Что такое гомеостаз и что лежит в его основе?

17 ответов на вопрос “Что такое гомеостаз и что лежит в его основе?”

  1. Guzzeppe Ответить



    ГОМЕОСТАЗ
    , гомеостазис (homeostasis; греч. homoios подобный, тот же самый + stasis состояние, неподвижность),— относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т. д.) организма человека и животных. Регуляторные механизмы, поддерживающие физиологическое состояние или свойства клеток, органов и систем целостного организма на оптимальном уровне, называются гомеостатическими.
    Как известно, живая клетка представляет подвижную, саморегулирующуюся систему. Ее внутренняя организация поддерживается активными процессами, направленными на ограничение, предупреждение или устранение сдвигов, вызываемых различными воздействиями из окружающей и внутренней среды. Способность возвращаться к исходному состоянию после отклонения от некоторого среднего уровня, вызванного тем или иным «возмущающим» фактором, является основным свойством клетки. Многоклеточный организм представляет собой целостную организацию, клеточные элементы которой специализированы для выполнения различных функций. Взаимодействие внутри организма осуществляется сложными регулирующими, координирующими и коррелирующими механизмами с участием нервных, гуморальных, обменных и других факторов. Множество отдельных механизмов, регулирующих внутри- и межклеточные взаимоотношения, оказывает в ряде случаев взаимопротивоположные (антагонистические) воздействия, уравновешивающие друг друга. Это приводит к установлению в организме подвижного физиологического фона (физиологического баланса) и позволяет живой системе поддерживать относительное динамическое постоянство, несмотря на изменения в окружающей среде и сдвиги, возникающие в процессе жизнедеятельности организма.
    Термин «гомеостаз» предложен в 1929 г. американским физиологом У. Кенноном, который считал, что физиологические процессы, поддерживающие стабильность в организме, настолько сложны и многообразны, что их целесообразно объединить под общим названием гомеостаз. Однако еще в 1878 г. К. Бернар писал, что все жизненные процессы имеют только одну цель — поддержание постоянства условий жизни в нашей внутренней среде. Аналогичные высказывания встречаются в трудах многих исследователей 19 и первой половины 20 в. [Э. Пфлюгер, Ш. Рише, Фредерик (L.A. Fredericq), И.М. Сеченов, И.П. Павлов, К.М. Быков и др.]. Большое значение для изучения проблемы гомеостаза сыграли работы Л. С. Штерн, посвященные роли барьерных функций, регулирующих состав и свойства микросреды органов и тканей.
    Само представление о гомеостазе не соответствует концепции устойчивого (неколеблющегося) равновесия в организме — принцип равновесия не приложим к сложным физиологическим и биохимическим процессам, протекающим в живых системах. Неправильно также противопоставление гомеостаза ритмическим колебаниям во внутренней среде (биологические ритмы). Гомеостаз в широком понимании охватывает вопросы циклического и фазового течения реакций, компенсации (компенсаторные процессы), регулирования и саморегулирования физиологических функций (Саморегуляция физиологических функций), динамику взаимозависимости нервных, гуморальных и других компонентов регуляторного процесса. Границы гомеостаза могут быть жесткими и пластичными, меняться в зависимости от индивидуальных возрастных, половых, социальных, профессиональных и иных условий.
    Особое значение для жизнедеятельности организма имеет постоянство состава крови — жидкой основы организма (fluid matrix), по выражению У. Кеннона. Хорошо известна устойчивость ее активной реакции (pH), осмотического давления, соотношения электролитов (натрия, кальция, хлора, магния, фосфора), содержания глюкозы, числа форменных элементов и т. д. Так, например, pH крови, как правило, не выходит за пределы 7,35—7,47. Даже резкие расстройства кислотно-щелочного обмена с патологическим накоплением кислот в тканевой жидкости, напр, при диабетическом ацидозе, очень мало влияют на активную реакцию крови (кислотно-щелочное равновесие). Несмотря на то, что осмотическое давление крови и тканевой жидкости подвергается непрерывным колебаниям вследствие постоянного поступления осмотически активных продуктов межуточного обмена, оно сохраняется на определенном уровне и изменяется только при некоторых выраженных патологических состояниях (осмотическое давление). Сохранение постоянства осмотического давления имеет первостепенное значение для водного обмена и поддержания ионного равновесия в организме (водно-солевой обмен). Наибольшим постоянством отличается концентрация ионов натрия во внутренней среде. Содержание других электролитов колеблется также в узких границах. Наличие большого количества осморецепторов в тканях и органах, в том числе в центральных нервных образованиях (гипоталамусе, гиппокампе), и координированной системы регуляторов водного обмена и ионного состава позволяет организму быстро устранять сдвиги в осмотическом давлении крови, происходящие, например, при введении воды в организм.
    Несмотря на то, что кровь представляет общую внутреннюю среду организма, клетки органов и тканей непосредственно не соприкасаются с ней. В многоклеточных организмах каждый орган имеет свою собственную внутреннюю среду (микросреду), отвечающую его структурным и функциональным особенностям, и нормальное состояние органов зависит от химического состава, физико-химических, биологических, и других свойств этой микросреды. Ее гомеостаз обусловлен функциональным состоянием гистогематических барьеров (барьерные функции) и их проницаемостью в направлениях кровь -> тканевая жидкость, тканевая жидкость -> кровь.
    Особо важное значение имеет постоянство внутренней среды для деятельности центральной нервной системы: даже незначительные химические и физико-химических сдвиги, возникающие в цереброспинальной жидкости, глии и околоклеточных пространствах, могут вызвать резкое нарушение течения жизненных процессов в отдельных нейронах или в их ансамблях (гематоэнцефалический барьер). Сложной гомеостатической системой, включающей различные нейрогуморальные, биохимические, гемодинамические и другие механизмы регуляции, является система обеспечения оптимального уровня артериального давления. При этом верхний предел уровня АД определяется функциональными возможностями барорецепторов сосудистой системы тела (ангиоцепторы), а нижний предел — потребностями организма в кровоснабжении.
    К наиболее совершенным гомеостатическим механизмам в организме высших животных и человека относятся процессы терморегуляции; у гомойотермных животных колебания температуры во внутренних отделах тела при самых резких изменениях температуры в окружающей среде не превышают десятых долей градуса.
    Различные исследователи по-разному объясняют механизмы общебиологического характера, лежащие в основе гомеостаза. Так, У. Кеннон особое значение придавал в. н. с., Л. А. Орбели одним из ведущих факторов гомеостаза считал адаптационно-трофическую функцию симпатической нервной системы. Организующая роль нервного аппарата (принцип нервизма) лежит в основе широко известных представлений о сущности принципов гомеостаза (И. М. Сеченов, И. П. Павлов, А. Д. Сперанский и др.). Однако ни принцип доминанты (А. А. Ухтомский), ни теория барьерных функций (Л. С. Штерн), ни общий адаптационный синдром (Г. Селье), ни теория функциональных систем (П. К. Анохин), ни гипоталамическое регулирование гомеостаза (Н. И. Гращенков) и многие другие теории не позволяют полностью решить проблему гомеостаза.
    В некоторых случаях представление о гомеостазе не совсем правомерно используется для объяснения изолированных физиологических состояний, процессов и даже социальных явлений. Так возникли встречающиеся в литературе термины «иммунологический», «электролитный», «системный», «молекулярный», «физико-химический», «генетический гомеостаз» и т. п. Предпринимались попытки свести проблему гомеостаза к принципу саморегулирования (биологическая система, авторегуляция в биологических системах). Примером решения проблемы гомеостаза с позиций кибернетики является попытка Эшби (W. R. Ashby, 1948) сконструировать саморегулирующееся устройство, моделирующее способность живых организмов поддерживать уровень некоторых величин в физиологических допустимых границах (гомеостат). Отдельные авторы рассматривают внутреннюю среду организма в виде сложно-цепной системы со многими «активными входами» (внутренние органы) и отдельных физиологических показателей (кровоток, АД, газообмен и др.), значение каждого из которых обусловлено активностью «входов».
    Перед исследователями и клиницистами на практике встают вопросы оценки приспособительных (адаптационных) или компенсаторных возможностей организма, их регулирования, усиления и мобилизации, прогнозирования ответных реакций организма на возмущающие воздействия. Некоторые состояния вегетативной неустойчивости, обусловленные недостаточностью, избытком или неадекватностью регуляторных механизмов, рассматриваются как «болезни гомеостаза». С известной условностью к ним могут быть отнесены функциональные нарушения нормальной деятельности организма, связанные с его старением, вынужденная перестройка биологических ритмов, некоторые явления вегетативной дистонии, гипер- и гипокомпенсаторная реактивность при стрессовых и экстремальных воздействиях (стресс) и т.д.
    Для оценки состояния гомеостатических механизмов в физиологическом эксперименте и в клин, практике применяются разнообразные дозированные функциональные пробы (холодовая, тепловая, адреналиновая, инсулиновая, мезатоновая и др.) с определением в крови и моче соотношения биологически активных веществ (гормонов, медиаторов, метаболитов) и т.д.

    Биофизические механизмы гомеостаза

    С точки зрения химической биофизики гомеостаз — это состояние, при которомром все процессы, ответственные за энергетические превращения в организме, находятся в динамическом равновесии. Это состояние обладает наибольшей устойчивостью и соответствует физиологическому оптимуму. В соответствии с представлениями термодинамики организм и клетка могут существовать и приспосабливаться к таким условиям среды, при которых в биол, системе возможно установление стационарного течения физико-химических процессов, т. е. гомеостаза. Основная роль в установлении гомеостаза принадлежит в первую очередь клеточным мембранным системам, которые ответственны за биоэнергетические процессы и регулируют скорость поступления и выделения веществ клетками (мембраны биологические).
    С этих позиций основными причинами нарушения являются необычные для нормальной жизнедеятельности неферментативные реакции, протекающие в мембранах; в большинстве случаев это цепные реакции окисления с участием свободных радикалов, возникающие в фосфолипидах клеток. Эти реакции ведут к повреждению структурных элементов клеток и нарушению функции регулирования (радикалы, цепные реакции). К факторам, являющимся причиной нарушения гомеостаза, относятся также агенты, вызывающие радикалообразование,— ионизирующие излучения, инфекционные токсины, некоторые продукты питания, никотин, а также недостаток витаминов и т. д.
    Одним из основных факторов, стабилизирующих гомеостатическое состояние и функции мембран, являются биоантиокислители, которые сдерживают развитие окислительных радикальных реакций (антиокислители).

    Возрастные особенности гомеостаза у детей

    Постоянство внутренней среды организма и относительная устойчивость физико-химических показателей в детском возрасте обеспечиваются при выраженном преобладании анаболических процессов обмена над катаболическими. Это является непременным условием роста и отличает детский организм от организма взрослых, у которых интенсивность метаболических процессов находится в состоянии динамического равновесия. В связи с этим нейроэндокринная регуляция гомеостаза детского организма оказывается более напряженной, чем у взрослых. Каждый возрастной период характеризуется специфическими особенностями механизмов гомеостаза и их регуляции. Поэтому у детей значительно чаще, чем у взрослых встречаются тяжелые нарушения гомеостаза, нередко угрожающие жизни. Эти нарушения чаще всего связаны с незрелостью гомеостатических функций почек, с расстройствами функций желудочно-кишечного тракта или дыхательной функции легких (дыхание).
    Рост ребенка, выражающийся в увеличении массы его клеток, сопровождается отчетливыми изменениями распределения жидкости в организме (водно-солевой обмен). Абсолютное увеличение объема внеклеточной жидкости отстает от темпов общего нарастания веса, поэтому относительный объем внутренней среды, выраженный в процентах от веса тела, с возрастом уменьшается. Эта зависимость особенно ярко выражена на первом году после рождения. У детей более старших возрастов темпы изменений относительного объема внеклеточной жидкости уменьшаются. Система регуляции постоянства объема жидкости (волюморегуляция) обеспечивает компенсацию отклонений в водном балансе в достаточно узких пределах. Высокая степень гидратации тканей у новорожденных и детей раннего возраста определяет значительно более высокую, чем у взрослых, потребность ребенка в воде (в расчете на единицу массы тела). Потери воды или ее ограничение быстро ведут к развитию дегидратации за счет внеклеточного сектора, т. е. внутренней среды. При этом почки — главные исполнительные органы в системе волюморегуляции — не обеспечивают экономии воды. Лимитирующим фактором регуляции является незрелость канальцевой системы почек. Важнейшая особенность нейроэндокринного контроля гомеостаза у новорожденных и детей раннего возраста заключается в относительно высокой секреции и почечной экскреции альдостерона, что оказывает прямое влияние на состояние гидратации тканей и функцию почечных канальцев.
    Регуляция осмотического давления плазмы крови и внеклеточной жидкости у детей также ограничена. Осмомолярность внутренней среды колеблется в более широком диапазоне (+ 50 мосм/л), чем у взрослых (+ 6 мосм/л). Это связано с большей величиной поверхности тела на 1 кг веса и, следовательно, с более существенными потерями воды при дыхании, а также с незрелостью почечных механизмов концентрации мочи у детей. Нарушения гомеостаза, проявляющиеся гиперосмосом, особенно часто встречаются у детей периода новорожденности и первых месяцев жизни; в более старших возрастах начинает преобладать гипоосмос, связанный главным образом с желудочно-кишечным заболеванием или болезнями почек. Менее изучена ионная регуляция гомеостаза, тесно связанная с деятельностью почек и характером питания.
    Ранее считалось, что основным фактором, определяющим величину осмотического давления внеклеточной жидкости, является концентрация натрия, однако более поздние исследования показали, что тесной корреляции между содержанием натрия в плазме крови и величиной общего осмотического давления при патологии не существует. Исключение составляет плазматическая гипертония. Следовательно, проведение гомеостатической терапии путем введения глюкозосолевых растворов требует контроля не только за содержанием натрия в сыворотке или плазме крови, но и за изменениями общей осмомолярности внеклеточной жидкости. Большое значение в поддержании общего осмотического давления во внутренней среде имеет концентрация сахара и мочевины. Содержание этих осмотически активных веществ и их влияние на водно-солевой обмен при многих патологических состояниях могут резко возрастать. Поэтому при любых нарушениях гомеостаза необходимо определять концентрацию сахара и мочевины. В силу вышесказанного у детей раннего возраста при нарушении водно-солевого и белкового режимов может развиваться состояние скрытого гипер- или гипоосмоса, гиперазотемии (Э. Керпель-Фрониуш, 1964).
    Важным показателем, характеризующим гомеостаз у детей, является концентрация водородных ионов в крови и внеклеточной жидкости. В антенатальном и раннем постнатальном периодах регуляция кислотно-щелочного равновесия тесно связана со степенью насыщения крови кислородом, что объясняется относительным преобладанием анаэробного гликолиза в биоэнергетических процессах. При этом даже умеренная гипоксия у плода сопровождается накоплением в его тканях молочной кислоты. Кроме того, незрелость ацидогенетической функции почек создает предпосылки для развития «физиологического» ацидоза. В связи с особенностями гомеостаза у новорожденных нередко возникают расстройства, стоящие на грани между физиологическими и патологическими.
    Перестройка нейроэндокринной системы в пубертатном периоде также сопряжена с изменениями гомеостаза. Однако функции исполнительных органов (почки, легкие) достигают в этом возрасте максимальной степени зрелости, поэтому тяжелые синдромы или болезни гомеостаза встречаются редко, чаще же речь идет о компенсированных сдвигах в обмене веществ, которые можно выявить лишь при биохимическом исследовании крови. В клинике для характеристики гомеостаза у детей необходимо исследовать следующие показатели: гематокрит, общее осмотическое давление, содержание натрия, калия, сахара, бикарбонатов и мочевины в крови, а также pH крови, pO2 и pCO2.

    Особенности гомеостаза в пожилом и старческом возрасте

    Один и тот же уровень гомеостатических величин в различные возрастные периоды поддерживается за счет различных сдвигов в системах их регулирования. Например, постоянство уровня АД в молодом возрасте поддерживается за счет более высокого минутного сердечного выброса и низкого общего периферического сопротивления сосудов, а в пожилом и старческом — за счет более высокого общего периферического сопротивления и уменьшения величины минутного сердечного выброса. При старении организма постоянство важнейших физиологических функций поддерживается в условиях уменьшения надежности и сокращения возможного диапазона физиологических изменений гомеостаза. Сохранение относительного гомеостаза при существенных структурных, обменных и функциональных изменениях достигается тем, что одновременно происходит не только угасание, нарушение и деградация, но и развитие специфических приспособительных механизмов. За счет этого поддерживается неизменный уровень содержания сахара в крови, pH крови, осмотического давления, мембранного потенциала клеток и т. д.
    Существенное значение в сохранении гомеостаза в процессе старения организма имеют изменения механизмов нейрогуморальной регуляции, увеличение чувствительности тканей к действию гормонов и медиаторов на фоне ослабления нервных влияний.
    При старении организма существенно изменяется работа сердца, легочная вентиляция, газообмен, почечные функции, секреция пищеварительных желез, функция желез внутренней секреции, обмен веществ и др. Изменения эти могут быть охарактеризованы как гомеорезис — закономерная траектория (динамика) изменения интенсивности обмена и физиологических функций с возрастом во времени. Значение хода возрастных изменений очень важно для характеристики процесса старения человека, определения его биол, возраста.
    В пожилом и старческом возрасте снижаются общие потенциальные возможности приспособительных механизмов. Поэтому в старости при повышенных нагрузках, стрессах и других ситуациях вероятность срыва адаптационных механизмов и нарушения гомеостаза увеличиваются. Такое уменьшение надежности механизмов гомеостаза является одной из важнейших предпосылок развития патологических нарушений в старости.

    Гомеостаз. Физиология человека (видео)

    Лекция: Мозг и гомеостаз (дыхание, терморегуляция, сон и т.д.)

    Дубынин Вячеслав Альбертович — доктор биологических наук, профессор кафедры физиологии человека и животных Биологического факультета МГУ.

    Библиография:

    Адольф Э. Развитие физиологических регуляций, пер. с англ., М., 1971, библиогр.;
    Анохин П.К. Очерки по физиологии функциональных систем, М., 1975, библиогр.;
    Вeльтищeв Ю. Е., Самсыгина Г.А. и Ермакова И.А. К характеристике осморегулирующей функции почек у детей периода новорожденности, Педиатрия, № 5, с. 46, 1975;
    Гелльгорн Э. Регуляторные функции автономной нервной системы, пер. с англ., М., 1948, библиогр.;
    Гленсдорф П. и Пригожин И. Термодинамическая теория структуры» устойчивости и флуктуаций, пер. с англ., М., 1973, библиогр.;
    Гомеостаз, под ред. П.Д. Горизонтова, М., 1976;
    Дыхательная функция крови плода в акушерской клинике, под ред. Л.С. Персианинова и др., М., 1971;
    Кассиль Г.Н. Проблема гомеостаза в физиологии и клинике, Вестн. АМН СССР, № 7, с. 64, 1966, библиогр.;
    Розанова В.Д. Очерки по экспериментальной возрастной фармакологии, Л., 1968, библиогр.;
    Фролькис В.В. Регулирование, приспособление и старение, Л., 1970, библиогр.;
    Штерн Л. С. Непосредственная питательная среда органов и тканей, М., 1960;
    CannonW. В. Organization for physiological homeostasis, Physiol. Rev., v. 9, p. 399, 1929;
    Homeostatic regulators, ed. by G, E. W. Wolstenholme a. J. Knight, L., 1969;
    Langley L. L. Homeostasis, Stroudsburg, 1973. Г.H. Кассиль;
    Ю.E. Вельтищев (пед.), Б.H. Тарусов (биофиз.), В.В. Фролькис (гер.);
    Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание.

  2. Nalmeriel Ответить

    Главная
    Биология
    Особенности классов птиц: системы, разновидности, жизненный цикл
    Паук — это насекомое или нет: строение и значение животных в природе
    Общая характеристика млекопитающих животных и их строение
    Обмен веществ и энергии в клетке: этапы и формула метаболического процесса
    Строение кровеносной системы млекопитающих и состав крови животных
    Семейство крестоцветных: описание видов, значение в природе и для человека
    Сколько отделов тела есть у человека и других видов живых организмов
    История и значение зоологии как науки о животных
    Растителдьная клетка: строение и функции
    Важные основы генетики человека
    Прочнейший скелет растения, или механическая ткань
    Особенности строения птиц и их биологическое значение
    Строение и биологическое значение двустворчатых моллюсков
    Ткани растений: виды, строение, назначение и функции
    Методы и значение исследования генетики человека
    Строение пищеварительной системы человека и ее анатомические особенности
    Строение и жизненный цикл особей класса Кишечнополостные
    Строение семени растений: особенности и химический состав
    Оплодотворение растений: виды, особенности, процесс и биологическое значение
    Класс млекопитающие: отряды, главные признаки зверей, образ жизни и примеры
    Общая характеристика, признаки и влияние на экологию человека типа Хордовые
    Значение растений в жизни всех существ: что было бы на Земле без них
    Оплодотворение матки и развитие беременности по триместрам
    Типы и уровни пищевых цепей, примеры и биологическое значение трофических связей
    Минеральное питание растений — это залог высоких стабильных урожаев
    Основные признаки класса млекопитающих, роль в природе
    Круглые и кольчатые черви: характеристика, виды и особенности строения
    Ноги пауков — особенности и назначение конечностей членистоногих
    Что такое генетика: определение, задачи и методы исследования, типы наследования признаков
    Метаболизм веществ: как он происходит, способы нормализации
    Мир цветов: растения семейства лилейных
    К какому классу относятся рыбы: особенности строения и жизненного цикла
    Редкие растения из Красной книги: исчезнувшие и охраняемые виды
    Во сколько лет ломается голос у мальчиков: признаки пубертатного периода
    Во сколько лет ломается голос у мальчиков: признаки пубертатного периода
    Что такое неживая природа: ее признаки и примеры, взаимосвязь с живой природой
    Стадии и биологическое значение митоза
    Что такое антропогенные факторы, и как они воздействуют на природу
    Анатомические особенности и значение пауков в природе
    Все о растениях Северной Америки: интересные факты и исчезающие виды
    Что относится к живой природе: признаки живых организмов и их классификация
    Самые великие биологи мира
    Фотосинтез и его значение в природе: что будет без растений
    Экологическая пирамида: правило построения, примеры и значение
    Состав, строение и функции белка в клетке, биологическое значение
    Природные явления: виды, распространение, методы прогнозирования и способы защиты
    Пищеварительная система человека: строение и функции органов ЖКТ
    Экологические знаки в картинках: их назначение и области применения
    Как беречь природу: общемировая экологическая проблема
    Растения семейства злаков: описание представителей, значение
    Что такое рудименты и примеры атавизмов как доказательств эволюции
    Сколько калорий в килограмме: как грамотно снизить вес
    Нелюбимые соседи: какие насекомые-вредители отравляют жизнь человека
    Общая характеристика пауков и представители ядовитых арахнидов
    Природные зоны лесов мира: характеристика, особенности, растительный и животный мир
    Интересные факты об амурском тигре и краткое описание животного: сообщение для школьников
    Зимующие птицы: группы и виды, особенности строения и значение для человека
    Растения семейства розоцветных: морфологическое описание видов и формула цветка
    Папоротникообразные растения: описание жизненного цикла разных видов, их роль в хозяйстве
    Из чего состоит опорно-двигательная система человека и каким заболеваниям она подвержена
    Кто живет в пустыне: животные и растительность
    Виды бесполого размножения у растений и животных
    Характеристика класса паукообразных: членистоногие пауки
    Популярные породы собак: их происхождение, внешний вид, строение и интересные факты
    Удивительные гиганты: все про слонов
    Все о лебедях: описание различных видов, их особенностей, интересные факты
    Растения степной зоны: описание видов и особенности флоры
    Как похудеть, зная о свойствах углеводов
    Дикая природа Африки: хищники и охота на них, мир дикой природы и редкие виды животных
    Дикие животные Африки: почему лев — царь зверей
    достояние республики: животные красной книги россии
    Описание зайца: виды с фото, внешний вид, строение, образ жизни и интересные факты
    Биологические функции липидов в клетках живых существ: как происходит процесс обмена
    Чем отличаются различные виды соцветий покрытосеменных растений
    Голосеменные растения: примеры различных видов, строение, отличие от покрытосеменных
    Вкусный и полезный опенок летний и его опасные двойники
    Растения Евразии: видовое многообразие природных зон
    Функции и строение клеточной мембраны
    Состав, структура, виды и биологические функции белков
    Редкие животные из Красной книги России: список видов, их описание и классификация
    Охрана природы и окружающей среды: источники загрязнения природных ресурсов и охраняемые объекты и территории
    Атмосферный фронт: что это такое, основные признаки и разновидности, особенности в центральной России
    Животные Урала: разнообразие природы, фото и интересные факты
    Сообщение о белом медведе: интересные факты
    Плодородные равнины степей и лесостепей: географическое положение, фауна и флора
    Сколько органов чувств у человека: функции и способности систем организма
    Растения и животные смешанных лесов: типичные представители флоры и фауны
    Сообщение интересных фактов о медведе
    Клешни представителей раков: удивительный животный мир
    Удивительный и жуткий мир: обитатели болота
    Какие растения называют споровыми: их характерные признаки
    Сколько ног у осьминога и как он передвигается
    Какая часть клетки является самой главной
    Борьба за существование в биологии: ее формы и причины
    Дикорастущие растения примеры
    Рациональное природопользование: принципы и примеры
    Лишайники как индикаторы загрязнения окружающей среды
    Какова биологическая роль воды в клетке
    Основное свойство плазматической мембраны
    Какие факторы свидетельствуют о единстве органического мира
    Какие организмы относятся к прокариотам
    Значение бактерий в природе и жизни человека
    Процессы пластического и энергетического обмена в клетке
    Сколько на самом деле пар ног у насекомых
    Продолговатый мозг: анатомия, строение ядер и функции
    Строение и функции головного мозга
    Строение органов зрения медоносной пчелы
    Сколько пар рёбер у мужчин и женщин: строение грудной клетки человека
    Движущая сила эволюции: какие формы естественного отбора существуют
    Понятие фототрофа в биологии, примеры, тип питания
    Строение животной (человека) и растительной клетки в биологии
    Влияние человека на природу, негативное воздействие
    Функции и строение органоидов клетки
    Цитоплазма: химический состав, строение и основные функции
    Сколько хромосом у нормального здорового человека
    Что такое клеточный центр и его значение для деления клеток
    Определение процесса фотосинтеза: какая наука его изучает
    Какие животные живут в пустыне на территории России
    Карл Линней: краткая биография и вклад в биологию
    Сколько мышц насчитывает организм взрослого человека
    Основные органы чувств у человека
    Чем отличаются живые виды природы от неживых
    Особенности немембранных органоидов клетки
    Сколько костей в теле взрослого человека
    Биогеохимический круговорот углерода в природе
    Сколько хромосом имеет кариотип картошки
    Вакуоль, её особенности: строение, состав, функции
    Какие органические вещества входят в состав живой клетки
    Процесс распада органических соединений: диссимиляция
    Сравнение особенностей растительной и животной клетки
    Гумус: определение состава, содержание и типа почвы
    Молекула АТФ в биологии: состав, функции и роль в организме
    Понятие гомеостаза организма человека в медицине и биологии
    Неживая природа: определение, признаки и классификация

  3. Agamalore Ответить

    I. Концепция гомеостаза
    Более 100 лет назад великий французский физиолог Клод Бернар, отмечая стабильность физиологических параметров организма (например температура тела), пришел к выводу, что «Постоянство внутренней среды – есть условие независимого существования». Чтобы организм мог функционировать все его клетки должны быть окружены строго регулируемой средой. В дальнейшем принцип Бернара нашел многочисленные подтверждения. Теперь ясно, что внутренняя среда регулируется множеством сложных механизмов, благодаря чему ее состав поддерживается постоянным, изменяется в узких пределах. В 1929 г. американский физиолог Уолтер Кэннон ввел термин «гомеостаз» («гомео» – подобный, «стазис» – положение), что означает саморегулируемое состояние. В 1948 г. Виннер предложил термин «кибернетика» для науки о механизмах управления физиологическими процессами, которая занимается математическим моделированием и анализом гомеостатических механизмов. C точки зрения кибернетики организм – это открытая, динамическая саморегулирующаяся система, имеющая вход и выход. Саморегуляция осуществляется по принципу обратной связи, когда элементы на выходе оказывают влияние на вход. Поток вещества и энергии, наблюдаемый в организме, обуславливает самообновление и самовоспроизведение на всех уровнях от молекулярного до организменного и популяционного. С общебиологических позиций – гомеостаз это свойство организма поддерживать постоянство внутренней среды и основные черты присущей ему организации, несмотря на изменчивость параметров внешней среды и действие внутренних возмущающих факторов. В эволюционном плане гомеостаз – это наследственно закрепленные адаптации организма к обычным условиям окружающей среды.
    II. Виды и механизмы гомеостаза
    Различают следующие основные виды гомеостаза:
    1. генетический;
    2. структурный;
    3. иммунологический;
    4. системный
    – гомеостаз жидкой части внутренней среды (кровь, лимфа, тканевая жидкость).
    Генетический гомеостаз обусловлен геномным уровнем организации наследственного материала. Молекула ДНК определяет генетическую стабильность клеток и организмов на протяжении всей жизни. Она хранит, реплицирует наследственную информацию и участвует в ее реализации в процессе транскрипции в реакциях матричного синтеза. ДНК состоит из 2-х полинуклеотидных цепей и отличается устойчивостью к внешним воздействиям. В процессе репликации и транскрипции, а также под действием эндогенных и экзогенных химических соединений и физических факторов могут происходить ошибки, нарушения структуры молекулы ДНК. В клетках под действием системы репарирующих ферментов (ДНК-полимеразы, редактирующей эндонуклеазы) происходит исправление ошибок репликации. Механизм репарации основан на наличии 2-х цепей, искажение последовательности нуклеотидов одной из них обнаруживается специфическими ферментами, затем соответствующий участок удаляется и заменяется новым, синтезированным на второй комплементарной цепи. Если количество повреждений остается высоким, в клетке блокируются процессы репликации, клетка не делится, т. е. не передает, возникшие изменения потомству. Т.о., набор ферментов репарации осуществляет осмотр ДНК, удаляя поврежденные участки, способствует поддержанию стабильности наследственного материала.
    Важным механизмом сохранения генетического гомеостаза является диплоидность соматических клеток у эукариот. Двойная генетическая программа подавляет фенотипическое проявление большинства рецессивных мутаций. В стабилизации генотипа важное значение имеют разные виды взаимодействия генов. Фактором защиты является триплетность генетического кода, что допускает минимальное число замен внутри триплета, ведущих к искажению информации, 64% замен 3-го нуклеотида не дает изменений смыслового значения. Явление экстракопирования генов, кодирующих жизненно важные макромолекулы, наличие десятков и сотен идентичных копий-генов рРНК, тРНК, гистоновых белков, мутационные изменения которых не ведут к катастрофическим последствиям, также является фактором защиты. Эти механизмы способствуют сохранению генетической стабильности, определяют высокую эволюционную пластичность популяций и адаптации к меняющимся факторам среды.
    Структурный гомеостаз – это постоянство морфологической организации на всех уровнях различных биологических систем. Таким образом, целесообразно выделить гомеостаз клетки, ткани, органа, системы органов, организма. Клетка – это элементарная единица, которой свойственна саморегуляция. Важное значение имеют мембранные структуры, через которые осуществляется рецепция, транспорт. Особенностью регуляции структурного гомеостаза является положительная обратная связь, когда гомеостаз нижележащих структур является основой их жизнедеятельности и обеспечивает морфологическое постоянство вышестоящих структур. Универсальным механизмом регуляции является физиологическая и репаративная регенерация.
    Иммунные механизмы гомеостаза обеспечивают сохранение биологической индивидуальности, когда организм распознает «свое» и «чужое» и обеспечивает защиту от чужеродного агента. Иммунитет понимается как способ защиты организма от чужеродных агентов, несущих в себе признаки генетически чужеродной информации. Чужеродную генетическую информацию чаще всего несут вещества – антигены-белки, мукополисахариды, нуклеиновые кислоты. В эволюции организмов постепенно сформировалось две формы иммунитета клеточный и гуморальный. У земноводных впервые произошло разделение лимфоцитов на клетки, ответственные за клеточные и гуморальные иммунные реакции, которые в дальнейшем совершенствовались. У человека и млекопитающих иммунная система, представленная лимфоидной тканью, имеет центральное (красный костный мозг и вилочковая железа) и периферическое (селезенка, лимфатические узлы) звено. Защитная реакция осуществляется лимфоцитами двух типов, образующимися в указанных органах. Т-лимфоциты, обеспечивают клеточный иммунитет, уничтожая чужеродные клетки и соматические клетки собственного организма, подвергшиеся мутациям. Различают три вида Т-лимфоцитов: киллеры, хелперы, супрессоры. Они определяют трансплантационный, противоопухолевый, противовирусный иммунитет. В-клетки участвуют в гуморальном иммунитете, выделяя антитела – иммуноглобулины, которые обладают специфической активностью против антигенов, оказывают агглютинирующее или лизирующее действие. Примерами нарушений иммунного гомеостаза служат аутоиммунные болезни (множественный склероз).
    Системный гомеостаз – гомеостаз жидкой части внутренней среды организма определяет постоянство состава крови, лимфы, тканевой жидкости, осмотического давления, общей концентрации электролитов и концентрации отдельных ионов, содержания в крови питательных веществ и т.д. Эти показатели даже при значительных изменениях условий внешней среды удерживаются на определенном уровне.
    Чувствительность тканей к изменениям внутренней среды организма различна. Так, нервная система особенно чувствительна к снижению содержания кислорода. Млекопитающие животные не переносят колебаний концентрации ионов Са2+, превышающие 30%. К этой форме гомеостаза применим кибернетический принцип регуляции, когда в системе имеется блок управления и рабочая часть, отвечающая на регулирующее воздействие управляющего блока. Регуляция осуществляется по принципу отрицательной обратной связи, путем тесного взаимодействия нервных и гуморальных механизмов.
    III. Регуляция гомеостаза
    Способность сохранять гомеостаз – это общее свойство живых систем. По мере усложнения организмов эта способность прогрессирует, в большей степени определяя независимость от внешних факторов среды. Это достигается нервными, эндокринными и иммунными механизмами. Регуляция гомеостаза осуществляется нервной системой, нейроэндокринной системой, включающей в свой состав гипоталамус, гипофиз, периферические эндокринные железы и диффузной эндокринной системой (ДЭС), представленной эндокринными клетками, расположенными практически во всех тканях и органах (сердце, легких, ЖКТ, почках, печени, коже и т. д.). Основная масса клеток ДЭС (75%) сосредоточена в эпителии пищеварительной системы. В настоящее время выявлено, что ряд гормонов одновременно присутствует в центральных нервных структурах и эндокринных клетках желудочно-кишечного тракта. Так, гормоны энкефалины и эндорфины обнаружены в нервных клетках и панкреатических островках поджелудочной железы, эндокринных клетках желудка. Холецистокинин выявлен в 12-перстной кишке и головном мозге. Такие факты дали основание для создания гипотезы о наличии в организме единой системы клеток химической информации.
    На разных этапах онтогенеза изменяются особенности обмена веществ и энергии и механизмы гомеостаза. В дорепродуктивном периоде преобладает ассимиляция, увеличивается рост, масса, не сформированы механизмы гомеостаза (детские болезни). В зрелом возрасте процессы ассимиляции и диссимиляции компенсированы, совершенствуется регуляция. При старении надежность механизмов гомеостаза снижается.

  4. TheFantaPlay Ответить

    гомеостазис (от гомео… и греч. stasis — неподвижность, состояние), способность биол. систем противостоять изменениям и сохранять динамич. относит, постоянство состава и свойств. Термин «Г.» предложил У. Кен-нон в 1929 для характеристики состояний п процессов, обеспечивающих устойчивость организма. Однако идея о существовании физиол. механизмов, направленных на поддержание постоянства внутр. среды организма, была высказана ещё во 2-й пол. 19 в. К. Бернаром, к-рый рассматривал стабильность физико-химич. условий во внутр. среде как основу свободы н независимости живых организмов в непрерывно меняющейся внеш. среде. Явления Г. наблюдаются на разных уровнях биол. организации. Г. физиологический. Возникновение жизни на Земле, появление одноклеточных организмов было связано с формированием и непрестанным поддержанием в клетке в течение всей жизни специфич. физико-химич. условий, отличающихся от условий окружающей среды. У многоклеточных организмов появляется внутр. среда, в к-рой находятся клетки разл. органов и тканей, происходит развитие и совершенствование механизмов Г. В ходе эволюции формируются специа-лизир. органы кровообращения, дыхания, пищеварения, выделения и др., участвующие в поддержании Г. У мор. беспозвоночных имеются гомеостатич. механизмы стабилизации объёма, ионного состава и рН жидкостей внутр. среды. Для животных, перешедших к жизни в пресных водах и на суше, а также у позвоночных, мигрировавших из пресных вод в море, сформированы механизмы осморегуля-ции, обеспечивающие постоянство концентрации осмотически активных веществ внутри организма. Наиб, совершенен Г. у млекопитающих, что способствует расширению возможностей их приспособления к окружающей среде. Благодаря Г. обеспечивается постоянство объёма крови (и з о в о л е м и я) и др. внеклеточных жидкостей, концентрации в них ионов, осмотически активных веществ (и з о о с м и я), постоянство рН крови, состава в ней белков, липидов и углеводов. У птиц и млекопитающих в узких пределах регулируется темп-ра тела (и з о т е р м и я).
    Дополнит, физиол. механизмы обеспечивают стабилизацию внутр. среды отд. органов (напр., гематоэнцефалич. и гематоофтальмич. барьеры определяют особые свойства жидкостей, окружающих клетки мозга и глаза). Г. достигается системой физиол. регу-ляторных механизмов. Наиб, важную, интегрирующую функцию выполняет ЦНС и особенно кора головного мозга, большое значение имеют влияние симпатич. нервной системы, состояние гипофиза, надпочечников и др. эндокринных желёз, степень развития эффекторных органов. Примером сложной гомеостатич. системы, включающей разл. механизмы регуляции, является система обеспечения оптимального уровня артериального давления, к-рая регулируется по принципу цепных реакций с обратными связями: изменение давления крови воспринимается барорецепторами сосудов, сигнал передаётся в сосудистые центры, изменение состояния к-рых ведёт к изменению тонуса сосудов и сердечной деятельности; одновременно включается система нейрогуморальной регуляции и кровяное давление возвращается к норме. Нарушения механизмов, лежащих в основе гомеостатич. процессов, рассматриваются как «болезни Г.». С нек-рой условностью к ним можно отнести функц. нарушения нормальной деятельности организма, связанные с вынужденной перестройкой биол. ритмов и т. д. Познание закономерностей Г. человека имеет большое значение для выбора эффективных и рациональных методов лечения мн. заболеваний. У растений осн. значение для поддержания Г. на клеточном уровне имеют плазмалемма и тонопласт. Первая регулирует приток в клетку питат. ионов и воды из внешней среды и выделение баластных и избыточных ионов Н+, Na+, Са2+, второй — поступление в протоплазму запасных субстратов из вакуолей при их недостатке и удаление в вакуоль — при избытке. Стабилизация осмотич. потенциала клеток осуществляется гл. обр. за счёт поддержания определ. внутриклеточной концентрации К+ и анионов. На тканевом уровне в поддержании Г. участвуют плазмодесмы, к-рые регулируют межклеточные потоки углеводов и др. субстратов. Г. генетический, или п о п у-ляционный, способность популяции поддерживать относит, стабильность и целостность генотипич. структуры в изменяющихся условиях среды. Достигается посредством сохранения генетич. равновесия частоты аллелей при свободном скрещивании особей в популяциях путём поддержания гетерозиготности и полиморфизма, определ. темпа и направления мутационного процесса. Изучение Г.— актуальная задача при исследовании закономерностей микроэволюции. Г. развития — способность данного генотипа создавать определ. фенотип в широком диапазоне условий. Понятие «Г.» широко используется в экологии при характеристике состояния экосистем и их устойчивости. Благодаря Г. поддерживается постоянство видового состава и численности особей в биоценозах.

  5. Aragor Ответить

    ГОМЕОСТА?З, го­мео­ста­зис (от го­мео… и греч. ?????? – не­под­виж­ность, со­стоя­ние).
    В био­ло­гии Г. – спо­соб­ность жи­вых ор­га­низ­мов со­хра­нять ди­на­мич. по­сто­ян­ст­во со­ста­ва и свойств внутр. сре­ды. Идея о на­ли­чии в ор­га­низ­ме ком­плек­са фи­зио­ло­гич. ме­ха­низ­мов, на­прав­лен­ных на под­дер­жа­ние по­сто­ян­ст­ва внутр. сре­ды, бы­ла вы­ска­за­на К. Бер­на­ром во 2-й пол. 19 в. Он счи­тал, что в ос­но­ве сво­бод­ной и не­за­ви­си­мой жиз­ни ор­га­низ­мов в по­сто­ян­но ме­няю­щей­ся внеш­ней сре­де ле­жит по­сто­ян­ст­во фи­зи­ко-хи­мич. ус­ло­вий внутр. сре­ды. Для обо­зна­че­ния ком­плек­са про­цес­сов в жи­вом ор­га­низ­ме, обес­пе­чи­ваю­щих по­сто­ян­ст­во та­ких ус­ло­вий, У. Кен­нон пред­ло­жил тер­мин «Г.» (1929).
    По­яв­ле­ние на Зем­ле од­но­кле­точ­ных ор­га­низ­мов бы­ло свя­за­но с фор­ми­ро­вани­ем и под­дер­жа­ни­ем внут­ри клет­ки в те­че­ние всей её жиз­ни спе­ци­фич. фи­зи­ко-хи­мич. ус­ло­вий, от­лич­ных от ус­ло­вий ок­ру­жаю­щей сре­ды. Даль­ней­шая эво­лю­ция жиз­ни со­про­во­ж­да­лась воз­ник­но­ве­ни­ем мно­го­кле­точ­ных жи­вот­ных, диф­фе­рен­ци­ров­кой их кле­ток, фор­ми­ро­ва­ни­ем внутр. сре­ды, в ко­то­рой на­хо­дят­ся и взаи­мо­дей­ст­ву­ют ме­ж­ду со­бой клет­ки. По­яв­ля­ют­ся сис­те­ма вне­кле­точ­ных жид­ко­стей, лим­фа, кровь, из ко­то­рых клет­ки из­вле­ка­ют не­об­хо­ди­мые ор­га­нич. и не­ор­га­нич. ве­ще­ст­ва, O2 и вы­де­ля­ют ко­неч­ные про­дук­ты об­ме­на. В хо­де эво­лю­ции мно­го­кле­точ­ных жи­вот­ных фор­ми­ру­ют­ся спе­циа­ли­зир. ор­га­ны (ды­ха­ния, кро­во­об­ра­ще­ния, пи­ще­ва­ре­ния, вы­де­ле­ния) и сис­те­мы (ос­мо­ре­гу­ля­ции, во­лю­мо­ре­гу­ля­ции, тер­мо­ре­гу­ля­ции, под­дер­жа­ния на за­дан­ном уров­не кон­цен­тра­ции ка­ж­до­го из ио­нов, ки­слот­но-ще­лоч­но­го рав­но­ве­сия и др.). Они обес­пе­чи­ва­ют по­сто­ян­ст­во фи­зи­ко-хи­мич. со­ста­ва жид­ко­стей внутр. сре­ды. По­ми­мо кро­ви, лим­фы, око­ло­кле­точ­ной жид­ко­сти фор­ми­ру­ют­ся и спе­циа­ли­зир. вне­кле­точ­ные жид­ко­сти (напр., спин­но­моз­го­вая, внут­ри­глаз­ная, эн­до­лим­фа и пе­ри­лим­фа внут­рен­не­го уха), на­зна­че­ние ко­то­рых со­сто­ит в под­дер­жа­нии спец. ус­ло­вий для функ­цио­ни­ро­ва­ния кле­ток це­лых ор­га­нов.
    У мор­ских бес­по­зво­ноч­ных Г. ка­са­ет­ся объ­ё­ма жид­ко­стей внутр. сре­ды, кон­цен­тра­ции в ней отд. ио­нов, рН. Адап­та­ция ор­га­низ­мов к пре­сным во­дам по­тре­бо­ва­ла фор­ми­ро­ва­ния но­вой сис­те­мы ре­гу­ля­ции – под­дер­жа­ния на по­сто­ян­ном уров­не ос­мо­тич. дав­ле­ния жид­ко­стей внутр. сре­ды, уда­ле­ния из ор­га­низ­ма из­быт­ка во­ды. К осо­бо кон­тро­лируе­мым фи­зи­ко-хи­мич. па­ра­мет­рам внутр. сре­ды от­но­сят­ся её ос­мо­тич. дав­ле­ние (изо­ос­мия), кон­цен­тра­ция отд. ио­нов (изо­ио­ния), объ­ём кро­ви (изо­во­ле­мия), её рН, у птиц и мле­ко­пи­таю­щих так­же ста­би­ли­зи­ро­ван­ная тем­пе­ра­ту­ра те­ла (изо­тер­мия) и др.
    По­сто­ян­ст­во фи­зи­ко-хи­мич. ус­ло­вий во внутр. сре­де, со­стоя­ние око­ло­кле­точной сре­ды слу­жат жиз­нен­но важ­ным фак­то­ром, не­об­хо­ди­мым для эф­фек­тив­ной ра­бо­ты кле­ток; их аде­к­ват­ная ре­ак­ция на сиг­на­лы из внеш­ней (напр., све­то­вые, зву­ко­вые, тем­пе­ра­тур­ные раз­дра­жи­те­ли) и внут­рен­ней (в т. ч. им­пуль­сы нерв­ной сис­те­мы, гор­мо­ны, ау­та­кои­ды) сре­ды воз­мож­на при под­дер­жа­нии Г. Осо­бен­но вы­со­кая сте­пень Г. ха­рак­тер­на для мле­ко­пи­таю­щих, у ко­то­рых наи­бо­лее стро­го под­дер­жи­ва­ют­ся ос­мо­ляль­ность кро­ви, кон­цен­тра­ция в ней ио­нов Са2+, рН, изо­тер­мия.
    Г. соз­да­ёт воз­мож­ность для аде­к­ват­ных ре­ак­ций кле­ток, под­дер­жа­ния не­об­хо­ди­мо­го уров­ня их ме­та­бо­лиз­ма и от­ве­та на внеш­ние воз­дей­ст­вия. В ре­гу­ля­ции фи­зи­ко-хи­мич. па­ра­мет­ров внутр. сре­ды уча­ст­ву­ют нерв­ная и эн­док­рин­ная сис­те­мы, ау­та­кои­ды. По­вы­ше­ние ка­че­ст­ва ре­гу­ля­ции для со­хра­не­ния ста­биль­но­сти па­ра­мет­ров внутр. сре­ды яв­ля­ет­ся важ­ным фак­то­ром вы­жи­ва­ния осо­би и про­цве­та­ния ви­да.
    Тер­мин «кле­точ­ный Г.» про­ти­во­ре­чит смы­сло­во­му зна­че­нию по­ня­тия, пред­ло­жен­но­го К. Бер­на­ром и У. Кен­но­ном.
    Го­мео­стаз в ки­бер­не­ти­ке. В 1950-х гг. Н. Ви­нер уни­вер­са­ли­зи­ро­вал по­ня­тие Г. и при­ме­нил его к функ­цио­ни­ро­ва­нию дос­та­точ­но слож­ных са­мо­ре­гу­ли­рую­щих­ся сис­тем. В ре­зуль­та­те по­ня­тие Г. ста­ло ши­ро­ко ис­поль­зо­вать­ся не толь­ко в био­ло­гии, но и в др. нау­ках. По Ви­не­ру, го­мео­ста­тич. ал­го­ритм оп­ре­де­ля­ет ба­зо­вые па­ра­мет­ры сис­те­мы, зна­чит. из­ме­не­ния ко­то­рых на­ру­ша­ют или раз­ру­ша­ют её нор­маль­ное функ­цио­ни­ро­ва­ние и раз­ви­тие; фик­си­ру­ет пре­де­лы до­пус­ти­мо­го из­ме­не­ния ус­та­нов­лен­ных па­ра­мет­ров под влия­ни­ем как внеш­ней, так и внутр. сре­ды; вы­яв­ля­ет со­во­куп­ность ме­ха­низ­мов, на­чи­наю­щих про­яв­лять се­бя при кри­тич. из­ме­не­нии ба­зо­вых па­ра­мет­ров сис­те­мы. Го­мео­ста­тич. взаи­мо­дей­ст­вие от­кры­той сис­те­мы с ок­ру­жаю­щим ми­ром обу­слов­ли­ва­ет её адап­тив­ность двоя­ко­го ро­да: при­спо­соб­ле­ние сис­те­мы к внеш­не­му ми­ру пу­тём оп­ре­де­лён­ных внутр. из­ме­не­ний и ак­тив­ное воз­дей­ст­вие сис­тем­но­го объ­ек­та на сре­ду, т. е. «при­спо­соб­ле­ние» сре­ды к сво­им «по­треб­но­стям» пу­тём из­вле­че­ния и ус­вое­ния не­об­хо­ди­мых ре­сур­сов. Клю­че­вую роль для го­мео­ста­тич. про­цес­сов иг­ра­ет не про­сто об­рат­ная связь, а от­ри­ца­тель­ная об­рат­ная связь, обес­пе­чи­ваю­щая (в оп­ре­де­лён­ных пре­де­лах) воз­вра­ще­ние к рав­но­ве­сию в от­вет на воз­му­щаю­щие воз­дей­ст­вия. Ме­ха­низ­мы Г. обес­пе­чи­ва­ют лишь адап­та­цию сис­те­мы, а не её раз­ви­тие. Для за­кры­тых сис­тем ха­рак­тер­но ог­ра­ни­чен­ное взаи­мо­дей­ст­вие с ок­ру­жаю­щей сре­дой и от­сут­ст­вие (или на­ли­чие толь­ко в са­мой не­зна­чи­тель­ной сте­пе­ни) ме­ха­низ­мов Г., обес­пе­чи­ваю­щих са­мо­на­строй­ку сис­те­мы.
    В со­ци­аль­ных и по­ли­ти­че­ских нау­ках по­ня­тие Г. при­ме­ня­ет­ся пре­им. при ана­ли­зе функ­цио­ни­ро­ва­ния и ди­на­ми­ки со­ци­аль­ной и по­ли­тич. сис­тем, а так­же не­ко­то­рых сис­тем­ных ор­га­ни­за­ций (го­су­дар­ст­ва, пар­тий, проф­сою­зов и др.). В этой сфе­ре под­виж­ное рав­но­вес­ное со­стоя­ние сис­тем (и под­сис­тем) со­хра­ня­ет­ся че­рез про­ти­во­дей­ст­вие их струк­тур, со­ци­аль­ных групп и ин­сти­ту­тов внеш­ним и внутр. фак­то­рам, на­ру­шаю­щим осн. прин­ци­пы функ­цио­ни­ро­ва­ния (Т. Пар­сонс, Д. Ис­тон). В по­ли­тич. ана­ли­зе и управ­ле­нии ис­поль­зу­ют­ся со­цио­ди­на­мич. мо­де­ли по­ли­тич. и со­ци­аль­ной сис­тем об­ще­ст­ва, в ко­то­рых вы­де­ля­ют­ся пря­мые и об­рат­ные го­мео­ста­тич. взаи­мо­дей­ст­вия сис­те­мы с внеш­ней сре­дой. В со­ци­аль­но-по­ли­тич. сис­те­мах ве­ли­ка роль че­ло­ве­че­ско­го фак­то­ра (риск оши­бок и др.) при при­ня­тии ре­ше­ний, по­сколь­ку ги­пе­рак­тив­ное воз­дей­ст­вие на сре­ду и её из­ме­не­ние фор­ми­ру­ют­ся са­ми­ми со­ци­аль­но-по­ли­тич. аген­та­ми. Со­от­вет­ст­вен­но в этой сфе­ре ве­ли­ка функ­цио­наль­ная роль об­ществ. кон­тро­ля (об­рат­ной свя­зи) над при­ня­ти­ем ин­сти­ту­цио­наль­ны­ми ор­га­на­ми зна­чи­мых для со­циу­ма ре­ше­ний, са­мо­ор­га­ни­за­ции и оп­ти­ми­за­ции сис­темы. Раз­ба­лан­си­ров­ка по­ли­тич. (со­ци­аль­ной) сис­те­мы ве­дёт к кри­зис­ным яв­ле­ни­ям или да­же к её раз­ру­ше­нию, о чём сви­де­тель­ст­ву­ет ис­то­рия ре­во­лю­ций. Со­ци­аль­но-по­ли­тич. сис­те­мы за­кры­то­го (то­та­ли­тар­но­го) ти­па до­пус­ка­ют до­зи­ро­ван­ное, жё­ст­кое взаи­мо­дей­ст­вие с внеш­ней сре­дой, а так­же с се­бе по­доб­ны­ми сис­те­ма­ми; для них ха­рак­тер­на сла­бая об­рат­ная связь. В ко­неч­ном счё­те они не ус­пе­ва­ют аде­к­ват­но от­ве­чать на вы­зо­вы вре­ме­ни, про­иг­ры­ва­ют в эко­но­мич. раз­ви­тии и ста­но­вят­ся не­ус­той­чи­вы­ми.
    В мак­ро­эко­но­ми­ке го­мео­ста­тич. под­ход лёг в ос­но­ву тео­рии об­ще­го эко­но­мич. рав­но­ве­сия (кейн­си­ан­ская и не­о­клас­си­че­ская мо­де­ли). Прин­цип Г. при­ме­ня­ет­ся в со­ци­аль­ной эко­ло­гии, ко­то­рая рас­смат­ри­ва­ет при­род­ную сре­ду как диф­фе­рен­ци­ро­ван­ную сис­те­му ди­на­мич. рав­но­ве­сия; ши­ро­ко ис­поль­зу­ет­ся при ана­ли­зе взаи­мо­дей­ст­вия на­цио­наль­ных струк­тур с над­на­цио­наль­ны­ми ин­сти­ту­та­ми и ор­га­ни­за­ция­ми в ус­ло­ви­ях гло­баль­ных от­но­ше­ний.

  6. Оч.ЗаБаВнАя.Я Ответить

    Поддержание здорового кровяного давления также является примером гомеостаза. Сердце может ощущать изменения в кровяном давлении и посылать сигналы в мозг для обработки. Далее мозг отправляет обратно сигнал к сердцу с инструкцией, как правильно реагировать. Если кровяное давление слишком высокое, его нужно снизить.

    Как достигается гомеостаз?

    Каким образом человеческий организм регулирует все системы и органы и компенсирует происходящие изменения в окружающей среде? Это происходит благодаря наличию множества естественных датчиков, контролирующих температуру, солевой состав крови, артериальное давление и многие другие параметры. Эти детекторы посылают сигналы в мозг, в главный центр управления, в случае, если некоторые значения отклонились от нормы. После этого запускаются компенсаторные мероприятия для восстановления нормального состояния.
    Поддержание гомеостаза невероятно важно для организма. Человеческое тело содержит определенное количество химических веществ, известных как кислоты и щелочи, их правильный баланс необходим для оптимального функционирования всех органов и систем тела. Уровень кальция в крови должен поддерживаться на должном уровне. Поскольку дыхание является непроизвольным, нервная система обеспечивает организму получение столь необходимого кислорода. Когда токсины попадают в вашу кровь, они нарушают гомеостаз организма. Человеческое тело реагирует на это нарушение с помощью мочевыделительной системы.

    Важно подчеркнуть, что гомеостаз организма работает автоматически, если система функционирует нормально. Например, реакция на нагревание – кожа краснеет, потому что ее мелкие кровеносные сосуды автоматически расширяются. Дрожь – это ответная реакция на охлаждение. Таким образом, гомеостаз – это не набор органов, а синтез и баланс телесных функций. В совокупности это позволяет поддерживать весь организм в стабильном состоянии.

  7. heart sound Ответить

    Смотреть что такое “Гомеостаз” в других словарях:

    гомеостаз — гомеостаз … Орфографический словарь-справочник
    гомеостаз — Общий принцип саморегулирования живых организмов. Перлз настоятельно указывает на важность этого понятия в своей работе The Gestalt Approach and Eye Witness to Therapy . Краткий толковый психолого психиатрический словарь. Под ред. igisheva. 2008 … Большая психологическая энциклопедия
    ГОМЕОСТАЗ —         гомеостазис (от греч. подобный, одинаковый и состояние), свойство организма поддерживать свои параметры и физиоло гич. функции в определ. диапазоне, основанное на устойчивости внутр. среды организма по отношению к возмущающим воздействиям … Философская энциклопедия
    ГОМЕОСТАЗ — (от греч. homoios тот же самый, похожий и греч. stasis неподвижность, стояние), гомеостазис, способность организма или системы организмов поддерживать устойчивое (динамическое) равновесие в изменяющихся условиях среды. Гомеостаз в популяции… … Экологический словарь
    ГОМЕОСТАЗ — гомеостазис (от гомео… и греч. stasis неподвижность, состояние), способность биол. систем противостоять изменениям и сохранять динамич. относит, постоянство состава и свойств. Термин «Г.» предложил У. Кен нон в 1929 для характеристики состояний … Биологический энциклопедический словарь
    ГОМЕОСТАЗ — (от гомео… и греч. stasis неподвижность состояние), относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма. Понятие гомеостаз применяют и к биоценозам (сохранение… … Большой Энциклопедический словарь
    Гомеостаз — (от греч. homoios подобный и stasis неподвижность) процесс, за счет которого достигается относительное постоянство внутренней среды организма (постоянство температуры тела, кровяного давления, концентрации сахара в крови). В качестве отдельного… … Психологический словарь
    ГОМЕОСТАЗ — ГОМЕОСТАЗ(ИС) [< гр. homoios подобие + stasis стояние] биол. совокупность сложных приспособительных реакций животного и человека, направленных на сохранение постоянства внутренней среды организма (напр., постоянство температуры тела, кровяного… … Словарь иностранных слов русского языка гомеостаз — Состояние динамически подвижного равновесия экосистемы [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] гомеостаз гомеостазис Устойчивое состояние равновесия открытой системы в ее взаимодействии со средой. Это понятие пришло в экономику … Справочник технического переводчика
    ГОМЕОСТАЗ — ГОМЕОСТАЗ, в биологии процесс поддержания постоянных условий внутри клетки или организма независимо от внутренних или внешних изменений … Научно-технический энциклопедический словарь
    ГОМЕОСТАЗ — ГОМЕОСТАЗ, гомеостазис (греч. homois подобный, одинаковый и stasis неподвижный, состояние) свойство биологических систем сохранять относительную динамическую устойчивость параметров состава и функций. Основой данной способности выступает умение… … Новейший философский словарь

  8. Mezigul Ответить

    ГОМЕОСТАЗ, гомеостазис (от гомео… и греческого stasis — неподвижность, состояние), способность биологических систем противостоять изменениям и сохранять динамическое относительное постоянство состава и свойств. Термин «Гомеостаз» предложил У. Кеннон в 1929 году для характеристики состояний и процессов, обеспечивающих устойчивость организма. Однако идея о существовании физиологических механизмов, направленных на поддержание постоянства внутренней среды организма, была высказана ещё во 2-й половине 19 века К. Бернаром, который рассматривал стабильность физико-химических условий во внутренней среде как основу свободы и независимости живых организмов в непрерывно меняющейся внешней среде. Явления гомеостаза наблюдаются на разных уровнях биологической организации.
    Гомеостаз физиологический. Возникновение жизни на Земле, появление одноклеточных организмов было связано с формированием и непрестанным поддержанием в клетке в течение всей жизни специфических физико-химических условий, отличающихся от условий окружающей среды. У многоклеточных организмов появляется внутренняя среда, в которой находятся клетки различных органов и тканей, происходит развитие и совершенствование механизмов гомеостаза. В ходе эволюции формируются специализированные органы кровообращения, дыхания, пищеварения, выделения и др., участвующие в поддержании гомеостаза. У морских беспозвоночных имеются гомеостатические механизмы стабилизации объёма, ионного состава и рН жидкостей внутренней среды. Для животных, перешедших к жизни в пресных водах и на суше, а также у позвоночных, мигрировавших из пресных вод в море, сформированы механизмы осморегуляции, обеспечивающие постоянство концентрации осмотически активных веществ внутри организма. Наиболее совершенен гомеостаз у млекопитающих, что способствует расширению возможностей их приспособления к окружающей среде. Благодаря гомеостазу обеспечивается постоянство объёма крови (изоволемия) и других внеклеточных жидкостей, концентрации в них ионов, осмотически активных веществ (изоосмия), постоянство рН крови, состава в ней белков, липидов и углеводов. У птиц и млекопитающих в узких пределах регулируется температура тела (изотермия). Дополнительные физиологические механизмы обеспечивают стабилизацию внутренней среды отдельных органов (например, гематоэнцефалические и гематоофтальмические барьеры определяют особые свойства жидкостей, окружающих клетки мозга и глаза).
    Гомеостаз достигается системой физиологических регуляторных механизмов. Наиболее важную, интегрирующую функцию выполняет ЦНС и особенно кора головного мозга, большое значение имеют влияние симпатической нервной системы, состояние гипофиза, надпочечников и других эндокринных желёз, степень развития эффекторных органов. Примером сложной гомеостатической системы, включающей различные механизмы регуляции, является система обеспечения оптимального уровня артериального давления, которая регулируется по принципу цепных реакций с обратными связями: изменение давления крови воспринимается барорецепторами сосудов, сигнал передаётся в сосудистые центры, изменение состояния которых ведёт к изменению тонуса сосудов и сердечной деятельности; одновременно включается система нейрогуморальной регуляции и кровяное давление возвращается к норме.
    Нарушения механизмов, лежащих в основе гомеостатических процессов, рассматриваются как «болезни гомеостаза». С некоторой условностью к ним можно отнести функциональные нарушения нормальной деятельности организма, связанные с вынужденной перестройкой биологических ритмов и т. д. Познание закономерностей гомеостаза человека имеет большое значение для выбора эффективных и рациональных методов лечения многих заболеваний.
    У растений основное значение для поддержания гомеостаза на клеточном уровне имеют плазмалемма и тонопласт. Первая регулирует приток в клетку питательных ионов и воды из внешней среды и выделение баластных и избыточных ионов H+, Na+, Ca2+, второй — поступление в протоплазму запасных субстратов из вакуолей при их недостатке и удаление в вакуоль — при избытке. Стабилизация осмотического потенциала клеток осуществляется главным образом за счёт поддержания определенной внутриклеточной концентрации К+ и анионов. На тканевом уровне в поддержании гомеостаза участвуют плазмодесмы, которые регулируют межклеточные потоки углеводов и других субстратов.
    Гомеостаз генетический, или популяционный, способность популяции поддерживать относительную стабильность и целостность генотипической структуры в изменяющихся условиях среды. Достигается посредством сохранения генетического равновесия частоты аллелей при свободном скрещивании особей в популяциях путём поддержания гетерозиготности и полиморфизма, определенного темпа и направления мутационного процесса. Изучение гомеостаза — актуальная задача при исследовании закономерностей микроэволюции. Гомеостаз развития — способность данного генотипа создавать определенный фенотип в широком диапазоне условий.
    Понятие «Гомеостаз» широко используется в экологии при характеристике состояния экосистем и их устойчивости. Благодаря гомеостазу поддерживается постоянство видового состава и численности особей в биоценозах.

  9. Voodoobar Ответить

    Гомеостаз
    (греч. homоios – подобный, statis – стояние, неподвижность) – 1. регуляторные процессы, поддерживающие оптимальное для функционирования живого существа постоянство внутренней среды организма (термин и изучение упомянутых процессов тесно связаны с именем U. Cannon, 1929, а ещё ранее об этом писал К.Bernar, 1878); 2. относительная и динамическая стабильность внутренней среды организма и психической активности (кислотно-щелочного соотношения, баланса ионов калия и натрия, кальция и магния; температуры, артериального давления, психической активности и стабильности настроения, процессов самоосознавания и др.), что необходимо для нормального функционирования и успешной адаптации к изменчивым условиям среды обитания организма. Действие механизмов осуществления гомеостаза контролируется, повидимому, генетическими факторами. Синоним: Постоянство внутренней среды организма.
    * * *
    Способность организма поддерживать относительное постоянство внутренней среды, уравновешивать функционально значимые для него переменные показатели в пределах, обеспечивающих оптимальную жизнедеятельность. Регуляторные механизмы, определяющие состояние гомеостаза, обозначаются как гомеостатические. Понятие о гомеостазе и о роли в его поддержании вегетативной нервной системы ввел американский физиолог Кеннон (W. Cannon, 1871–1945).
    * * *
    (от греч.
    homoios – подобный, statis – состояние) подвижное равновесное состояние какой-либо системы, сохраняемое путем ее противодействия внешним и внутренним факторам. Принцип Г. сложилось первоначально в физиологии с целью объяснить постоянство внутренней среды организма (крови, лимфы) и устойчивости его основных физиологических функций, что достигается благодаря механизмам саморегуляции. Идея разработана американским физиологом У. Кенноном. Получая сигналы об изменениях, угрожающих системе, организм включает устройства, продолжающие работать до тех пор, пока не удастся возвратить ее в равновесное состояние, к прежним значениям параметров. Принцип Г. перешел из физиологии в психологию. Он объясняет явление саморегуляции не раскрывая источника изменения психики и ее активности.
    * * *
    (от греч. homoios – подобный stasis – состояние, неподвижность) – тип динамического равновесия, характерный для сложных саморегулирующихся систем и состоящий в поддержании существенных для системы параметров в допустимых пределах. Термин «Г.» предложен американским физиологом У. Кенноном в 1929 г. для описания состояния организма человека, животных и растений. Затем это понятие получило распространение в кибернетике, психологии, социологии и т. д. Исследование гомеостатических процессов предполагает выделение: 1) параметров, значительные изменения которых нарушают нормальное функционирование системы; 2) границ допустимого изменения этих параметров под воздействием условий внешней и внутренней среды; 3) совокупности конкретных механизмов, начинающих функционировать при выходе значений переменных за эти границы (Б. Г. Юдин, 2001). Каждая конфликтная реакция любой из сторон при возникновении и развитии конфликта есть не что иное, как стремление сохранить свой Г. Параметром, изменение которого запускает механизм конфликта, является ущерб, прогнозируемый как следствие действий оппонента. Динамика конфликта и темпы его эскалации регулируются за счет обратной связи: реакции одной стороны конфликта на действия др. стороны. Россия последние 20 лет развивается как система с утраченными, блокированными или крайне ослабленными обратными связями. Поэтому поведение государства и общества в конфликтах данного периода, разрушивших Г. страны, является иррациональным. Применение теории Г. к анализу и регулированию социальных конфликтов может заметно повысить результативность работы отечественных конфликтологов.
    * * *
    (от греч. homoios — подобный и stasis — неподвижность) — относительно динамическое постоянство состава и свойств внутренней среды живого организма, обеспечиваемое сложной системой адаптационных механизмов, направленных на устранение или ограничение воздействия на организм факторов внешней и внутренней среды. Благодаря Г. поддерживается, напр., постоянство температуры тела, состава крови, артериального давления и т. п. Это происходит благодаря сложным координационным и регуляторным взаимоотношениям, осуществляемым как на уров. не целостного организма, так и на органном, клеточном и молекулярном уровнях. В механизме Г. отчетливо проявляется свойство адаптации организмам изменениям условий внешней среды, в которой он существует. Можно говорить также о нервно-психическом Г., обеспечивающем сохранение и поддержание оптимальных условий для функционирования мозга, нервной системы в целом в процессе реализации различных форм деятельности. Идеи Г. первоначально зародились в физиологии, где они объяснялись следующим образом. Получая сигналы об изменениях, угрожающих системе, организм включает устройства, продолжающие работать до тех пор, пока не удается возвратить ее в равновесное состояние. Позже принцип Г. перешел из физиологии в кибернетику и другие науки, в т. ч. психологию, приобретя более общее значение принципа системного подхода и саморегуляции на основе обратных связей.

  10. provesor Ответить

    Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Именно эта способность живых систем сохранять стационарное состояние в условиях непрерывно меняющейся среды и обусловливает их выживание. Для обеспечения стационарного состояния у всех организмов – от морфологически самых простых до наиболее сложных – выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды.
    Впервые мысль о том, что постоянство внутренней среды обеспечивает оптимальные условия для жизни и размножения организмов, была высказана в 1857 г. французским физиологом Клодом Бернаром. На протяжении всей его научной деятельности Клода Бернара поражала способность организмов регулировать и поддерживать в достаточно узких границах такие физиологические параметры, как температура тела или содержание в нем воды. Это представление о саморегуляции как основе физиологической стабильности он резюмировал в виде ставшего классическим утверждения: “Постоянство внутренней среды является обязательным условием свободной жизни”.
    Клод Бернар подчеркивал различие между внешней средой, в которой живут организмы, и внутренней средой, в которой находятся их отдельные клетки, и понимал, как важно, чтобы внутренняя среда оставалась неизменной. Так, например, млекопитающие способны поддерживать температуру тела, несмотря на колебания окружающей температуры. Если становится слишком холодно, животное может переместиться в более теплое или более защищенное место, а если это невозможно, вступают в действие механизмы саморегуляции, которые повышают температуру тела и препятствуют теплоотдаче. Адаптивное значение этого заключается в том, что организм как целое функционирует более эффективно, так как клетки, из которых он состоит, находятся в оптимальных условиях. Системы саморегуляции действуют не только на уровне организма, но и на уровне клеток. Организм является суммой составляющих его клеток, и оптимальное функционирование организма как целого зависит от оптимального функционирования образующих его частей. Любая самоорганизующаяся система поддерживает постоянство своего состава – качественного и количественного. Это явление называется гомеостаз, и оно свойственно большинству биологических и социальных систем. Термин гомеостаз в 1932 г. ввел американский физиолог Уолтер Кэннон.
    Гомеостаз(греч. homoios – подобный, тот же самый; stasis-состояние, неподвижность) – относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т.д.) организма человека и животных. Регуляторные механизмы, поддерживающие физиологическое состояние или свойства клеток, органов и систем целостного организма на оптимальном уровне, называются гомеостатическими. Исторически и генетически понятие гомеостаза имеет биологические и медико-биологические предпосылки. Там оно соотносится как конечный процесс, период жизни с отдельным обособленно взятым организмом или человеческим индивидуумом как чисто биологическим явлением. Конечность существования и необходимость выполнения своего предназначения – репродукции себе подобного – позволяют определить стратегию выживания отдельного организма через понятие “сохранение”. “Сохранение структурно-функциональной стабильности” – суть любого гомеостаза, управляемого гомеостатом или саморегулируемого.
    Как известно, живая клетка представляет подвижную, саморегулирующую систему. Ее внутренняя организация поддерживается активными процессами, направленными на ограничение, предупреждение или устранение сдвигов, вызываемых различными воздействиями из окружающей и внутренней среды. Способность возвращаться к исходному состоянию после отклонения от некоторого среднего уровня, вызванного тем или иным “возмущающим” фактором, является основным свойством клетки. Многоклеточный организм представляет собой целостную организацию, клеточные элементы которой специализированы для выполнения различных функций. Взаимодействие внутри организма осуществляется сложными регулирующими, координирующими и коррелирующими механизмами с участием нервных, гуморальных, обменных и других факторов. Множество отдельных механизмов, регулирующих внутри- и межклеточные взаимоотношения, оказывает в ряде случаев взаимно противоположные воздействия, уравновешивающие друг друга. Это приводит к установлению в организме подвижного физиологического фона (физиологического баланса) и позволяет живой системе поддерживать относительное динамическое постоянство, несмотря на изменения в окружающей среде и сдвиги, возникающие в процессе жизнедеятельности организма.
    Как показывают исследования, существующие у живых организмов способы регуляции имеют много общих черт с регулирующими устройствами в неживых системах, таких как машины. И в том и в другом случае стабильность достигается благодаря определенной форме управления.
    Само представление о гомеостазе не соответствует концепции устойчивого (не колеблющегося) равновесия в организме – принцип равновесия не приложим к сложным физиологическим и биохимическим процессам, протекающим в живых системах. Неправильно также противопоставление гомеостаза ритмическим колебаниям во внутренней среде. Гомеостаз в широком понимании охватывает вопросы циклического и фазового течения реакций, компенсации, регулирования и саморегулирования физиологических функций, динамику взаимозависимости нервных, гуморальных и других компонентов регуляторного процесса. Границы гомеостаза могут быть жесткими и пластичными, меняться в зависимости от индивидуальных возрастных, половых, социальных, профессиональных и иных условий.
    Особое значение для жизнедеятельности организма имеет постоянство состава крови – жидкой основы организма (fluid matrix), по выражению У. Кеннона. Хорошо известна устойчивость ее активной реакции (pH), осмотического давления, соотношения электролитов (натрия, кальция, хлора, магния, фосфора), содержания глюкозы, числа форменных элементов и т. д. Так, например, pH крови, как правило, не выходит за пределы 7,35-7,47. Даже резкие расстройства кислотно-щелочного обмена с патологическим накоплением кислот в тканевой жидкости, например при диабетическом ацидозе, очень мало влияют на активную реакцию крови. Несмотря на то, что осмотическое давление крови и тканевой жидкости подвергается непрерывным колебаниям вследствие постоянного поступления осмотически активных продуктов межуточного обмена, оно сохраняется на определенном уровне и изменяется только при некоторых выраженных патологических состояниях. Сохранение постоянного осмотического давления имеет первостепенное значение для водного обмена и поддержания ионного равновесия в организме. Наибольшим постоянством отличается концентрация ионов натрия во внутренней среде. Содержание других электролитов колеблется также в узких границах. Наличие большого количества осморецепторов в тканях и органах, в том числе в центральных нервных образованиях (гипоталамусе, гиппокампе), и координированной системы регуляторов водного обмена и ионного состава позволяет организму быстро устранить сдвиги в осмотическом давлении крови, происходящие, например, при введении воды в организм.
    Несмотря на то, что кровь представляет общую внутреннюю среду организма, клетки органов и тканей непосредственно не соприкасаются с ней. В многоклеточных организмах каждый орган имеет свою собственную внутреннюю среду (микросреду), отвечающую его структурным и функциональным особенностям, и нормальное состояние органов зависит от химического состава, физико-химических, биологических и других свойств этой микросреды. Ее гомеостаз обусловлен функциональным состоянием гистогематических барьеров и их проницаемостью в направлениях кровь – тканевая жидкость; тканевая жидкость – кровь.
    Особо важное значение имеет постоянство внутренней среды для деятельности центральной нервной системы: даже незначительные химические и физико-химические сдвиги, возникающие в цереброспинальной жидкости, глии и околоклеточных пространствах, могут вызвать резкое нарушение течения жизненных процессов в отдельных нейронах или в их ансамблях. Сложной гомеостатической системой, включающей различные нейрогуморальные, биохимические, гемодинамические и другие механизмы регуляции, является система обеспечения оптимального уровня артериального давления. При этом верхний предел уровня артериального давления определяется функциональными возможностями барорецепторов сосудистой системы тела, а нижний предел – потребностями организма в кровоснабжении.
    К наиболее совершенным гомеостатическим механизмам в организме высших животных и человека относятся процессы терморегуляции; у гомойотермных животных колебания температуры во внутренних отделах тела при самых резких изменениях температуры в окружающей среде не превышают десятых долей градуса.
    Организующая роль нервного аппарата (принцип нервизма) лежит в основе широко известных представлений о сущности принципов гомеостаза. Однако ни принцип доминанты, ни теория барьерных функций, ни общий адаптационный синдром, ни теория функциональных систем, ни гипоталамическое регулирование гомеостаза и многие другие теории не позволяют полностью решить проблему гомеостаза.
    В некоторых случаях представление о гомеостазе не совсем правомерно используется для объяснения изолированных физиологических состояний, процессов и даже социальных явлений. Так возникли встречающиеся в литературе термины “иммунологический”, “электролитный”, “системный”, “молекулярный”, “физико-химический”, “генетический гомеостаз” и т.п. Предпринимались попытки свести проблему гомеостаза к принципу саморегулирования. Примером решения проблемы гомеостаза с позиций кибернетики является попытка Эшби (W.R. Ashby, 1948) сконструировать саморегулирующее устройство, моделирующее способность живых организмов поддерживать уровень некоторых величин в физиологически допустимых границах.
    Перед исследователями и клиницистами на практике встают вопросы оценки приспособительных (адаптационных) или компенсаторных возможностей организма, их регулирования, усиления и мобилизации, прогнозирования ответных реакций организма на возмущающие воздействия. Некоторые состояния вегетативной неустойчивости, обусловленные недостаточностью, избытком или неадекватностью регуляторных механизмов, рассматриваются как “болезни гомеостаза”. С известной условностью к ним могут быть отнесены функциональные нарушения нормальной деятельности организма, связанные с его старением, вынужденная перестройка биологических ритмов, некоторые явления вегетативной дистонии гипер – и гипокомпенсаторная реактивность при стрессовых и экстремальных воздействиях и т.д.
    Для оценки состояния гомеостатических механизмов в физиологическом эксперименте и в клинической практике применяются разнообразные дозированные функциональные пробы (холодовая, тепловая, адреналиновая, инсулиновая, мезатоновая и др.) с определением в крови и моче соотношения биологически активных веществ (гормонов, медиаторов, метаболитов) и т.д.
    Биофизические механизмы гомеостаза.
    С точки зрения химической биофизики гомеостаз – это состояние, при котором все процессы, ответственные за энергетические превращения в организме, находятся в динамическом равновесии. Это состояние обладает наибольшей устойчивостью и соответствует физиологическому оптимуму. В соответствии с представлениями термодинамики организм и клетка могут существовать и приспосабливаться к таким условиям среды, при которых в биологической системе возможно установление стационарного течения физико-химических процессов, т.е. гомеостаза. Основная роль в установлении гомеостаза принадлежит в первую очередь клеточным мембранным системам, которые ответственны за биоэнергетические процессы и регулируют скорость поступления и выделения веществ клетками.
    С этих позиций основными причинами нарушения являются необычные для нормальной жизнедеятельности неферментативные реакции, протекающие в мембранах; в большинстве случаев это цепные реакции окисления с участием свободных радикалов, возникающие в фосфолипидах клеток. Эти реакции ведут к повреждению структурных элементов клеток и нарушению функции регулирования. К факторам, являющимся причиной нарушения гомеостаза, относятся также агенты, вызывающие радикалообразование, – ионизирующие излучения, инфекционные токсины, некоторые продукты питания, никотин, а также недостаток витаминов и т.д.
    Одним из основных факторов, стабилизирующих гомеостатическое состояние и функции мембран, являются биоантиокислители, которые сдерживают развитие окислительных радикальных реакций.
    Возрастные особенности гомеостаза у детей.
    Постоянство внутренней среды организма и относительная устойчивость физико-химических показателей в детском возрасте обеспечиваются при выраженном преобладании анаболических процессов обмена над катаболическими. Это является непременным условием роста и отличает детский организм от организма взрослых, у которых интенсивность метаболических процессов находится в состоянии динамического равновесия. В связи с этим нейроэндокринная регуляция гомеостаза детского организма оказывается более напряженной, чем у взрослых. Каждый возрастной период характеризуется специфическими особенностями механизмов гомеостаза и их регуляции. Поэтому у детей значительно чаще, чем у взрослых, встречаются тяжелые нарушения гомеостаза, нередко угрожающие жизни. Эти нарушения чаще всего связаны с незрелостью гомеостатических функций почек, с расстройствами функций желудочно-кишечного тракта или дыхательной функции легких.
    Рост ребенка, выражающийся в увеличении массы его клеток, сопровождается отчетливыми изменениями распределения жидкости в организме. Абсолютное увеличение объема внеклеточной жидкости отстает от темпов общего нарастания веса, поэтому относительный объем внутренней среды, выраженный в процентах от веса тела, с возрастом уменьшается. Эта зависимость особенно ярко выражена на первом году после рождения. У детей более старших возрастов темпы изменений относительного объема внеклеточной жидкости уменьшаются. Система регуляции постоянства объема жидкости (волюморегуляция) обеспечивает компенсацию отклонений в водном балансе в достаточно узких пределах. Высокая степень гидратации тканей у новорожденных и детей раннего возраста определяет значительно более высокую, чем у взрослых, потребность ребенка в воде (в расчете на единицу массы тела). Потери воды или ее ограничение быстро ведут к развитию дегидратации за счет внеклеточного сектора, т. е. внутренней среды. При этом почки – главные исполнительные органы в системе волюморегуляции – не обеспечивают экономии воды. Лимитирующим фактором регуляции является незрелость канальцевой системы почек. Важнейшая особенность нейроэндокринного контроля гомеостаза у новорожденных и детей раннего возраста заключается в относительно высокой секреции и почечной экскреции альдостерона, что оказывает прямое влияние на состояние гидратации тканей и функцию почечных канальцев.
    Регуляция осмотического давления плазмы крови и внеклеточной жидкости у детей также ограничена. Осмолярность внутренней среды колеблется в более широком диапазоне (± 50 мосм/л), чем у взрослых
    (± 6 мосм/л). Это связано с большей величиной поверхности тела на 1 кгвеса и, следовательно, с более существенными потерями воды при дыхании, а также с незрелостью почечных механизмов концентрации мочи у детей. Нарушения гомеостаза, проявляющиеся гиперосмосом, особенно часто встречаются у детей периода новорожденности и первых месяцев жизни; в более старших возрастах начинает преобладать гипоосмос, связанный главным образом с желудочно-кишечными заболеванием или болезнями почек. Менее изучена ионная регуляция гомеостаза, тесно связанная с деятельностью почек и характером питания.
    Ранее считалось, что основным фактором, определяющим величину осмотического давления внеклеточной жидкости, является концентрация натрия, однако более поздние исследования показали, что тесной корреляции между содержанием натрия в плазме крови и величиной общего осмотического давления при патологии не существует. Исключение составляет плазматическая гипертония. Следовательно, проведение гомеостатической терапии путем введения глюкозосолевых растворов требует контроля не только за содержанием натрия в сыворотке или плазме крови, но и за изменениями общей осмолярности внеклеточной жидкости. Большое значение в поддержании общего осмотического давления во внутренней среде имеет концентрация сахара и мочевины. Содержание этих осмотически активных веществ и их влияние на водно-солевой обмен при многих патологических состояниях могут резко возрастать. Поэтому при любых нарушениях гомеостаза необходимо определять концентрацию сахара и мочевины. В силу вышесказанного у детей раннего возраста при нарушении водно-солевого и белкового режимов может развиваться состояние скрытого гипер – или гипоосмоса, гиперазотемии.
    Важным показателем, характеризующим гомеостаз у детей, является концентрация водородных ионов в крови и внеклеточной жидкости. В антенатальном и раннем постнатальном периодах регуляция кислотно-щелочного равновесия тесно связана со степенью насыщения крови кислородом, что объясняется относительным преобладанием анаэробного гликолиза в биоэнергетических процессах. При этом даже умеренная гипоксия у плода сопровождается накоплением в его тканях молочной кислоты. Кроме того, незрелость ацидогенетической функции почек создает предпосылки для развития “физиологического” ацидоза (сдвиг кислотно-щелочного равновесия в организме в сторону относительного увеличения количества анионов кислот.). В связи с особенностями гомеостаза у новорожденных нередко возникают расстройства, стоящие на грани между физиологическими и патологическими.
    Перестройка нейроэндокринной системы в пубертатном периоде (периоде полового созревания) также сопряжена с изменениями гомеостаза. Однако функции исполнительных органов (почки, легкие) достигают в этом возрасте максимальной степени зрелости, поэтому тяжелые синдромы или болезни гомеостаза встречаются редко, чаще же речь идет о компенсированных сдвигах в обмене веществ, которые можно выявить лишь при биохимическом исследовании крови. В клинике для характеристики гомеостаза у детей необходимо исследовать следующие показатели: гематокрит, общее осмотическое давление, содержание натрия, калия, сахара, бикарбонатов и мочевины в крови, а также рН крови, р02и рСО2.
    Особенности гомеостаза в пожилом и старческом возрасте.
    Один и тот же уровень гомеостатических величин в различные возрастные периоды поддерживается за счет различных сдвигов в системах их регулирования. Например, постоянство уровня артериального давления в молодом возрасте поддерживается за счет более высокого минутного сердечного выброса и низкого общего периферического сопротивления сосудов, а в пожилом и старческом — за счет более высокого общего периферического сопротивления и уменьшения величины минутного сердечного выброса. При старении организма постоянство важнейших физиологических функций поддерживается в условиях уменьшения надежности и сокращения возможного диапазона физиологических изменений гомеостаза. Сохранение относительного гомеостаза при существенных структурных, обменных и функциональных изменениях достигается тем, что одновременно происходит не только угасание, нарушение и деградация, но и развитие специфических приспособительных механизмов. За счет этого поддерживается неизменный уровень содержания сахара в крови, рН крови, осмотического давления, мембранного потенциала клеток и т.д.
    Существенное значение в сохранении гомеостаза в процессе старения организма имеют изменения механизмов нейрогуморальной регуляции, увеличение чувствительности тканей к действию гормонов и медиаторов на фоне ослабления нервных влияний.
    При старении организма существенно изменяется работа сердца, легочная вентиляция, газообмен, почечные функции, секреция пищеварительных желез, функция желез внутренней секреции, обмен веществ и др. Изменения эти могут быть охарактеризованы как гомеорезис — закономерная траектория (динамика) изменения интенсивности обмена и физиологических функций с возрастом во времени. Значение хода возрастных изменений очень важно для характеристики процесса старения человека, определения его биологического возраста.
    В пожилом и старческом возрасте снижаются общие потенциальные возможности приспособительных механизмов. Поэтому в старости при повышенных нагрузках, стрессах и других ситуациях вероятность срыва адаптационных механизмов и нарушения гомеостаза увеличиваются. Такое уменьшение надежности механизмов гомеостаза является одной из важнейших предпосылок развития патологических нарушений в старости.
    Таким образом, гомеостаз – это интегральное понятие, функционально и морфологически объединяющее сердечно-сосудистую систему, систему дыхания, почечную систему, водно-электролитный обмен, кислотно-щелочное равновесие.
    Основное назначениесердечно-сосудистой системы– подача и распределение крови по всем бассейнам микроциркуляции. Количество крови, выбрасываемое сердцем в 1 мин., составляет минутный объем. Однако функция сердечно-сосудистой системы заключается не просто в поддержании заданного минутного объема и его распределении по бассейнам, а в изменениях минутного объема в соответствии с динамикой потребностей тканей при разных ситуациях.
    Главная задача крови – транспорт кислорода. Многие хирургические больные испытывают острое падение минутного объема, что нарушает доставку кислорода к тканям и может быть причиной гибели клеток, органа и даже всего организма. Поэтому оценка функции сердечно-сосудистой системы должна учитывать на только минутный объем, но и снабжение тканей кислородом и их потребность в нем.
    Основное назначениесистемы дыхания– обеспечение адекватного газообмена между организмом и окружающей средой при постоянно меняющейся скорости обменных процессов. Нормальная функция системы дыхания – это поддержание постоянного уровня кислорода и углекислоты в артериальной крови при нормальном сосудистом сопротивлении в малом круге кровообращения и при обычной затрате энергии на дыхательную работу.
    Данная система теснейшим образом связана с другими системами, и в первую очередь с сердечно-сосудистой. Функция системы дыхания включает в себя вентиляцию, легочное кровообращение, диффузию газов через альвеолярно-капиллярную мембрану, транспорт газов кровью и тканевое дыхание.
    Функции почечной системы: почки являются основным органом, предназначенным для сохранения постоянства физико-химических условий в организме. Главная из их функций экскреторная. Она включает: регуляцию водно-электролитного баланса, поддержания кислотно-щелочного равновесия и удаление из организма продуктов обмена белков и жиров.
    Функции водно-электролитного обмена:вода в организме играет транспортную роль, заполняя собой клетки, интерстициальные (промежуточные) и сосудистые пространства, является растворителем солей, коллоидов и кристаллоидов и принимает участие в биохимических реакциях. Все биохимические жидкости представляют собой электролиты, так как растворенные в воде соли и коллоиды находятся в диссоциированном состоянии. Перечислить все функции электролитов невозможно, но главными из них являются: сохранения осмотического давления, поддержание реакции внутренней среды, участие в биохимических реакциях.
    Главное назначение кислотно-щелочного равновесиязаключается в сохранении постоянства pH жидких сред организма как основы для нормальных биохимических реакций и, следовательно, жизнедеятельности. Метаболизм происходит при непременном участии ферментативных систем, активность которых тесно зависит от химической реакции электролита. Вместе с водно-электролитным обменом кислотно-щелочное равновесие играет решающую роль в упорядочении биохимических реакций. В регуляции кислотно-щелочного равновесия принимают участие буферные системы и многие физиологические системы организма.
    Литература:
    Большая медицинская энциклопедия (том 6);
    Б.А. Константинов “Физиологические и клинические основы хирургической кардиологии”;
    Н. Грин, У. Стаут, Д. Тейлор “Биология” (том 3).
    Назад
    Вперёд

  11. Daisho Ответить

    я1.
    ОПРЕДЕЛЕНИЕ
    ФИЗИОЛОГИИ КАК НАУКИ. МЕТОДЫ ФИЗИОЛОГИИ.

    Физиология – наука
    о жизнедеятельности целостного организма
    и его отдельных частей: клеток, тканей,
    органов, анатомофизических систем.
    Физиология изучает:
    механизмы
    функционирования целостного организма;
    связь органов и
    систем между собой;
    механизмы
    приспособления к окружающей среде.
    Организм представляет
    собой целостную саморегулирующуюся
    систему.
    Методы физиологии
    в основном экспериментальные. Ставят
    эксперименты на животных. На людях также
    проводят различные наблюдения, например
    электрокардиографические (ЭКГ).
    2. Понятие гомеостаза. Основные принципы гомеостаза.
    На заре эволюции
    жизнь зародилась в водной среде. С
    появлением многоклеточных организмов
    клетки утратили связь с внешней средой.
    Они окружены системой крово- и
    лимфообращения, по которым питательные
    вещества поступают из внешней среды, а
    также удаляются продукты жизнедеятельности.
    У многоклеточных
    организмов возникла возможность
    поддерживать постоянство состава
    внутренней среды. Благодаря этому
    организм сохраняет различные характеристики
    своей среды (температуру, рН среды…).
    Клодом Бернаром
    (франз. исслед.) был введен термин
    «гомеостаз» – постоянство внутренней
    среды организма. Принципы гомеостаза:
    1. В основе гомеостаза
    лежит способность к саморегуляции
    функции, т.е. отклонение любого параметра
    гомеостаза является стимулом возвращения
    его к норме.
    Действие t-го
    фактора организма (озноб)
    2. Для сохранения
    гомеостаза в организме сущ-ет дублирование
    приспособительных механизмов.
    3. Сигнальность об
    отклонении.
    В случае изменения
    параметров внутренней среды специальные
    клетки (рецепторы) улавливают это
    изменение. Импульсы передаются в
    центральную нервную систему, оттуда
    сигналы идут к органам-наполнителям и
    включаются механизмы направленные на
    сохранение параметров в заданных
    границах.
    Гомеостаз человека
    отличается от гомеостаза животных.
    Помимо физиологических механизмов
    человек использует социальные
    приспособления (одежда, обувь) для
    сохранения гомеостаза.

    3. Уровни структурной и функциональной организации в организме. Понятие о клетке, внутриклеточных структурах.

    Клеточный
    Клетка – это
    структурная и функциональная единица
    живых организмов. Впервые усовершенствовал
    микроскоп Роберт Гук в сер. 18 века.
    Установил, что растения построены из
    ячеек, он назвал их клетками. В 1839 г.
    Шванн обобщил накопленный материал и
    создал клеточную теорию строения живых
    организмов.
    Наука, изучающая
    строение и функцию клеток, называется
    цитология.
    Клетка состоит из
    цитоплазмы и ядра.
    В цитоплазме
    различают: клеточную оболочку (мембрана);
    органеллы; включения; гиалоплазму
    В ядре
    различают: ядерную оболочку; ядрышко;
    хроматиновые структуры; ядерный сок
    Ядро.
    Есть ядерная
    оболочка. Она образована двумя мембранами,
    отделенными друг от друга перпендикулярным
    пространством. Хроматин – это вещество,
    в котором присутствует ДНК. В составе
    ядра есть ядрышко (1-2). Происходит синтез
    РНК, синтез
    рибосом в клетке.
    Значение ядра:
    Особую роль играют
    хромосомы ядра. В них содержится
    генетический код каждой клетки. Благодаря
    этому обеспечивается точное воспроизведение
    признаков и свойств данной клетки.
    Кроме этого, ядро
    участвует:
    в процессах
    формирования клетки;
    в процессах синтеза
    белка
    в образовании
    рибосом и РНК
    в регуляции
    окислительных процессов.

    3. Цитоплазма

    Цитоплазматическая
    мембрана отделяет содержимое клетки
    от окр. среды. Она же регулирует поступление
    веществ в клетку и удаление продуктов
    жизнедеятельности из нее. Проникновение
    веществ туда и обратно может происходить
    по законам диффузии, а может и путем
    активного транспорта против градиента
    концентрации с затратой энергии (2
    процесса: фагоцитоз и пиноцитоз).
    Фагоцитоз –
    поглощение клеткой твердых частиц.
    Пиноцитоз – жидкостей.
    Органеллы.
    Эндоплазматическая
    сеть – это система внутриклеточных
    канальцев, вакуолей, цистерн. Эта система
    контактирует с мембраной клетки, а
    также с ядерной оболочкой. Эта сеть
    предназначена для транспорта веществ
    внутри клетки.
    Эндоплазматический
    ретикулум.
    Рибосомы.
    Плотные сферические
    гранулы, диаметр 0,015-0,02 микрометров.
    Рибосомы – это
    место синтеза белка в клетке. Часть их
    располагается свободно, а часть
    расположена на эндоплазматической
    сети.
    Митохондрии.
    Небольшие гранулы
    длиной 0,5-7 мкм. имеют наружную мембрану
    и внутреннюю, которая имеет складчатое
    строение. Ее складки называют
    митохондриальными кристаллами.
    Митохондрии называют энергетическими
    станциями в клетке. В них происходят
    окислительные процессы, которые идут
    до образования конечных продуктов:
    углекислого газа и воды. При этом
    выделяющаяся энергия аккумулируется
    в виде АТФ. В митохондриях образуется
    75% всей энергии клетки.
    Внутриклеточный
    пластинчатый комплекс.
    Расположен возле
    ядра, участвует в образовании секретов,
    выделяемых клетками, т.е. в удалении
    продуктов обмена веществ из клетки.
    Лизосомы.
    Величина 0,2-0.8 мкм.
    Содержит в большом количестве
    гидролитические ферменты (способны
    расщеплять белки, жиры, углеводы). При
    разрушении большого количества лизосом
    в клетке, клетка самопереваривается
    (уничтожение клетки). Генетически
    запрограммированная ветвь.
    Центрисомы.
    Располагаются
    около ядра. Принимают активное участие
    в делении клетки. Связаны с двигательной
    активностью клетки.
    Включения
    – это обособленные скопления различных
    веществ в цитоплазме, они непостоянны.
    К ним относят: жировые камни, пигментные
    отложения и т. д.
    Гиалоплазма
    – это свободное от органелл вещество
    цитоплазмы. Она гомогенна и лишена
    структуры.

  12. IceOne Ответить

    Смотреть что такое “гомеостаз” в других словарях:

    гомеостаз — гомеостаз … Орфографический словарь-справочник
    ГОМЕОСТАЗ —         гомеостазис (от греч. подобный, одинаковый и состояние), свойство организма поддерживать свои параметры и физиоло гич. функции в определ. диапазоне, основанное на устойчивости внутр. среды организма по отношению к возмущающим воздействиям … Философская энциклопедия
    ГОМЕОСТАЗ — (от греч. homoios тот же самый, похожий и греч. stasis неподвижность, стояние), гомеостазис, способность организма или системы организмов поддерживать устойчивое (динамическое) равновесие в изменяющихся условиях среды. Гомеостаз в популяции… … Экологический словарь
    ГОМЕОСТАЗ — гомеостазис (от гомео… и греч. stasis неподвижность, состояние), способность биол. систем противостоять изменениям и сохранять динамич. относит, постоянство состава и свойств. Термин «Г.» предложил У. Кен нон в 1929 для характеристики состояний … Биологический энциклопедический словарь
    ГОМЕОСТАЗ — (от гомео… и греч. stasis неподвижность состояние), относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма. Понятие гомеостаз применяют и к биоценозам (сохранение… … Большой Энциклопедический словарь
    Гомеостаз — (от греч. homoios подобный и stasis неподвижность) процесс, за счет которого достигается относительное постоянство внутренней среды организма (постоянство температуры тела, кровяного давления, концентрации сахара в крови). В качестве отдельного… … Психологический словарь
    ГОМЕОСТАЗ — ГОМЕОСТАЗ(ИС) [< гр. homoios подобие + stasis стояние] биол. совокупность сложных приспособительных реакций животного и человека, направленных на сохранение постоянства внутренней среды организма (напр., постоянство температуры тела, кровяного… … Словарь иностранных слов русского языка гомеостаз — Состояние динамически подвижного равновесия экосистемы [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] гомеостаз гомеостазис Устойчивое состояние равновесия открытой системы в ее взаимодействии со средой. Это понятие пришло в экономику … Справочник технического переводчика
    ГОМЕОСТАЗ — ГОМЕОСТАЗ, в биологии процесс поддержания постоянных условий внутри клетки или организма независимо от внутренних или внешних изменений … Научно-технический энциклопедический словарь
    ГОМЕОСТАЗ — ГОМЕОСТАЗ, гомеостазис (греч. homois подобный, одинаковый и stasis неподвижный, состояние) свойство биологических систем сохранять относительную динамическую устойчивость параметров состава и функций. Основой данной способности выступает умение… … Новейший философский словарь

  13. VideoAnswer Ответить

Добавить комментарий для provesor Отменить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *