы можно было зарисовать путь молекулы, он принципиально ничем бы не отличался от рисунков, полученных Перреном. Из таких рисунков видно, что из-за хаотичного движения молекула смещается на расстояние s, значительно меньшее, чем L. Эти величины связаны соотношением s =, где l – расстояние, которое молекула пролетает от одного столкновения до другого, средняя длина свободного пробега. Измерения показали, что для молекул воздуха при нормальном атмосферном давлении l ~ 0,1 мкм, значит, при скорости 500 м/с молекула азота или кислорода пролетит за 10 000 секунд (меньше трех часов) расстояние L = 5000 км, а сместится от первоначального положения всего лишь на s = 0,7 м (70 см), поэтому вещества за счет диффузии передвигаются так медленно даже в газах.
    Путь молекулы в результате диффузии (или путь броуновской частицы) называется случайным блужданием (по-английски random walk). Остряки-физики переиначили это выражение в drunkard’s walk – «путь пьяницы». Действительно, перемещение частицы от одного положения до другого (или путь молекулы, претерпевающей множество столкновений) напоминает движение нетрезвого человека. Более того, эта аналогия позволяет также довольно просто вывести основное уравнение такого процесса – на примере одномерного движения, которое легко обобщить на трехмерное. Делают это так.
    Пусть подвыпивший матрос вышел поздно вечером из кабачка и направился вдоль улицы. Пройдя путь l до ближайшего фонаря, он отдохнул и пошел… либо дальше, до следующего фонаря, либо назад, к кабачку – ведь он не помнит, откуда пришел. Спрашивается, уйдет он когда-нибудь от кабачка, или так и будет бродить около него, то отдаляясь, то приближаясь к нему? (В другом варианте задачи говорится, что на обоих концах улицы, где кончаются фонари, находятся грязные канавы, и спрашивается, удастся ли матросу не свалиться в одну из них). Интуитивно кажется, что правилен второй ответ. Но он неверен: оказывается, матрос будет постепенно все более удаляться от нулевой точки, хотя и намного медленнее, чем если бы он шел только в одну сторону. Вот как это можно доказать.
    Пройдя первый раз до ближайшего фонаря (вправо или влево), матрос окажется на расстоянии s1 = ± l от исходной точки. Так как нас интересует только его удаление от этой точки, но не направление, избавимся от знаков, возведя это выражение в квадрат: s12 = l2. Спустя какое-то время, матрос, совершив уже N «блужданий», окажется на расстоянии
    sN = от начала. А пройдя еще раз (в одну из сторон) до ближайшего фонаря, – на расстоянии sN+1 = sN ± l, или, используя квадрат смещения, s2N+1 = s2N ±2sN l + l2. Если матрос много раз повторит это перемещение (от N до N + 1), то в результате усреднения (он с равной вероятностью проходит N-ый шаг вправо или влево), член ±2sNl сократится, так что < s2N+1 = s2N + l2> (угловыми скобками обозначено усредненная величина).
    Так как s12 = l2, то
    s22 = s12 + l2 = 2l2, s32 = s22 + l2 = 3ll2 и т.д., т.е. s2N = Nl2 или sN =l. Общий пройденный путь L можно записать и как произведение скорости матроса на время в пути (L = ut), и как произведение числа блужданий на расстояние между фонарями (L = Nl), следовательно, ut = Nl, откуда N = ut/l и окончательно sN = . Таким образом получается зависимость смещения матроса (а также молекулы или броуновской частицы) от времени. Например, если между фонарями 10 м и матрос идет со скоростью 1 м/с, то за час его общий путь составит L = 3600 м = 3,6 км, тогда как смещение от нулевой точки за то же время будет равно всего s = = 190 м. За три часа он пройдет L = 10,8 км, а сместится на s = 330 м и т.д.
    Произведение ul в полученной формуле можно сопоставить с коэффициентом диффузии, который, как показал ирландский физик и математик Джордж Габриел Стокс (1819–1903), зависит от размера частицы и вязкости среды. На основании подобных соображений Эйнштейн и вывел свое уравнение.

    Теория броуновского движения в реальной жизни.

    Теория случайных блужданий имеет важное практическое приложение. Говорят, что в отсутствие ориентиров (солнце, звезды, шум шоссе или железной дороги и т.п.) человек бродит в лесу, по полю в буране или в густом тумане кругами, все время возвращаясь на прежнее место. На самом деле он ходит не кругами, а примерно так, как движутся молекулы или броуновские частицы. На прежнее место он вернуться может, но только случайно. А вот свой путь он пересекает много раз. Рассказывают также, что замерзших в пургу людей находили «в каком-нибудь километре» от ближайшего жилья или дороги, однако на самом деле у человека не было никаких шансов пройти этот километр, и вот почему.
    Чтобы рассчитать, насколько сместится человек в результате случайных блужданий, надо знать величину l, т.е. расстояние, которое человек может пройти по прямой, не имея никаких ориентиров. Эту величину с помощью студентов-добровольцев измерил доктор геолого-минералогических наук Б.С.Горобец. Он, конечно, не оставлял их в дремучем лесу или на заснеженном поле, все было проще – студента ставили в центре пустого стадиона, завязывали ему глаза и просили в полной тишине (чтобы исключить ориентирование по звукам) пройти до конца футбольного поля. Оказалось, что в среднем студент проходил по прямой всего лишь около 20 метров (отклонение от идеальной прямой не превышало 5°), а потом начинал все более отклоняться от первоначального направления. В конце концов, он останавливался, далеко не дойдя до края.
    Пусть теперь человек идет (вернее, блуждает) в лесу со скоростью 2 километра в час (для дороги это очень медленно, но для густого леса – очень быстро), тогда если величина l равна 20 метрам, то за час он пройдет 2 км, но сместится всего лишь на 200 м, за два часа – примерно на 280 м, за три часа – 350 м, за 4 часа – 400 м и т. д. А двигаясь по прямой с такой скоростью, человек за 4 часа прошел бы 8 километров, поэтому в инструкциях по технике безопасности полевых работ есть такое правило: если ориентиры потеряны, надо оставаться на месте, обустраивать убежище и ждать окончания ненастья (может выглянуть солнце) или помощи. В лесу же двигаться по прямой помогут ориентиры – деревья или кусты, причем каждый раз надо держаться двух таких ориентиров – одного спереди, другого сзади. Но, конечно, лучше всего брать с собой компас…
    Илья Леенсон

  3. Sinwind Ответить

    БРО?УНОВСКОЕ ДВИЖЕ?НИЕ (брауновское движение), беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды; открыто Р. Броуном (см. БРОУН Роберт (ботаник)) в 1827 г.
    При наблюдении в микроскопе взвеси цветочной пыльцы в воде Броун наблюдал хаотичное движение частиц, возникающее «не от движения жидкости и не от ее испарения». Видимые только под микроскопом взвешенные частицы размером 1 мкм и менее совершали неупорядоченные независимые движения, описывая сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды, его интенсивность увеличивается с ростом температуры среды и с уменьшением ее вязкости и размеров частиц. Даже качественно объяснить причины броуновского движения удалось только через 50 лет, когда причину броуновского движения стали связывать с ударами молекул жидкости о поверхность взвешенной в ней частицы.
    Первая количественная теория броуновского движения была дана А. Эйнштейном (см. ЭЙНШТЕЙН Альберт) и М. Смолуховским (см. СМОЛУХОВСКИЙ Мариан) в 1905—06 гг. на основе молекулярно-кинетической теории. Было показано, что случайные блуждания броуновских частиц связаны с их участием в тепловом движении наравне с молекулами той среды, в которой они взвешены.
    Частицы обладают в среднем такой же кинетической энергией, но из-за большей массы имеют меньшую скорость. Теория броуновского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причем импульсы различных молекул не одинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих ее молекул, не будут точно компенсироваться. Поэтому в результате «бомбардировки» молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 1014 раз в сек. Из этой теории следовало, что, измерив смещение частицы за определенное время и зная ее радиус и вязкость жидкости можно вычислить число Авогадро (см. АВОГАДРО ПОСТОЯННАЯ).
    Выводы теории броуновского движения были подтверждены измерениями Ж. Перрена (см. ПЕРРЕН Жан Батист) и Т. Сведберга (см. СВЕДБЕРГ Теодор) в 1906 г. На основе этих соотношений были экспериментально определены постоянная Больцмана (см. БОЛЬЦМАНА ПОСТОЯННАЯ) и постоянная Авогадро.
    При наблюдении броуновского движения фиксируется положение частицы через равные промежутки времени. Чем короче промежутки времени, тем более изломанной будет выглядеть траектория движения частицы.
    Закономерности броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Было окончательно установлено, что тепловая форма движения материи обусловлена хаотическим движением атомов или молекул, из которых состоят макроскопические тела.
    Теория броуновского движения сыграла важную роль в обосновании статистической механики, на ней основана кинетическая теория коагуляции водных растворов. Помимо этого, она имеет и практическое значение в метрологии, так как броуновское движение рассматривают как основной фактор, ограничивающий точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.

  4. Huthris Ответить

    5. Практическое применение.
    Диффузия и без практического применения имеет огромное значение не только для человека, но и для всего живого на Земле: именно благодаря диффузии в нашу кровь через лёгкие попадает кислород, именно посредством диффузии растения добывают из почвы воду, поглощают углекислый газ из атмосферы и выделяют в ней кислород, а рыбы дышат в воде кислородом, который из атмосферы посредством диффузии попадает в воду. Но явление диффузии применяется также и во многих областях техники, причём именно диффузия в твёрдых телах. К примеру, есть такой процесс — диффузионная сварка. В этом процессе детали очень сильно прижимаются друг к другу, нагреваются до 800 градусов по Цельсию и посредством диффузии происходит их соединение друг с другом. Именно благодаря диффузии земная атмосфера, состоящая из большого количества различных газов, не разделяется на отдельные слои по составу, а везде примерно однородна — а ведь будь иначе, мы вряд ли смогли бы дышать. Существует огромное количество примеров влияния диффузии на нашу жизнь и на всю природу, которые может найти любой из вас, если захочет. А вот о применении броуновского движения мало что можно сказать, кроме того, что сама теория, которая описывает это движение, может применяться и в других, казалось бы совершенно не связанных с физикой, явлениях. К примеру, эту теорию используют для описания случайных процессов, с применением большого количества данных и статистики — таких как изменение цен. Теория броуновского движения используется для создания реалистичной компьютерной графики. Интересно, что человек, заблудившийся в лесу движется примерно также как и броуновские частички — блуждает из стороны в сторону, многократно пересекая свою траекторию.
    6. Методические рекомендации учителям.
    1) Рассказывая учащимся о броуновском движении и о диффузии, необходимо сделать акцент на том, что эти явления не доказывают факт существования молекул, но доказывают факт их движения и то, что оно беспорядочное — хаотичное.
    2) Обязательно обратите особое внимание на то, что это непрерывное движение, зависящее от температуры, то есть тепловое движение, которое не может прекратиться никогда.
    3) Продемонстрируйте диффузию с помощью воды и марганцовки, дав задание наиболее любознательным ребятам провести подобный эксперимент в домашних условиях и делая фотографии воды с марганцовкой через каждый час-два в течение дня (в выходной дети это с удовольствием сделают, а фото пришлют вам). Лучше, если в подобном эксперименте будет две ёмкости с водой — холодной и горячей, чтобы можно было продемонстрировать наглядно зависимость скорости диффузии от температуры.
    4) Попробуйте измерить скорость диффузии в классе с помощью, к примеру дезодоранта — в одном конце класса распыляем небольшое количество, а в 3-5 метрах от этого места ученик с секундомером фиксирует время, через которое он почувствует запах этого дезодоранта. Это и весело, и интересно, и запомнится детьми надолго.
    5) Обсудите с детьми понятие хаотичности и тот факт, что даже в хаотических процессах учёные находят некие закономерности.
    #ADVERTISING_INSERT#

  5. Crazy Van Ответить

    Среднее давление имеет определенное значение как в газе, так и в жидкости. Но всегда происходят незначительные случайные отклонения от этого среднего значения. Чем меньше площадь поверхности тела, тем заметнее относительные изменения силы давления, действующей на данную площадь. Так, например, если площадка имеет размер порядка нескольких диаметров молекулы, то действующая на нее сила давления меняется скачкообразно от нуля до некоторого значения при попадании молекулы в эту площадку.
    Молекулярно-кинетическая теория броуновского движения была создана в 1905 г. А. Эйнштейном (1879-1955).
    Построение теории броуновского движения и ее экспериментальное подтверждение французским физиком Ж. Перреном окончательно завершили победу молекулярно-кинетической теории.

    Опыты Перрена

    Идея опытов Перрена состоит в следующем. Известно, что концентрация молекул газа в атмосфере уменьшается с высотой. Если бы не было теплового движения, то все молекулы упали бы на Землю и атмосфера исчезла бы. Однако если бы не было притяжения к Земле, то за счет теплового движения молекулы покидали бы Землю, так как газ способен к неограниченному расширению. В результате действия этих противоположных факторов устанавливается определенное распределение молекул по высоте, о чем сказано выше, т. е. концентрация молекул довольно быстро уменьшается с высотой. Причем, чем больше масса молекул, тем быстрее с высотой убывает их концентрация.
    Броуновские частицы участвуют в тепловом движении. Так как их взаимодействие пренебрежимо мало, то совокупность этих частиц в газе или жидкости можно рассматривать как идеальный газ из очень тяжелых молекул. Следовательно, концентрация броуновских частиц в газе или жидкости в поле тяжести Земли должна убывать по тому же закону, что и концентрация молекул газа. Закон этот известен.
    Перрен с помощью микроскопа большого увеличения и малой глубины поля зрения (малой глубины резкости) наблюдал броуновские частицы в очень тонких слоях жидкости. Подсчитывая концентрацию частиц на разных высотах, он нашел, что эта концентрация убывает с высотой по тому же закону, что и концентрация молекул газа. Отличие в том, что за счет большой массы броуновских частиц убывание происходит очень быстро.
    Более того, подсчет броуновских частиц на разных высотах позволил Перрену определить постоянную Авогадро совершенно новым методом. Значение этой постоянной совпало с известным.
    Все эти факты свидетельствуют о правильности теории броуновского движения и, соответственно, о том, что броуновские частицы участвуют в тепловом движении молекул.
    Вы наглядно убедились в существовании теплового движения; увидели, как происходит беспорядочное движение. Молекулы движутся еще более беспорядочно, чем броуновские частицы.

    Сущность явления

    Теперь давайте попробуем разобраться в сущности явления броуновского движения. А происходит оно потому, что все абсолютно жидкости и газы состоят из атомов или молекул. Но также нам известно, что эти мельчайшие частицы, находясь в непрерывном хаотическом движении, постоянно толкают броуновскую частицу с разных сторон.
    Но вот что интересно, ученые доказали, что частицы более крупных размеров, которые превышают 5 мкм остаются неподвижными и в броуновском движении почти не участвуют, чего не скажешь о более мелких частицах. Частицы, имеющие размер менее
    3 мкм, способны двигаться поступательно, совершая вращения или выписывая сложные траектории.
    При погружении в среду крупного тела, происходящие в огромном количестве толчки, как бы выходят на средний уровень и поддерживают постоянное давление. В этом случае в действие вступает теория Архимеда, так как окруженное средой со всех сторон крупное тело уравновешивает давление и оставшаяся подъемная сила позволяет этому телу всплыть, или утонуть.
    Но если тело имеет размеры такие, как броуновская частица, то есть совершенно незаметные, то становятся заметны отклонения давления, которые способствуют созданию случайной силы, которая приводит к колебаниям этих частиц. Можно сделать вывод, что броуновские частицы в среде находятся во взвешенном состоянии, в отличие от больших частиц, которые тонут или всплывают.

    Значение броуновского движения

    Давайте попробуем разобраться, имеет ли какое-либо значение броуновское движение в природной среде:
    • Во-первых, броуновское движение играет значительную роль в питании растений из почвы;
    • Во-вторых, в организмах человека и животных всасывание питательных веществ происходит через стенки органов пищеварения благодаря броуновскому движению;
    • В-третьих, в осуществлении кожного дыхания;
    • Ну и последнее, имеет значение броуновское движение и в распространении вредных веществ в воздухе, и в воде.

    Домашнее задание

    Внимательно прочитайте вопросы и дайте письменные ответы на них:
    1. Вспомните, что называется диффузией?
    2. Какая существует связь между диффузией и тепловым движением молекул?
    3. Дайте определение броуновскому движению.
    4. Как вы думаете, является ли броуновское движение тепловым, и обоснуйте свой ответ?
    5. Изменится ли характер броуновского движения при нагревании? Если изменится, то, как именно?
    6. Каким прибором пользуются при изучении броуновского движения?
    7. Меняется ли картина броуновского движения при увеличении температуры и как именно?
    8. Произойдут ли какие-либо изменения в броуновском движении, если водную эмульсию заменить на глицериновую?
    Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

  6. Sann Ответить

    Смотреть что такое “Броуновское движение” в других словарях:

    БРОУНОВСКОЕ ДВИЖЕНИЕ — (брауновское движение), беспорядочное движение малых ч ц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды. Исследовано в 1827 англ. учёным Р. Броуном (Браун; R. Brown), к рый наблюдал в микроскоп… … Физическая энциклопедия
    БРОУНОВСКОЕ ДВИЖЕНИЕ — (Brown), движение мельчайших частиц, взвешенных в жидкости, происходящее под действием столкновений между этими частицами и молекулами жидкости. Впервые оно было замечено под микроскопом англ. ботаником Броу ном в 1827 г. Если в поле зрения… … Большая медицинская энциклопедия
    БРОУНОВСКОЕ ДВИЖЕНИЕ — (брауновское движение) беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, под влиянием ударов молекул окружающей среды; открыто Р. Броуном … Большой Энциклопедический словарь
    БРОУНОВСКОЕ ДВИЖЕНИЕ — БРОУНОВСКОЕ ДВИЖЕНИЕ, неупорядоченное, зигзагообразное движение частиц, взвешенных в потоке (жидкости или газа). Вызывается неравномерностью бомбардировки более крупных частиц с разных сторон более мелкими молекулами движущегося потока. Это… … Научно-технический энциклопедический словарь
    броуновское движение — – колебательное, вращательное или поступательное движение частиц дисперсной фазы под действием теплового движения молекул дисперсионной среды. Общая химия : учебник / А. В. Жолнин [1] … Химические термины
    БРОУНОВСКОЕ ДВИЖЕНИЕ — бес порядочное движение мельчайших частиц, взвешенных в жидкости или газе, под влиянием ударов молекул окружающей среды, находящихся в тепловом движении; играет важную роль в некоторых физ. хим. процессах, ограничивает точность… … Большая политехническая энциклопедия
    броуновское движение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Brownian motion … Справочник технического переводчика
    Броуновское движение — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия
    броуновское движение — (брауновское движение), беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, под влиянием ударов молекул окружающей среды; открыто Р. Броуном. * * * БРОУНОВСКОЕ ДВИЖЕНИЕ БРОУНОВСКОЕ ДВИЖЕНИЕ (брауновское движение),… … Энциклопедический словарь
    БРОУНОВСКОЕ ДВИЖЕНИЕ — непрерывное хаотичное движение микроскопических частиц, взвешенных в газе или жидкости, обусловленное тепловым движением молекул окружающей среды. Это явление впервые было описано в 1827 шотландским ботаником Р.Броуном, исследовавшим под… … Энциклопедия Кольера

  7. Tektilar Ответить

    БРОУНОВСКОЕ ДВИЖЕНИЕ – видимое в микроскоп хаотическое перемещение очень малых частиц вещества под действием ударов молекул. Названо в честь английского ученого Броуна (1773–1858).Роберт Броун

    Открытие Броуна.

    Шотландский ботаник Роберт Броун (иногда его фамилию транскрибируют как Браун) еще при жизни как лучший знаток растений получил титул «князя ботаников». Он сделал много замечательных открытий. В 1805 после четырехлетней экспедиции в Австралию привез в Англию около 4000 видов не известных ученым австралийских растений и много лет потратил на их изучение. Описал растения, привезенные из Индонезии и Центральной Африки. Изучал физиологию растений, впервые подробно описал ядро растительной клетки. Петербургская Академия наук сделала его своим почетным членом. Но имя ученого сейчас широко известно вовсе не из-за этих работ.
    В 1827 Броун проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella (кларкии хорошенькой) взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам».
    Наблюдение Броуна подтвердили другие ученые. Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой. Это удивительное явление никогда не прекращалось: его можно было наблюдать сколь угодно долго. Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более что пыльца – это мужские половые клетки растений, однако так же вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях. Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон (1707–1788), автор 36-томной Естественной истории. Это предположение отпало, когда Броун начал исследовать явно неживые объекты; сначала это были очень мелкие частички угля, а также сажи и пыли лондонского воздуха, затем тонко растертые неорганические вещества: стекло, множество различных минералов. «Активные молекулы» оказались повсюду: «В каждом минерале, – писал Броун, – который мне удавалось измельчить в пыль до такой степени, чтобы она могла в течение какого-то времени быть взвешенной в воде, я находил, в больших или меньших количествах, эти молекулы».
    Надо сказать, что у Броуна не было каких-то новейших микроскопов. В своей статье он специально подчеркивает, что у него были обычные двояковыпуклые линзы, которыми он пользовался в течение нескольких лет. И далее пишет: «В ходе всего исследования я продолжал использовать те же линзы, с которыми начал работу, чтобы придать больше убедительности моим утверждениям и чтобы сделать их как можно более доступными для обычных наблюдений».
    Сейчас чтобы повторить наблюдение Броуна достаточно иметь не очень сильный микроскоп и рассмотреть с его помощью дым в зачерненной коробочке, освещенный через боковое отверстие лучом интенсивного света. В газе явление проявляется значительно ярче, чем в жидкости: видны рассеивающие свет маленькие клочки пепла или сажи (в зависимости от источника дыма), которые непрерывно скачут туда и сюда.
    Как это часто бывает в науке, спустя многие годы историки обнаружили, что еще в 1670 изобретатель микроскопа голландец Антони Левенгук, видимо, наблюдал аналогичное явление, но редкость и несовершенство микроскопов, зачаточное состояние молекулярного учения в то время не привлекли внимания к наблюдению Левенгука, поэтому открытие справедливо приписывают Броуну, который впервые подробно его изучил и описал.
    Броуновское движение и атомно-молекулярная теория.
    Наблюдавшееся Броуном явление быстро стало широко известным. Он сам показывал свои опыты многочисленным коллегам (Броун перечисляет два десятка имен). Но объяснить это загадочное явление, которое назвали «броуновским движением», не смог ни сам Броун, ни многие другие ученые в течение многих лет. Перемещения частиц были совершенно беспорядочны: зарисовки их положения, сделанные в разные моменты времени (например, каждую минуту) не давали на первый взгляд никакой возможности найти в этих движениях какую-либо закономерность.
    Объяснение броуновского движения (как назвали это явление) движением невидимых молекул было дано только в последней четверти 19 в., но далеко не сразу было принято всеми учеными. В 1863 преподаватель начертательной геометрии из Карлсруэ (Германия) Людвиг Кристиан Винер (1826–1896) предположил, что явление связано с колебательными движениями невидимых атомов. Это было первое, хотя и очень далекое от современного, объяснение броуновского движения свойствами самих атомов и молекул. Важно, что Винер увидел возможность с помощью этого явления проникнуть в тайны строения материи. Он впервые попытался измерить скорость перемещения броуновских частиц и ее зависимость от их размера. Любопытно, что в 1921 в Докладах Национальной Академии наук США была опубликована работа о броуновском движении другого Винера – Норберта, знаменитого основателя кибернетики.
    Идеи Л.К.Винера были приняты и развиты рядом ученых – Зигмундом Экснером в Австрии (а спустя 33 года – и его сыном Феликсом), Джованни Кантони в Италии, Карлом Вильгельмом Негели в Германии, Луи Жоржем Гуи во Франции, тремя бельгийскими священниками-иезуитами Карбонелли, Дельсо и Тирьоном и другими. В числе этих ученых был и знаменитый впоследствии английский физик и химик Уильям Рамзай. Постепенно становилось понятным, что мельчайшие крупинки вещества испытывают со всех сторон удары еще более мелких частиц, которые в микроскоп уже не видны – как не видны с берега волны, качающие далекую лодку, тогда как движения самой лодки видны вполне отчетливо. Как писали в одной из статей 1877, «…закон больших чисел не сводит теперь эффект соударений к среднему равномерному давлению, их равнодействующая уже не будет равна нулю, а будет непрерывно изменять свое направление и свою величину».
    Качественно картина была вполне правдоподобной и даже наглядной. Примерно так же должны перемещаться маленькая веточка или жучок, которых толкают (или тянут) в разные стороны множество муравьев. Эти более мелкие частицы на самом деле были в лексиконе ученых, только их никто никогда не видел. Называли их молекулами; в переводе с латинского это слово и означает «маленькая масса». Поразительно, но именно такое объяснение дал похожему явлению римский философ Тит Лукреций Кар (ок. 99–55 до н.э.) в своей знаменитой поэме О природе вещей. В ней мельчайшие невидимые глазом частицы он называет «первоначалами» вещей.
    Первоначала вещей сначала движутся сами,
    Следом за ними тела из мельчайшего их сочетанья,
    Близкие, как бы сказать, по силам к началам первичным,
    Скрыто от них получая толчки, начинают стремиться,
    Сами к движенью затем побуждая тела покрупнее.
    Так, исходя от начал, движение мало-помалу
    Наших касается чувств, и становится видимым также
    Нам и в пылинках оно, что движутся в солнечном свете,
    Хоть незаметны толчки, от которых оно происходит…

    Впоследствии оказалось, что Лукреций ошибался: невооруженным глазом наблюдать броуновское движение невозможно, а пылинки в солнечном луче, который проник в темную комнату, «пляшут» из-за вихревых движений воздуха. Но внешне оба явления имеют некоторое сходство. И только в 19 в. многим ученым стало очевидно, что движение броуновских частиц вызвано беспорядочными ударами молекул среды. Движущиеся молекулы наталкиваются на пылинки и другие твердые частицы, которые есть в воде. Чем выше температура, тем быстрее движение. Если пылинка велика, например, имеет размер 0,1 мм (диаметр в миллион раз больше, чем у молекулы воды), то множество одновременных ударов по ней со всех сторон взаимно уравновешиваются и она их практически не «чувствует» – примерно так же, как кусок дерева размером с тарелку не «почувствует» усилий множества муравьев, которые будут тянуть или толкать его в разные стороны. Если же пылинка сравнительно невелика, она под действием ударов окружающих молекул будет двигаться то в одну, то в другую сторону.
    Броуновские частицы имеют размер порядка 0,1–1 мкм, т.е. от одной тысячной до одной десятитысячной доли миллиметра, потому-то Броуну и удалось разглядеть их перемещение, что он рассматривал крошечные цитоплазматические зернышки, а не саму пыльцу (о чем часто ошибочно пишут). Дело в том, что клетки пыльцы слишком большие. Так, у пыльцы луговых трав, которая переносится ветром и вызывает аллергические заболевания у людей (поллиноз), размер клеток обычно находится в пределах 20 – 50 мкм, т.е. они слишком велики для наблюдения броуновского движения. Важно отметить также, что отдельные передвижения броуновской частицы происходят очень часто и на очень малые расстояния, так что увидеть их невозможно, а под микроскопом видны перемещения, происшедшие за какой-то промежуток времени.
    Казалось бы, сам факт существования броуновского движения однозначно доказывал молекулярное строение материи, однако даже в начале 20 в. были ученые, и в их числе – физики и химики, которые не верили в существование молекул. Атомно-молекулярная теория лишь медленно и с трудом завоевывала признание. Так, крупнейший французский химик-органик Марселен Бертло (1827–1907) писал: «Понятие молекулы, с точки зрения наших знаний, неопределенно, в то время как другое понятие – атом – чисто гипотетическое». Еще определеннее высказался известный французский химик А.Сент-Клер Девилль (1818–1881): «Я не допускаю ни закона Авогадро, ни атома, ни молекулы, ибо я отказываюсь верить в то, что не могу ни видеть, ни наблюдать». А немецкий физикохимик Вильгельм Оствальд (1853–1932), лауреат Нобелевской премии, один из основателей физической химии, еще в начале 20 в. решительно отрицал существование атомов. Он ухитрился написать трехтомный учебник химии, в котором слово «атом» ни разу даже не упоминается. Выступая 19 апреля 1904 с большим докладом в Королевском Институте перед членами английского Химического общества, Оствальд пытался доказать, что атомов не существует, а «то, что мы называем материей, является лишь совокупностью энергий, собранной воедино в данном месте».
    Но даже те физики, которые принимали молекулярную теорию, не могли поверить, что таким простым способом доказывается справедливость атомно-молекулярного учения, поэтому выдвигались самые разнообразные альтернативные причины, чтобы объяснить явление. И это вполне в духе науки: пока причина какого-либо явления не выявлена однозначно, можно (и даже необходимо) предполагать различные гипотезы, которые следует по возможности проверять экспериментально или теоретически. Так, еще в 1905 в Энциклопедическом словаре Брокгауза и Ефрона была опубликована небольшая статья петербургского профессора физики Н.А.Гезехуса, учителя знаменитого академика А.Ф.Иоффе. Гезехус писал, что, по мнению некоторых ученых, броуновское движение вызывается «проходящими через жидкость световыми или тепловыми лучами», сводится к «простым потокам внутри жидкости, не имеющим ничего общего с движениями молекул», причем эти потоки могут вызываться «испарением, диффузией и другими причинами». Ведь уже было известно, что очень похожее движение пылинок в воздухе вызывается именно вихревыми потоками. Но объяснение, приведенное Гезехусом, легко можно было опровергнуть экспериментально: если в сильный микроскоп разглядывать две броуновские частички, находящиеся очень близко друг к другу, то их перемещения окажутся совершенно независимыми. Если бы эти движения вызывались какими-либо потоками в жидкости, то такие соседние частицы двигались бы согласованно.
    Теория броуновского движения.
    В начале 20 в. большинство ученых понимали молекулярную природу броуновского движения. Но все объяснения оставались чисто качественными, никакая количественная теория не выдерживала экспериментальной проверки. Кроме того, сами экспериментальные результаты были неотчетливы: фантастическое зрелище безостановочно мечущихся частиц гипнотизировало экспериментаторов, и какие именно характеристики явления нужно измерять, они не знали.
    Несмотря на кажущийся полный беспорядок, случайные перемещения броуновских частиц оказалось все же возможным описать математической зависимостью. Впервые строгое объяснение броуновского движения дал в 1904 польский физик Мариан Смолуховский (1872–1917), который в те годы работал в Львовском университете. Одновременно теорию этого явления разрабатывал Альберт Эйнштейн (1879–1955), мало кому известный тогда эксперт 2-го класса в Патентном бюро швейцарского города Берна. Его статья, опубликованная в мае 1905 в немецком журнале Annalen der Physik, называлась О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты. Этим названием Эйнштейн хотел показать, что из молекулярно-кинетической теории строения материи с необходимостью вытекает существование случайного движения мельчайших твердых частиц в жидкостях.
    Любопытно, что в самом начале этой статьи Эйнштейн пишет, что знаком с самим явлением, хотя и поверхностно: «Возможно, что рассматриваемые движения тождественны с так называемым броуновским молекулярным движением, однако доступные мне данные относительно последнего столь неточны, что я не мог составить об этом определенного мнения». А спустя десятки лет, уже на склоне жизни, Эйнштейн написал в свои воспоминаниях нечто иное – что вообще не знал о броуновском движении и фактически заново «открыл» его чисто теоретически: «Не зная, что наблюдения над „броуновским движением” давно известны, я открыл, что атомистическая теория приводит к существованию доступного наблюдению движения микроскопических взвешенных частиц». Как бы то ни было, а заканчивалась теоретическая статья Эйнштейна прямым призывом к экспериментаторам проверить его выводы на опыте: «Если бы какому-либо исследователю удалось вскоре ответить на поднятые здесь вопросы!» – таким необычным восклицанием заканчивает он свою статью.
    Ответ на страстный призыв Эйнштейна не заставил себя долго ждать.
    В соответствии с теорией Смолуховского-Эйнштейна, среднее значение квадрата смещения броуновской частицы (s2) за время t прямо пропорционально температуре Т и обратно пропорционально вязкости жидкости h, размеру частицы r и постоянной Авогадро
    NA: s2 = 2RTt/6phrNA,
    где R – газовая постоянная. Так, если за 1 мин частица диаметром 1 мкм сместится на 10 мкм, то за 9 мин – на 10= 30 мкм, за 25 мин – на 10= 50 мкм и т.д. В аналогичных условиях частица диаметром 0,25 мкм за те же отрезки времени (1, 9 и 25 мин) сместится соответственно на 20, 60 и 100 мкм, так как = 2. Важно, что в приведенную формулу входит постоянная Авогадро, которую таким образом, можно определить путем количественных измерений перемещения броуновской частицы, что и сделал французский физик Жан Батист Перрен (1870–1942).
    В 1908 Перрен начал количественные наблюдения за движением броуновских частиц под микроскопом. Он использовал изобретенный в 1902 ультрамикроскоп, который позволял обнаруживать мельчайшие частицы благодаря рассеянию на них света от мощного бокового осветителя. Крошечные шарики почти сферической формы и примерно одинакового размера Перрен получал из гуммигута – сгущенного сока некоторых тропических деревьев (он используется и как желтая акварельная краска). Эти крошечные шарики были взвешены в глицерине, содержащем 12% воды; вязкая жидкость препятствовала появлению в ней внутренних потоков, которые смазали бы картину. Вооружившись секундомером, Перрен отмечал и потом зарисовывал (конечно, в сильно увеличенном масштабе) на разграфленном листе бумаги положение частиц через равные интервалы, например, через каждые полминуты. Соединяя полученные точки прямыми, он получал замысловатые траектории, некоторые из них приведены на рисунке (они взяты из книги Перрена Атомы, опубликованной в 1920 в Париже). Такое хаотичное, беспорядочное движение частиц приводит к тому, что перемещаются они в пространстве довольно медленно: сумма отрезков намного больше смещения частицы от первой точки до последней.
    Последовательные положения через каждые 30 секунд трех броуновских частиц – шариков гуммигута размером около 1 мкм. Одна клетка соответствует расстоянию 3 мкм.
    Последовательные положения через каждые 30 секунд трех броуновских частиц – шариков гуммигута размером около 1 мкм. Одна клетка соответствует расстоянию 3 мкм. Если бы Перрен смог определять положение броуновских частиц не через 30, а через 3 секунды, то прямые между каждыми соседними точками превратились бы в такую же сложную зигзагообразную ломаную линию, только меньшего масштаба.
    Используя теоретическую формулу и свои результаты, Перрен получил достаточно точное для того времени значение числа Авогадро: 6,8.1023. Перрен исследовал также с помощью микроскопа распределение броуновских частиц по вертикали (см. АВОГАДРО ЗАКОН) и показал, что, несмотря на действие земного притяжения, они остаются в растворе во взвешенном состоянии. Перрену принадлежат и другие важные работы. В 1895 он доказал, что катодные лучи – это отрицательные электрические заряды (электроны), в 1901 впервые предложил планетарную модель атома. В 1926 он был удостоен Нобелевской премии по физике.
    Результаты, полученные Перреном, подтвердили теоретические выводы Эйнштейна. Это произвело сильное впечатление. Как написал через много лет американский физик А.Пайс, «не перестаешь удивляться этому результату, полученному таким простым способом: достаточно приготовить взвесь шариков, размер которых велик по сравнению с размером простых молекул, взять секундомер и микроскоп, и можно определить постоянную Авогадро!» Можно удивляться и другому: до сих пор в научных журналах (Nature, Science, Journal of Chemical Education) время от времени появляются описания новых экспериментов по броуновскому движению! После публикации результатов Перрена бывший противник атомизма Оствальд признался, что «совпадение броуновского движения с требованиями кинетической гипотезы… дает теперь право самому осторожному ученому говорить об экспериментальном доказательстве атомистической теории материи. Таким образом, атомистическая теория возведена в ранг научной, прочно обоснованной теории». Ему вторит французский математик и физик Анри Пуанкаре: «Блестящее определение числа атомов Перреном завершило триумф атомизма… Атом химиков стал теперь реальностью».
    Броуновское движение и диффузия.
    Перемещение броуновских частиц внешне весьма напоминает перемещение отдельных молекул в результате их теплового движения. Такое перемещение называется диффузией. Еще до работ Смолуховского и Эйнштейна были установлены законы движения молекул в наиболее простом случае газообразного состояния вещества. Оказалось, что молекулы в газах движутся очень быстро – со скоростью пули, но далеко «улететь» не могут, так как очень часто сталкиваются с другими молекулами. Например, молекулы кислорода и азота в воздухе, двигаясь в среднем со скоростью примерно 500 м/с, испытывают каждую секунду более миллиарда столкновений. Поэтому путь молекулы, если бы могли за ним проследить, представлял бы собой сложную ломаную линию. Подобную же траекторию описывают и броуновские частицы, если фиксировать их положение через определенные промежутки времени. И диффузия, и броуновское движение являются следствием хаотичного теплового движения молекул и потому описываются сходными математическими зависимостями. Различие состоит в том, что молекулы в газах движутся по прямой, пока не столкнутся с другими молекулами, после чего меняют направление движения. Броуновская же частица никаких «свободных полетов», в отличие от молекулы, не совершает, а испытывает очень частые мелкие и нерегулярные «дрожания», в результате которых она хаотически смещается то в одну, то в другую сторону. Как показали расчеты, для частицы размером 0,1 мкм одно перемещение происходит за три миллиардные доли секунды на расстояние всего 0,5 нм (1 нм = 0,001 мкм). По меткому выражению одного автора, это напоминает перемещения пустой банки из-под пива на площади, где собралась толпа людей.
    Диффузию наблюдать намного проще, чем броуновское движение, поскольку для этого не нужен микроскоп: наблюдаются перемещения не отдельных частиц, а огромной их массы, нужно только обеспечить, чтобы на диффузию не накладывалось конвекция – перемешивание вещества в результате вихревых потоков (такие потоки легко заметить, капнув каплю окрашенного раствора, например, чернил, в стакан с горячей водой).
    Диффузию удобно наблюдать в густых гелях. Такой гель можно приготовить, например, в баночке из-под пенициллина, приготовив в ней 4–5%-ный раствор желатина. Желатин сначала должен несколько часов набухать, а затем его полностью растворяют при перемешивании, опустив баночку в горячую воду. После охлаждения получается нетекучий гель в виде прозрачной слегка мутноватой массы. Если с помощью острого пинцета осторожно ввести в центр этой массы небольшой кристаллик перманганата калия («марганцовки»), то кристаллик останется висеть в том месте, где его оставили, так как гель не дает ему упасть. Уже через несколько минут вокруг кристаллика начнет расти окрашенный в фиолетовый цвет шарик, со временем он становится все больше и больше, пока стенки баночки не исказят его форму. Такой же результат можно получить и с помощью кристаллика медного купороса, только в этом случае шарик получится не фиолетовым, а голубым.
    Почему получился шарик, понятно: ионы MnO4–, образующиеся при растворении кристалла, переходят в раствор (гель – это, в основном, вода) и в результате диффузии равномерно движутся во все стороны, при этом сила тяжести практически не влияет на скорость диффузии. Диффузия в жидкости идет очень медленно: чтобы шарик вырос на несколько сантиметров, потребуется много часов. В газах диффузия идет намного быстрее, но всё равно если бы воздух не перемешивался, то запах духов или нашатырного спирта распространялся в комнате часами.
    Теория броуновского движения: случайные блуждания.
    Теория Смолуховского – Эйнштейна объясняет закономерности и диффузии, и броуновского движения. Можно рассматривать эти закономерности на примере диффузии. Если скорость молекулы равна u, то, двигаясь по прямой, она за время t пройдет расстояние L = ut, но из-за столкновений с другими молекулами данная молекула не движется по прямой, а непрерывно изменяет направление своего движения. Если бы можно было зарисовать путь молекулы, он принципиально ничем бы не отличался от рисунков, полученных Перреном. Из таких рисунков видно, что из-за хаотичного движения молекула смещается на расстояние s, значительно меньшее, чем L. Эти величины связаны соотношением s =, где l – расстояние, которое молекула пролетает от одного столкновения до другого, средняя длина свободного пробега. Измерения показали, что для молекул воздуха при нормальном атмосферном давлении l ~ 0,1 мкм, значит, при скорости 500 м/с молекула азота или кислорода пролетит за 10 000 секунд (меньше трех часов) расстояние L = 5000 км, а сместится от первоначального положения всего лишь на s = 0,7 м (70 см), поэтому вещества за счет диффузии передвигаются так медленно даже в газах.
    Путь молекулы в результате диффузии (или путь броуновской частицы) называется случайным блужданием (по-английски random walk). Остряки-физики переиначили это выражение в drunkard’s walk – «путь пьяницы». Действительно, перемещение частицы от одного положения до другого (или путь молекулы, претерпевающей множество столкновений) напоминает движение нетрезвого человека. Более того, эта аналогия позволяет также довольно просто вывести основное уравнение такого процесса – на примере одномерного движения, которое легко обобщить на трехмерное. Делают это так.
    Пусть подвыпивший матрос вышел поздно вечером из кабачка и направился вдоль улицы. Пройдя путь l до ближайшего фонаря, он отдохнул и пошел… либо дальше, до следующего фонаря, либо назад, к кабачку – ведь он не помнит, откуда пришел. Спрашивается, уйдет он когда-нибудь от кабачка, или так и будет бродить около него, то отдаляясь, то приближаясь к нему? (В другом варианте задачи говорится, что на обоих концах улицы, где кончаются фонари, находятся грязные канавы, и спрашивается, удастся ли матросу не свалиться в одну из них). Интуитивно кажется, что правилен второй ответ. Но он неверен: оказывается, матрос будет постепенно все более удаляться от нулевой точки, хотя и намного медленнее, чем если бы он шел только в одну сторону. Вот как это можно доказать.
    Пройдя первый раз до ближайшего фонаря (вправо или влево), матрос окажется на расстоянии s1 = ± l от исходной точки. Так как нас интересует только его удаление от этой точки, но не направление, избавимся от знаков, возведя это выражение в квадрат: s12 = l2. Спустя какое-то время, матрос, совершив уже N «блужданий», окажется на расстоянии
    sN = от начала. А пройдя еще раз (в одну из сторон) до ближайшего фонаря, – на расстоянии sN+1 = sN ± l, или, используя квадрат смещения, s2N+1 = s2N ±2sN l + l2. Если матрос много раз повторит это перемещение (от N до N + 1), то в результате усреднения (он с равной вероятностью проходит N-ый шаг вправо или влево), член ±2sNl сократится, так что (угловыми скобками обозначено усредненная величина).
    Так как s12 = l2, то
    s22 = s12 + l2 = 2l2, s32 = s22 + l2 = 3ll2 и т.д., т.е. s2N = Nl2 или sN =l. Общий пройденный путь L можно записать и как произведение скорости матроса на время в пути (L = ut), и как произведение числа блужданий на расстояние между фонарями (L = Nl), следовательно, ut = Nl, откуда N = ut/l и окончательно sN = . Таким образом получается зависимость смещения матроса (а также молекулы или броуновской частицы) от времени. Например, если между фонарями 10 м и матрос идет со скоростью 1 м/с, то за час его общий путь составит L = 3600 м = 3,6 км, тогда как смещение от нулевой точки за то же время будет равно всего s = = 190 м. За три часа он пройдет L = 10,8 км, а сместится на s = 330 м и т.д.
    Произведение ul в полученной формуле можно сопоставить с коэффициентом диффузии, который, как показал ирландский физик и математик Джордж Габриел Стокс (1819–1903), зависит от размера частицы и вязкости среды. На основании подобных соображений Эйнштейн и вывел свое уравнение.
    Теория броуновского движения в реальной жизни.
    Теория случайных блужданий имеет важное практическое приложение. Говорят, что в отсутствие ориентиров (солнце, звезды, шум шоссе или железной дороги и т.п.) человек бродит в лесу, по полю в буране или в густом тумане кругами, все время возвращаясь на прежнее место. На самом деле он ходит не кругами, а примерно так, как движутся молекулы или броуновские частицы. На прежнее место он вернуться может, но только случайно. А вот свой путь он пересекает много раз. Рассказывают также, что замерзших в пургу людей находили «в каком-нибудь километре» от ближайшего жилья или дороги, однако на самом деле у человека не было никаких шансов пройти этот километр, и вот почему.
    Чтобы рассчитать, насколько сместится человек в результате случайных блужданий, надо знать величину l, т.е. расстояние, которое человек может пройти по прямой, не имея никаких ориентиров. Эту величину с помощью студентов-добровольцев измерил доктор геолого-минералогических наук Б.С.Горобец. Он, конечно, не оставлял их в дремучем лесу или на заснеженном поле, все было проще – студента ставили в центре пустого стадиона, завязывали ему глаза и просили в полной тишине (чтобы исключить ориентирование по звукам) пройти до конца футбольного поля. Оказалось, что в среднем студент проходил по прямой всего лишь около 20 метров (отклонение от идеальной прямой не превышало 5°), а потом начинал все более отклоняться от первоначального направления. В конце концов, он останавливался, далеко не дойдя до края.
    Пусть теперь человек идет (вернее, блуждает) в лесу со скоростью 2 километра в час (для дороги это очень медленно, но для густого леса – очень быстро), тогда если величина l равна 20 метрам, то за час он пройдет 2 км, но сместится всего лишь на 200 м, за два часа – примерно на 280 м, за три часа – 350 м, за 4 часа – 400 м и т. д. А двигаясь по прямой с такой скоростью, человек за 4 часа прошел бы 8 километров, поэтому в инструкциях по технике безопасности полевых работ есть такое правило: если ориентиры потеряны, надо оставаться на месте, обустраивать убежище и ждать окончания ненастья (может выглянуть солнце) или помощи. В лесу же двигаться по прямой помогут ориентиры – деревья или кусты, причем каждый раз надо держаться двух таких ориентиров – одного спереди, другого сзади. Но, конечно, лучше всего брать с собой компас…
    Илья Леенсон
    http://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/BROUNOVSKOE_DVIZHENIE.html?page=0,0#part-1351

  8. Nedal Ответить

    Можно объяснить броуновское движение и так: причиной Броуновского движения являются флуктуации давления, которое оказывается на поверхность малой частицы со стороны молекул среды. Сила и давление изменяется по модулю и направлению, в результате чего частица находится в беспорядочном движении.
    Движение броуновской частицы является случайным процессом. Вероятность (dw) того, что броуновская частица, находившаяся в однородной изотропной среде в начальный момент времени (t=0) в начале координат, сместится вдоль произвольно направленной (при t$>$0) оси Ox так, что ее координата будет лежать в интервале от x до x+dx, равна:
    \[dw=\frac{1}{\sqrt{2\pi \triangle x}}{exp \left(-\frac{x^2}{2{\triangle x}^2}\right)\ }dx\left(1\right),\]
    где $\triangle x$- малое изменение координаты частицы, вследствие флуктуации.
    Рассмотрим положение Броуновской частицы через некоторые фиксированные промежутки времени. Начало координат поместим в точку, в которой частица находилась при t=0. Обозначим $\overrightarrow{q_i}$ — вектор, который характеризует перемещение частицы между (i-1) и i наблюдениями. По истечении n наблюдений частица сместится из нулевого положения в точку с радиус-вектором $\overrightarrow{r_n}$. При этом:
    \[\overrightarrow{r_n}=\sum\limits^n_{i=1}{\overrightarrow{q_i}}\left(2\right).\]
    Перемещения частицы происходит по сложной ломаной линии все время наблюдений.
    Найдем средний квадрат удаления частицы от начала после n шагов в большой серии опытов:
    \[\left\langle r^2_n\right\rangle =\left\langle \sum\limits^n_{i,j=1}{q_iq_j}\right\rangle =\sum\limits^n_{i=1}{\left\langle {q_i}^2\right\rangle }+\sum\limits^n_{i\ne j}{\left\langle q_iq_j\right\rangle }\left(3\right)\]
    где $\left\langle q^2_i\right\rangle $- средний квадрат смещения частицы на i- м шаге в серии опытов (он для всех шагов одинаков и равен какой-то положительной величине a2), $\left\langle q_iq_j\right\rangle $- является средней величиной скалярного произведения при i-м шаге на перемещение при j-м шаге в различных опытах. Эти величины независимы друг от друга, одинаково часто встречаются как положительные значения скалярного произведения, так и отрицательные. Поэтому, считаем, что $\left\langle q_iq_j\right\rangle $=0 при$\ i\ne j$. Тогда имеем из (3):
    \[\left\langle r^2_n\right\rangle =a^2n=\frac{a^2}{\triangle t}t=\alpha t=\left\langle r^2\right\rangle \left(4\right),\]
    где $\triangle t$- промежуток времени между наблюдениями; t=$\triangle tn$ – время, в течение которого средний квадрат удаления частицы стал равен $\left\langle r^2\right\rangle .$ Получаем, что частица удаляется от начала. Существенно то, что средний квадрат удаления растет пропорционально первой степени времени. $\alpha \ $- можно найти экспериментально, а можно теоретически, как будет показано в примере 1.
    Броуновская частица движется не только поступательно, но и вращаясь. Среднее значение угла поворота $\triangle \varphi $ броуновской частицы за время t равно:
    \[{\triangle \varphi }^2=2D_{vr}t(5),\]
    где $D_{vr}$ — коэффициент вращательной диффузии. Для сферической броуновской частицы радиуса – а $D_{vr}\ $ равен:
    \[D_{vr}=\frac{kT}{8\pi \eta a^3}\ \left(6\right),\]
    где $\eta $ – коэффициент вязкости среды.
    Броуновское движение ограничивает точность измерительных приборов. Предел точности зеркального гальванометра определяется дрожание зеркальца, подобно броуновской частице, которая подвергается ударам молекул воздуха. Случайное движение электронов вызывает шумы в электрических сетях.

  9. Darkhunter Ответить

    Броуновское движение открыл в 1827 г. английский ботаник Р. Броун. Рассматривая под микроскопом водную суспензию цветочной пыльцы, он обнаружил, что частицы непрерывно двигаются в поле зрения. Некоторые исследователи объясняли обнаруженное Броуном движение жизнедеятельностью пыльцы, однако позднее оказалось, что броуновское движение свойственно всем суспензиям, в том числе и суспензиям неорганических веществ.
    Броуновское движение это непрерывное беспорядочное движение частиц микроскопических и коллоидных размеров, не затухающее во времени. Это движение тем интенсивнее, чем выше температура и чем меньше масса частицы и вязкость дисперсионной среды.
    Объяснение этого явления долгое время связывали с внешними причинами нарушением механического равновесия, температурных условий и т.д. Гуи (1888) и Экснер (1900) предположили, что броуновское движение имеет молекулярнокинетическую природу, т.е. является следствием теплового движения. Эта точка зрения была подтверждена теоретически Эйнштейном и Смолуховским, а затем экспериментально Перреном, Сведбергом и другими исследователями.
    Теперь точно установлено, что броуновское движение обусловлено столкновениями молекул среды, находящимися в непрерывном тепловом движении, с взвешенными в ней частицами микроскопических или коллоидных размеров. В результате этих столкновений частица получает огромное число ударов со всех сторон. Результат этих ударов в значительной степени зависит от размеров частицы.
    Если частица имеет сравнительно большие размеры, то число одновременных ударов так велико, что в соответствии с законами статистики результирующий импульс оказывается равным нулю, и частица не будет двигаться под действием молекул среды. Кроме того, частицы с большой массой обладают значительной инерционностью и мало чувствительны к ударам молекул.
    Если частица сравнительно мала, то число получаемых ею одновременных ударов со стороны молекул сре­ды значительно меньше, поэтому вероятность неравномерного распределения импульсов, получаемых с разных сторон, увеличивается. Это обусловлено как разным количеством ударов, так и различной энергией молекул среды, сталкивающихся с частицей. В результате частицы приобретают поступательное, вращательное и колебательное движение.
    В основе статистической теории, разработанной Эйнштейном и Смолуховским в 19051906 гг., лежит следующий постулат.
    Броуновское движение совершенно хаотично, т.е. в нем наблюдается полная равноправность всех направлений.
    Количественной характеристикой броуновского движения принято считать средний сдвиг частицы за время t, т.е. отрезок прямой, соединяющей начальную точку движения (при t = 0) с положением частицы в момент t в плоскости горизонтальной проекции, наблюдаемой в микроскоп.

  10. Dolmeena Ответить

    Во второй половине ХIХ века в научных кругах разгорелась нешуточная дискуссия о природе атомов. На одной стороне выступали неопровержимые авторитеты, такие как Эрнст Мах (см. Ударные волны), который утверждал, что атомы — суть просто математические функции, удачно описывающие наблюдаемые физические явления и не имеющие под собой реальной физической основы. С другой стороны, ученые новой волны — в частности, Людвиг Больцман (см. Постоянная Больцмана) — настаивали на том, что атомы представляют собой физические реалии. И ни одна из двух сторон не сознавала, что уже за десятки лет до начала их спора получены экспериментальные результаты, раз и навсегда решающие вопрос в пользу существования атомов как физической реальности, — правда, получены они в смежной с физикой дисциплине естествознания ботаником Робертом Броуном.
    Еще летом 1827 года Броун, занимаясь изучением поведения цветочной пыльцы под микроскопом (он изучал водную взвесь пыльцы растения Clarkia pulchella), вдруг обнаружил, что отдельные споры совершают абсолютно хаотичные импульсные движения. Он доподлинно определил, что эти движения никак не связаны ни с завихрениями и токами воды, ни с ее испарением, после чего, описав характер движения частиц, честно расписался в собственном бессилии объяснить происхождение этого хаотичного движения. Однако, будучи дотошным экспериментатором, Броун установил, что подобное хаотичное движение свойственно любым микроскопическим частицам, — будь то пыльца растений, взвеси минералов или вообще любая измельченная субстанция.
    Лишь в 1905 году не кто иной, как Альберт Эйнштейн, впервые осознал, что это таинственное, на первый взгляд, явление служит наилучшим экспериментальным подтверждением правоты атомной теории строения вещества. Он объяснил его примерно так: взвешенная в воде спора подвергается постоянной «бомбардировке» со стороны хаотично движущихся молекул воды. В среднем, молекулы воздействуют на нее со всех сторон с равной интенсивностью и через равные промежутки времени. Однако, как бы ни мала была спора, в силу чисто случайных отклонений сначала она получает импульс со стороны молекулы, ударившей ее с одной стороны, затем — со стороны молекулы, ударившей ее с другой и т. д. В результате усреднения таких соударений получается, что в какой-то момент частица «дергается» в одну сторону, затем, если с другой стороны ее «толкнуло» больше молекул — в другую и т. д. Использовав законы математической статистики и молекулярно-кинетической теории газов, Эйнштейн вывел уравнение, описывающее зависимость среднеквадратичного смещения броуновской частицы от макроскопических показателей. (Интересный факт: в одном из томов немецкого журнала «Анналы физики» (Annalen der Physik) за 1905 год были опубликованы три статьи Эйнштейна: статья с теоретическим разъяснением броуновского движения, статья об основах специальной теории относительности и, наконец, статья с описанием теории фотоэлектрического эффекта. Именно за последнюю Альберт Эйнштейн был удостоен Нобелевской премии по физике в 1921 году.)
    В 1908 году французский физик Жан Батист Перрен (Jean-Baptiste Perrin, 1870–1942) провел блестящую серию опытов, подтвердивших правильность эйнштейновского объяснения феномена броуновского движения. Стало окончательно ясно, что наблюдаемое «хаотичное» движение броуновских частиц — следствие межмолекулярных соударений. Поскольку «полезные математические условности» (по Маху) не могут привести к наблюдаемым и совершенно реальным перемещениям физических частиц, стало окончательно ясно, что спор о реальности атомов окончен: они существуют в природе. В качестве «призовой игры» Перрену досталась выведенная Эйнштейном формула, которая позволила французу проанализировать и оценить среднее число атомов и/или молекул, соударяющихся с взвешенной в жидкости частицей за заданный промежуток времени и, через этот показатель, рассчитать молярные числа различных жидкостей. В основе этой идеи лежал тот факт, что в каждый данный момент времени ускорение взвешенной частицы зависит от числа соударений с молекулами среды (см. Законы механики Ньютона), а значит, и от числа молекул в единице объема жидкости. А это не что иное, как число Авогадро (см. Закон Авогадро) — одна из фундаментальных постоянных, определяющих строение нашего мира.

  11. ((=пРост0 сЕкаЗнаЯ бЭйбА=)) Ответить

    Конспекты по физике:

    7 класс

    Физика 7: все формулы и определения
    Механическая энергия. Закон сохранения энергии
    ЗАДАЧИ на КПД простых механизмов
    ЗАДАЧИ на простые механизмы с решениями
    Рычаг. Равновесие рычага. Момент силы
    Простые механизмы. Блоки
    ЗАДАЧИ на механическую мощность
    ЗАДАЧИ на механическую работу с решениями
    Механическая работа, мощность и КПД
    ЗАДАЧИ на силу Архимеда с решениями
    Сообщающиеся сосуды. Шлюзы
    Закон Архимеда
    ЗАДАЧИ на давление жидкостей с решениями
    ЗАДАЧИ на давление твердых тел с решениями
    Давление тел, жидкостей и газов
    ЗАДАЧИ на силу тяжести и вес тела
    Силы вокруг нас (силы тяжести, трения, упругости)
    ЗАДАЧИ на плотность, массу и объем
    Масса тела. Плотность вещества
    ЗАДАЧИ на движение с решением
    Неравномерное движение. Средняя скорость
    Прямолинейное равномерное движение
    Механическое движение. Траектория
    Строение вещества
    Физические величины

    8 класс

    Электромагнитные колебания и волны
    Оптические приборы
    Дисперсия света. Линза
    Явления распространения света
    Электромагнитная индукция. Опыты Фарадея
    Действие магнитного поля на проводник с током
    Магнитное поле постоянного магнита
    Опыты Эрстеда. Магнитное поле. Электромагнит
    ЗАДАЧИ на Закон Джоуля-Ленца
    ЗАДАЧИ на Мощность электрического тока
    ЗАДАЧИ на Работу электрического тока
    ЗАДАЧИ на Параллельное соединение
    ЗАДАЧИ на Последовательное соединение
    ЗАДАЧИ на сопротивление проводников
    ЗАДАЧИ на Закон Ома с решениями
    ЗАДАЧИ на КПД тепловых двигателей
    ЗАДАЧИ на парообразование и конденсацию
    ЗАДАЧИ на плавление и отвердевание
    ЗАДАЧИ на сгорание топлива с решениями
    ЗАДАЧИ на количество теплоты с решениями
    Физика 8: все формулы и определения
    Колебательные и волновые явления
    Электромагнитные явления
    Закон Джоуля-Ленца и его применение
    Работа и мощность электрического тока
    Закон Ома. Соединение проводников
    Электрическое сопротивление
    Сила тока. Напряжение
    Постоянный электрический ток
    Электрическое поле. Проводники и диэлектрики
    Закон сохранения электрического заряда
    Два вида электрических зарядов. Взаимодействие зарядов
    Электризация тел
    Тепловые машины. ДВС. Удельная теплота сгорания топлива
    Плавление и кристаллизация
    Влажность воздуха
    Кипение. Удельная теплота парообразования
    Испарение. Конденсация
    Уравнение теплового баланса
    Количество теплоты. Удельная теплоёмкость
    Виды теплопередачи: теплопроводность, конвекция, излучение
    Внутренняя энергия
    Тепловое равновесие. Температура. Шкала Цельсия
    Диффузия. Взаимодействие молекул
    Тепловое движение. Броуновское движение

  12. GoodLoose Ответить

    Броуновское движение
    В 1827 г. английский ботаник Роберт Броун, рассматривая под микроскопом взвешенные в воде частицы цветочной пыльцы, обнаружил, что самые маленькие из них находятся в состоянии непрерывного и беспорядочного движения. В дальнейшем оказалось, что это движение свойственно любым мельчайшим частицам как органического, так и неорганического происхождения и проявляется тем интенсивнее, чем меньше масса частиц, выше температура и ниже вязкость среды. Открытию Броуна долгое время не придавали особого значения. Большинство ученых считали причиной беспорядочного движения частиц дрожание аппаратуры и наличие конвективных потоков в жидкости. Однако тщательные опыты, проведенные во второй половине прошлого века, показали, что, какие бы меры ни принимали для соблюдения механического и теплового равновесия в системе, броуновское движение проявляется при данной температуре всегда с одинаковой интенсивностью и неизменно во времени. Крупные частицы смещаются незначительно; для более мелких характерно беспорядочное по своему направлению движение по сложным траекториям.
    Рис. Распределение конечных точек горизонтальных смещений частицы, находящейся в броуновском движении (начальные точки смещены в центр)
    Напрашивался следующий вывод: броуновское движение обусловлено не внешними, а внутренними причинами, а именно — столкновением молекул жидкости со взвешенными частицами. Ударяясь о твердую частицу, каждая молекула передает ей часть своего количества движения (m?). Вследствие полной хаотичности теплового движения суммарный импульс, полученный частицей за большой промежуток времени, равен нулю. Однако в любой достаточно малый отрезок времени ?t импульс, полученный частицей с какой-либо одной стороны, всегда будет больше, чем с другой. В результате происходит ее смещение. Доказательство этой гипотезы имело в то время (конец XIX — начало XX в.) особенно большое значение, поскольку некоторые естествоиспытатели и философы, например Оствальд, Мах, Авенариус, сомневались в реальности существования атомов и молекул.
    В 1905—1906 гг. А. Эйнштейн и польский физик Мариан Смолуховский независимо друг от друга создали статистическую теорию броуновского движения, приняв в качестве основного постулата предположение о его полной хаотичности. Для сферических частиц ими было выведено уравнение

    где ?x — средний сдвиг частицы за время t (т. е. величина отрезка, соединяющего начальное положение частицы с ее положением в момент t); ? — коэффициент вязкости среды; — радиус частицы; Т — температура в К; N0 — число Авогадро; — универсальная газовая постоянная.
    Полученное соотношение было проверено экспериментально Ж. Перреном, которому для этого пришлось изучить броуновское движение сферических частиц гуммигута, камеди и мастики с точно известным радиусом. Фотографируя последовательно одну и ту же частицу через равные промежутки времени, Ж. Перрен находил значения ?x для каждого ?t. Результаты, полученные им для частиц разных размеров и различной природы, очень хорошо совпали с теоретическими, что явилось прекрасным доказательством реальности атомов и молекул и еще одним подтверждением молекулярной-кинетической теории.
    Отмечая последовательно положение движущейся частицы через равные промежутки времени, можно построить траекторию броуновского движения. Если провести параллельный перенос всех отрезков так, чтобы их начальные точки совпадали, то для конечных точек получается распределение, аналогичное разбросу пуль при стрельбе в мишень (рис.). Это подтверждает основной постулат теории Эйнштейна — Смолуховского — полную хаотичность броуновского движения.

    Кинетическая устойчивость дисперсных систем

    Обладая определенной массой, взвешенные в жидкости частицы должны в гравитационном поле Земли постепенно оседать (если их плотность больше плотности окружающей среды d0) или всплывать (если d). Однако этот процесс полностью никогда не происходит. Оседанию (или всплыванию) препятствует броуновское движение, стремящееся распределить частицы равномерно по всему объему. Скорость оседания частиц зависит поэтому от их массы и от вязкости жидкости. Например, шарики серебра диаметром 2 мм проходят в воде 1 см за 0,05 сек, а диаметром 20 мкм — за 500 сек. Как видно из таблицы 13, частицы серебра диаметром менее 1 мкм вообще не способны осесть на дно сосуда.
    Таблица 13
    Сравнение интенсивности броуновского движения и скорости оседания частиц серебра (расчет Бертона)
    Расстояние, проходимое частицей за 1 сек. мк
    Диаметр частиц, мкм
    Броуновское движение
    Оседание
    100
    10
    6760
    10
    31,6
    67,6
    1
    100
    0,676
    Если дисперсная фаза за сравнительно короткое время оседает на дно сосуда или всплывает на поверхность, то систему называют кинетически неустойчивой. Примером может служить суспензия песка в воде.
    Если частицы достаточно малы и броуновское движение препятствует их полному осаждению, систему называют кинетически устойчивой.
    Вследствие беспорядочного броуновского движения в кинетически устойчивой дисперсной системе устанавливается неодинаковое распределение частиц по высоте вдоль действия силы тяжести. Характер распределения описывается уравнением:

    где с1 — концентрация частиц на высоте h1; с2— концентрация частиц на высоте h2; т — масса частиц; d — их плотность; D0— плотность дисперсионной среды. С помощью этого уравнения впервые была определена важнейшая константа молекулярно-кинетической теории —. число Авогадро N0. Подсчитав под микроскопом количество взвешенных в воде частиц гуммигута на различных уровнях, Ж. Перрен получил численное значение константы N0, которое изменялось в различных опытах от 6,5•1023 до 7,2• 1023. По современным данным число Авогадро равно 6.02•1023.
    В настоящее время, когда константа N0 известна е очень большой точностью, подсчет частиц на различных уровнях используют для нахождения их размера и массы.
    Статья на тему Броуновское движение
    < Предыдущая Следующая >
    Главная Строение вещества

  13. Nilath Ответить

    Макеты страниц

    § 7. Броуновское движение

    Одним из наиболее убедительных доказательств реальности движения молекул служит явление так называемого броуновского движения, открытого в 1827 г. английским ботаником Броуном при изучении взвешенных в воде мельчайших спор. Он обнаружил, при рассмотрении под микроскопом с большим увеличением, что эти споры находятся в непрерывном беспорядочном движении, как бы исполняя дикий фантастический танец.
    Дальнейшие опыты показали, что эти движения не связаны с биологическим происхождением частиц или с какими-либо движениями жидкости. Подобные движения совершают любые малые частицы, взвешенные в жидкости или газе. Такого рода беспорядочные движения совершают, например, частицы дыма в неподвижном воздухе. Такое беспорядочное движение частиц, взвешенных в жидкости или газе, и получило название броуновского движения.
    Специальные исследования показали, что характер броуновского движения зависит от свойств жидкости или газа, в которых взвешены частицы, но не зависит от свойств вещества самих частиц. Скорость движения броуновских частиц возрастает с повышением температуры и с уменьшением размеров частиц.
    Все эти закономерности легко объяснить, если мы примем, что движения взвешенных частиц возникают вследствие ударов, испытываемых ими со стороны движущихся молекул жидкости или газа, в которых они находятся.
    Конечно, каждая броуновская частица подвергается таким ударам со всех сторон. При полной беспорядочности молекулярных движений можно, казалось бы, ожидать, что число ударов, обрушивающихся на частицу с какого-нибудь направления, должно быть в точности равно числу ударов с противоположного направления,
    так что все эти толчки должны полностью компенсировать друг друга и частицы должны оставаться неподвижными.
    Так именно и происходит, если частицы не слишком малы. Но когда мы имеем дело с микроскопическими частицами см), дело обстоит иначе. Ведь из того факта, что молекулярные движения хаотичны, следует лишь, что в среднем число ударов разных направлений одинаково. Но в такой статистической системе, как жидкость или газ, неизбежны и отклонения от средних значений. Такие отклонения от средних значений тех или иных величин, которые происходят в малом объеме или в течение малых промежутков времени, называются флуктуациями. Если в жидкости или газе находится тело обычных размеров, то число толчков, которое оно испытывает со стороны молекул, так велико, что нельзя заметить ни отдельных толчков, ни случайного преобладания толчков одного направления над толчками других направлений. Для малых же частиц общее число испытываемых ими толчков сравнительно невелико, так что преобладание числа ударов то одного, то другого направления становится заметным, и именно благодаря таким флуктуациям числа ударов и возникают те характерные, как бы судорожные движения взвешенных частиц, которые и называются броуновским движением.
    Ясно, что движения броуновских частиц — это не молекулярные движения: мы видим не результат удара одной молекулы, а результат преобладания числа ударов одного направления над числом ударов в противоположном направлении. Броуновское движение лишь очень ясно обнаруживает само существование беспорядочных молекулярных движений.
    Таким образом, броуновское движение объясняется тем, что благодаря случайной неодинаковости чисел ударов молекул о частицу с разных направлений возникает некоторая равнодействующая сила определенного направления. Так как флуктуации обычно бывают кратковременными, то через короткий промежуток времени направление равнодействующей изменится, а вместе с ней изменится и направление перемещения частицы. Отсюда наблюдающаяся хаотичность броуновских движений, отражающая хаотичность молекулярного движения.
    Приведенное качественное объяснение броуновского движения мы теперь дополним количественным рассмотрением этого явления. Количественная теория его была впервые дана Эйнштейном и, независимо, Смолуховским (1905 г.). Мы приведем здесь более простой, чем у этих авторов, вывод основного соотношения этой теории.
    Вследствие неполной компенсации ударов молекул на броуновскую частицу действует, как мы видели, некоторая результирующая сила под действием которой частица и движется. Кроме этой силы на частицу действует сила трения вызванная вязкостью среды и направленная против силы
    Для простоты предположим, что частица имеет форму сферы радиуса а. Тогда сила трения может быть выражена формулой Стокса:

    где коэффициент внутреннего трения жидкости (или газа), скорость движения частицы. Уравнение движения частицы (второй закон Ньютона) имеет поэтому вид:

    Здесь масса частицы, ее радиус-вектор относительно произвольной системы координат, скорость частицы и равнодействующая сил, вызванных ударами молекул.
    Рассмотрим проекцию радиуса-вектора на одну из координатных осей, например на ось Для этой составляющей уравнение (7,1) перепишется в виде:

    где составляющая результирующей силы по оси
    Наша задача состоит в том, чтобы найти смещение х броуновской частицы, которое она получает под действием ударов молекул. Каждая из частиц все время подвергается соударениям с молекулами, после чего она меняет направление своего движения. Различные частицы получают смещения, отличающиеся как по величине, так и по направлению. Вероятное значение суммы смещений всех частиц равно нулю, так как смещения с равной вероятностью могут иметь и положительный, и отрицательный знак. Среднее значение проекции смещения частиц х будет поэтому равно нулю. Не будет, однако, равно нулю среднее значение квадрата смещения, т. е. величина хтак как не изменяет своего знака при изменении знака х. Преобразуем поэтому уравнение (7.2) так, чтобы в него входила величина Для этого умножим обе части этого уравнения на

    Используем очевидные тождества:

    Подставив эти выражения в (7.3), получим:

    Это равенство справедливо для любой частицы и поэтому оно справедливо также и для средних значений входящих в него величин,
    если усреднение вести по достаточно большому числу частиц. Поэтому можно написать:

    где среднее значение квадрата перемещения частицы, среднее значение квадрата ее скорости. Что касается среднего значения величины входящей в равенство, то оно равно нулю, так как для большого числа частиц одинаково часто принимают как положительные, так и отрицательные значения. Уравнение (7.2) прикимает поэтому вид:

    Величина в этом уравнении представляет собой среднее значение квадрата проекций скорости на ось Так как движения частиц вполне хаотичны, то средние значения квадратов проекций скорости по всем трем координатным осям должны быть равны друг другу, т. е.

    Очевидно также, что сумма этих величин должна быть равна среднему значению квадрата скорости частиц

    Следовательно,

    Таким образом, интересующее нас выражение, входящее в (7.4), равно:

    Величина есть средняя кинетическая энергия броуновской частицы. Сталкиваясь с молекулами жидкости или газа, броуновские частицы обмениваются с ними энергией и находятся в тепловом равновесии со средой, в которой они движутся. Поэтому средняя кинетическая энергия поступательного движения броуновской частицы должна быть равна средней кинетической энергии молекул
    жидкости (или газа), которая, как мы знаем, равна

    и следовательно

    То обстоятельство, что средняя кинетическая энергия броуновской частицы равна (как и для газовой молекулы!), имеет принципиальное значение. Действительно, выведенное нами ранее основное уравнение (3.1) справедливо для любых не взаимодействующих друг с другом частиц, совершающих хаотические движения. Будут ли это невидимые глазом молекулы или значительно более крупные броуновские частицы, содержащие миллиарды молекул, — безразлично. С молекулярно-кинетической точки зрения броуновскую частицу можно трактовать как гигантскую молекулу. Поэтому выражение для средней кинетической энергии такой частицы должно быть таким же, как и для молекулы. Скорости же броуновских частиц, конечно, несравненно меньше, соответственно их большей массе.
    Вернемся теперь к уравнению (7.4) и, учтя (7.5), перепишем его

    Это уравнение легко интегрируется. Обозначив получаем:

    и после разделения переменных наше уравнение преобразуется в виде:

    Интегрируя левую часть этого уравнения в пределах от 0 до а правую от до получаем:

    или

    Отсюда

    Величина как легко убедиться, в обычных условиях опыта ничтожно мала. Действительно, размеры броуновских частиц не превышают см, вязкость жидкости обычно близка к вязкости воды, т. е. приблизительно равна (в системе единиц плотность вещества частиц порядка единицы, Имея в виду, что масса частицы равна , мы получим, что показатель степени при таков, что величиной можно пренебречь. Следовательно, если отрезок времени между последовательными наблюдениями за броуновской частицей превышает что, конечно, всегда имеет место, то

    Для конечных промежутков времени и соответствующих перемещений уравнение (7.6) можно переписать в виде:

    отсюда

    Среднее значение квадрата смещения броуновской частицы за промежуток времени вдоль оси X, или любой другой оси, пропорционально этому промежутку времени.
    Формула (7.7) позволяет вычислять среднее значение квадрата перемещений, причем среднее берется по всем частицам, участвующим в явлении. Но эта формула справедлива и для среднего значения квадрата многих последовательных перемещений одной-единственной частицы за равные промежутки времени, С экспериментальной точки зрения удобнее наблюдать именно перемещения одной частицы. Такие наблюдения и были проведены Перреном в 1909 г.
    Движение частиц Перрен наблюдал через микроскоп, окуляр которого был снабжен сеткой взаимно перпендикулярных линий, служивших координатной системой. Пользуясь сеткой, Перрен отмечал на ней последовательные положения одной облюбованной им частицы через определенные промежутки времени (например, 30 с). Соединив затем точки, отмечающие положения частицы на сетке, он получил картину, подобную той, которая изображена на рис, 7. На этом рисунке показаны как смещения частицы, так и их проекции на ось
    Следует иметь в виду, что движения частицы значительно сложнее, чем об этом можно судить по рис. 7, так как здесь отмечены положения через не слишком малые промежутки времени (порядка 30 с). Если уменьшить эти промежутки, то окажется, что каждый прямолинейный отрезок на рисунке развернется в такую же сложную зигзагообразнуютраекторию, как и весь рис. 7.

    Рис. 7.
    Из своих наблюдений Перрен мог измерить смещения и вычислить среднее значение их квадратов. Данные этих измерений находились в хорошем согласии с формулой (7.7); тем самым была подтверждена правильность молекулярно-кинетического объяснения явления броуновского движения и самой молекулярно-кинетической теории.
    Формула (7.7) может быть использована для определения постоянной Больцмана если известны значения вязкости жидкости, ее температура и радиус частицы а. Значения этой постоянной, полученные Перреном и другими исследователями из подобных измерений, близки к приведенному выше значению Отметим здесь, что сам Перрен использовал полученные им данные для определения числа Авогадро по формуле так как постоянная может быть определена из уравнения сестояния.
    Опыты Перрена имели большое значение для окончательного обоснования молекулярно-кинетической теории.

  14. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *