Что такое ядерные силы каковы их свойства?

25 ответов на вопрос “Что такое ядерные силы каковы их свойства?”

  1. Oghmajurus Ответить

    Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).
    Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10–15 м. Длина (1,5 – 2,2)·10–15 м называется радиусом действия ядерных сил.
    Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нейтронного. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов другом. Например, ядра гелия и тяжелого водорода – трития . Энергии связи этих ядер составляют 7,72 МэВ и 8,49 МэВ.
    Разность энергий связи ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре . Полагая эту величину равной , можно найти, что среднее расстояние r между протонами в ядре равно 1,9·10–15 м, что согласуется с величиной радиуса ядерных сил.
    Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел A. Практически полное насыщение ядерных сил достигается у ?-частицы, которая является очень устойчивым образованием.
    Ядерные силы зависят от ориентации спинов взаимодействующих нуклонов. Это подтверждается различным характером рассеяния нейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде. Ядерные силы не являются центральными.
    Итак, перечислим общие свойства ядерных сил:
    · малый радиус действия ядерных сил (R ~ 1 Фм);
    · большая величина ядерного потенциала U ~ 50 МэВ;
    · зависимость ядерных сил от спинов взаимодействующих частиц;
    · тензорный характер взаимодействия нуклонов;
    · ядерные силы зависят от взаимной ориентации спинового и орбитального моментов нуклона (спин-орбитальные силы);
    · ядерное взаимодействие обладает свойством насыщения;
    · зарядовая независимость ядерных сил;
    · обменный характер ядерного взаимодействия;
    · притяжение между нуклонами на больших расстояниях (r > 1 Фм), сменяется отталкиванием на малых (r < 0,5 Фм). взаимодействие между нуклонами возникает в результате испускания и поглощения квантов ядерного поля?-мезонов. Они определяют ядерное поле по аналогии с электромагнитным полем, которое возникает как следствие обмена фотонами. Взаимодействие между нуклонами, возникающее в результате обмена квантами массы m, приводит к появлению потенциала Uя(r):
    .
    Для просмотра демонстраций щелкните по соответствующей гиперссылке:
    Деление ядер. Радиоактивность.
    Атомная электростанция.

    Энергия связи ядер. Дефект массы
    Радиоактивность

  2. AMEPuKOC Ответить

    Избыточная энергия, которую получает ядро вследствие поглощения нейтрона, вызывает более интенсивное движение нуклонов. В результате ядро деформируется, что приводит к ослаблению короткодействующего ядерного взаимодействия. Если энергия возбуждения ядра больше некоторой энергии, называемой энергией активации, то под влиянием электростатического отталкивания протонов ядро расщепляется на две части, с испусканием нейтронов деления. Если энергия возбуждения при поглощении нейтрона меньше энергии активации, то ядро не доходит до
    критической стадии деления и, испустив -квант, возвращается в основное
    состояние.

    Рис. 7.4
    Рис. 7.2
    Важной особенностью ядерной реакции деления является возможность реализовать на ее основе самоподдерживающуюся цепную ядерную реакцию. Это обусловлено тем, что при каждом акте деления выделяется в среднем больше одного нейтрона. Масса, заряд и кинетическая энергия осколков Х и У, образующихся в процессе реакции деления типа (7.15), различны. Эти осколки быстро тормозятся средой, вызывая ионизацию, нагревание и нарушение ее структуры. Использование кинетической энергии осколков деления за счет нагревания ими среды является основой превращения ядерной энергии в тепловую. Осколки деления ядра находятся после реакции в возбужденном состоянии и переходят в основное состояние путем испускания ? – частиц и –квантов.
    Управляемая ядерная реакция осуществляется в ядерном реакторе и сопровождается выделением энергии. Первый ядерный реактор был построенв 1942 г в США (Чикаго) под руководством физика Э.Ферми (1901 – 1954). В СССР первый ядерный реактор создан в 1946 г под руководством И. В. Курчатова. Затем, после накопления опытов управления ядерными реакциями, начали строить атомные электростанции.
    Вопрос 27. Реакция синтеза. Ядерным синтезом называется реакция слиянияпротонов и нейтронов или отдельных легких ядер, в результате которой образуется более тяжелое ядро. Простейшими ядерными реакциями синтеза являются:
    , ?Q = 17,59 МэВ; (7.17)
    Расчеты показывают, что энергия, которая выделяется в процессе ядерных реакций синтеза в расчете на единицу массы, значительно превышает энергию, выделяющуюся в реакциях ядерного деления. В процессе реакции деления ядра урана–235 выделяется примерно 200 МэВ, т.е. 200:235=0,85 МэВ на нуклон, а в процессе реакции синтеза (7.17) выделяется энергия примерно 17,5 МэВ, т.е.3,5 МэВ на нуклон (17,5:5=3,5 МэВ). Таким образом, процесс синтеза примерно в 4 раза эффективнеепроцесса деления урана (в расчете на один нуклон ядра, участвующего вреакции деления).
    Большая скорость протекания этих реакций и относительно высокоеэнерговыделение делают равнокомпонентную смесь дейтерия и трития наиболее перспективной для решения проблемы управляемого термоядерного синтеза. С управляемым термоядерным синтезом связаны надежды человечества на решение своих энергетических проблем. Ситуация заключается в том, что запасы урана, как сырья для атомных электростанций, на Земле ограничены. А вот дейтерий, содержащийся в воде океанов, представляет собой практически неисчерпаемый источник дешевого ядерного горючего. Несколько сложнее обстоит ситуация с тритием. Тритий радиоактивен (его период полураспада составляет 12,5 лет, реакция распада имеет вид: ), не встречается в природе. Следовательно, для обеспечения работы термоядерного реактора, использующего в качестве ядерного горючего тритий, должна быть предусмотрена возможность его воспроизводства.
    С этой целью рабочая зона реактора должна быть окружена слоем легкого изотопа лития, в которой будет идти реакция
    (7.19)
    В результате этой реакции образуется изотоп водорода тритий () .
    В перспективе рассматривается возможность создания малорадиоактивного термоядерного реактора на смеси дейтерия и изотопа гелия , реакция синтеза имеет вид:
    МэВ. (7.20)
    В результате этой реакции из-за отсутствия нейтронов в продуктах синтеза биологическая опасность реактора может быть снижена на четыре-пять порядков величины как по сравнению с ядерными реакторами деления, так и с термоядерными реакторами, работающими на топливе из дейтерия и трития, отпадает необходимость промышленной обработки радиоактивных материалов и их транспортировки, качественно упрощается захоронение радиоактивных отходов. Впрочем, перспективы создания в будущем экологически чистого термоядерного реактора на смеси дейтерия () c изотопом гелия () осложняются проблемой сырья: естественные запасы изотопа гелия на Земле незначительны. Hлия ом дейтерия ия в будущем экологически чистого термоядерного
    На пути реализации реакций синтеза в земных условиях возникает проблема электростатического отталкивания легких ядер при их сближении до расстояний, на которых начинают действовать ядерные силы притяжения, т.е. порядка 10-15 м, после чего процесс их слияния происходит за счет туннельного эффекта. Для преодоления потенциального барьера сталкивающимся легким ядрам должна быть сообщена энергия ?10 кэВ, что соответствует температуре T ?108K и выше. Поэтому термоядерные реакции в природных условиях протекают лишь в недрах звезд. Для их осуществления в земных условиях необходим сильный разогрев вещества либо ядерным взрывом, либо мощным газовым разрядом, либо гигантским импульсом лазерного излучения или бомбардировкой интенсивным пучком частиц. Термоядерные реакции осуществлены пока только в испытательных взрывах термоядерных (водородных) бомб.
    Основные требования, которым должен удовлетворять термоядерный реактор, как устройство для осуществления управляемого термоядерного синтеза, заключаются в следующем.
    Во-первых, необходимо надежное удержание горячей плазмы (?108K) в зоне реакции. Основополагающая идея, определившая на долгие годы пути решения этой проблемы, была высказана в середине 20-го столетия в СССР, США и Великобритании практически одновременно. Эта идея состоит в использовании магнитных полей для удержания и термоизоляции высокотемпературной плазмы.
    Во-вторых, при работе на топливе, содержащем тритий (представляющем собой изотоп водорода с высокой радиоактивностью), будут возникать радиационные повреждения стенок камеры термоядерного реактора. По оценкам экспертов механическая стойкость первой стенки камеры вряд ли сможет превышать 5-6 лет. Это означает необходимость периодического полного демонтажа установки и последующей ее новой сборки с помощью дистанционно действующих роботов из-за исключительно высокой остаточной радиоактивности.
    В-третьих, основное требование, которому должен удовлетворять термоядерный синтез, заключается в том, чтобы энерговыделение в результате термоядерных реакций с избытком компенсировало затраты энергии от внешних источников на поддержание самой реакции. Большой интерес представляют собой «чистые» термоядерные реакции,
    не дающие нейтронов, (см. (7.20) и реакцию ниже:
    . (7.21)
    Вопрос 28. Радиоактивный распад ??, ??, ?? излучения.
    Под радиоактивностью понимают способность некоторых неустойчивых атомных ядер самопроизвольно превращаться в другие атомные ядра с испусканием радиоактивного излучения.
    Естественной радиоактивностьюназывается радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов.
    Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций, осуществляемыхна ускорителях и ядерных реакторах.
    Радиоактивные превращения протекают с изменением строения, состава и энергетического состояния ядер атомов, и сопровождаются испусканием или захватом заряженных или нейтральных частиц, и выделением коротковолнового излучения электромагнитной природы (кванты гамма-излучения). Эти испускаемые частицы и кванты носят общее название радиоактивных(или ионизирующих) излучений, а элементы, ядра которых могут по тем или иным (естественным или искусственным) причинам самопроизвольно распадаться, называются радиоактивными или же радионуклидами. Причинами радиоактивного распада являются нарушения равновесия между ядерными (короткодействующими) силами притяжения и электромагнитными (дальнодействующими) силами отталкивания положительно заряженных протонов.
    Ионизирующее излучение поток заряженных или нейтральных частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению атомов или молекул среды. По своей природе делится на фотонное (гамма-излучение, тормозное излучение, рентгеновское излучение) и корпускулярное (альфа-излучение, электронное, протонное, нейтронное, мезонное).
    Из 2500 нуклидов, известных в настоящее время, стабильны только 271. Остальные (90%!) нестабильны, т.е. радиоактивны; путем одного или нескольких последовательных распадов, сопровождающихся испусканием частиц или ?-квантов,они превращаются в стабильные нуклиды.
    Изучение состава радиоактивного излучения позволило разделить его на три различных компонента:?–излучение представляет собой поток положительно заряженных частиц ? ядер гелия (), ??излучение – поток электронов или позитронов,?-излучение –поток коротковолнового электромагнитного излучения.
    Обычно все типы радиоактивности сопровождаются испусканием гамма лучей – жесткого, коротковолнового электромагнитного излучения. Гамма-лучи являются основной формой уменьшения энергии возбужденных продуктов радиоактивных превращений. Ядро, испытывающее радиоактивный распад, называется материнским; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием кванта.
    Законы сохранения.При радиоактивном распаде сохраняются следующие параметры:
    1. Заряд. Электрический заряд не может создаваться или исчезать. Общий заряд до и после реакции должен сохраняться, хотя может по-разному распределяться среди различных ядер и частиц.
    2. Массовое число или число нуклонов после реакции должно быть равно числу нуклонов до реакции.
    3. Общая энергия. Кулоновская энергия и энергия эквивалентных масс должна сохраняться во всех реакциях и распадах.
    4.Импульс и угловой момент. Сохранение линейного импульса ответственно за распределение кулоновской энергии среди ядер, частиц и/или электромагнитного излучения. Угловой момент относится к спину частиц.
    ??распадом называют испускание атомным ядром ??частицы. При ??распаде, как и всегда, должен выполняться закон сохранения энергии. В то же время любым изменениям энергии системы соответствуют пропорциональные изменения ее массы. Поэтому при радиоактивном распаде масса материнского ядра должна превышать массу продуктов распада на величину, соответствующую кинетической энергии системы после распада (если до распада материнское ядро покоилось). Таким образом, в случае ?? распада должно выполняться условие
    , (8.2)
    где – масса материнского ядра с массовым числомА и порядковым номеромZ, – масса дочернего ядра и – масса ??частицы. Каждую из этих масс, в свою очередь, можно представить в виде суммы массового числа и дефекта массы:
    ,,.
    Подставив эти выражения для масс в неравенство (8.2), получим следующее условие для ??распада:, (8.3)
    т.е. разница в дефектах масс материнского и дочернего ядер должна быть больше дефекта массы ??частицы . Таким образом, при ??распаде массовые числа материнского и дочернего ядер должны отличаться друг от друга на четыре. Если же разность массовых чисел равна четырем, то при дефекты масс естественных изотопов всегда убывают с увеличением А. Таким образом, при неравенство (8.3) не выполняется, так как дефект массы более тяжелого ядра, которое должно бы быть материнским, меньше дефекта массы более легкого ядра. Поэтому при??распад ядер не происходит. Это же относится и к большинству искусственных изотопов. Исключением являются несколько легких искусственных изотопов, для которых скачки в энергии связи, а следовательно, и в дефектах масс по сравнению с соседними изотопами особенно велики (например, изотоп бериллия,распадающийся на две ??частицы).
    Энергия ??частиц, возникающих при распаде ядер, заключена в сравнительно узких пределахот 2до 11Мэв.При этом имеется тенденция к уменьшениюпериода полураспада с увеличением энергии ??частиц. Осо­бенно эта тенденция проявляется при последовательных радио­активных превращениях в пределах одного и того же радио­активного семейства (закон Гейгера—Нэттола). Например, энергия ??частиц при распаде урана(Т=7,1.108лет)составляет 4,58 Мэв,при распаде протактиния(Т=3,4.104лет)- 5,04 Мэви при распаде полония(Т=1,83.10-3с)- 7,36Мэв.
    Вообще говоря, ядра одного и того же изотопа могут испускать ??частицы с несколькими строго определенными значениямиэнергии (в предыдущем примере указана наи­большая энергия). Иначе говоря, ??частицы обладают дис­кретным энергетическим спектром. Объясняется это следую­щим образом. Получающееся при распаде дочернее ядро согласно законам квантовой механики может находиться в нескольких,различных состояниях, в каждом из которых оно обладает определенной энергией. Состояние с наименьшей возможной энергией является устойчивым и называется основ­ным. Остальные состояния называются возбужденными. В них ядро может находиться весьма малое время (10-8 – 10-12сек), а затемпереходит в состояние с меньшей энергией (не обязательно сразу в основное) с испусканием ?? кванта.
    В процессе ??распада различают две стадии: образование ??частицы из нуклонов ядра и испускание ??частицы ядром.
    Бета–распад (излучение).Понятие распад объединяет три вида самопроизвольных внутриядерных превращений: электронный ?распад, позитронный ? распад и электронный захват (Е – захват).
    Бета ? радиоактивных изотопов значительно больше, чем альфа- активных. Они имеются во всей области изменения массовых чисел ядер (от легких ядер до самых тяжелых).
    Бета-распад атомных ядер обусловлен слабым взаимодействиемэлементарных частиц и так же, как и -распад, подчиняется определенным закономерностям. При распаде один из нейтронов ядра превращается в протон, испуская при этом электрон и электронное антинейтрино. Этот процесс происходит по схеме: . (8.8)
    При ?распаде происходит превращение в нейтрон одного из протонов ядра с испусканием при этом позитрона и электронного нейтрино:
    . (8.9)
    Свободный, не входящий в состав ядра нейтрон, распа­дается самопроизвольно согласно реакции (8.8) с периодом полураспада около 12 мин.Это возможно потому, что масса нейтрона а.е.м. больше массы протона а.е.м. на величину а.е.м., которая превышает массу покоя электрона а.е.м. (масса покоя нейтрино равна нулю). Распад же свободного протона запрещен законом сохранения энергии, так как сумма масс покоя получающихся частиц – нейтрона ипозитрона – больше массы протона. Распад (8.9) протона, таким образом, возможен только в ядре, если масса дочернего ядра меньше массы материнского ядра на величину, превышающую массу покоя позитрона (массы покоя позитрона и электрона равны). С другой стороны аналогичное условие должно выполняться и в случае распада нейтрона, входящего в состав ядра.
    Кроме процесса, происходящего согласно реакции (8.9), превращение протона в нейтрон может происходить также путем захвата протоном электрона с одновременным испуска­нием при этом электронного нейтрино
    . (8.10)
    Так же, как и процесс (8.9), процесс (8.10) не происходит со свободным протоном. Однако если протон находится внутри ядра, то он может захватить один из орбитальных электронов своего атома при условии, что сумма масс материнского ядра и электрона больше массы дочернего ядра. Сама возмож­ность встречи протонов, находящихся внутри ядра, с орбитальными электронами атома обусловлена тем, что, согласно квантовой механике, движение электронов в атоме происходит не по строго определенным орбитам, как это принимается в теории Бора, а имеется некоторая вероятность встретить электрон в любой области пространства внутри атома, в част­ности, и в области, занятой ядром.
    Превращение ядра, вызванное захватом орбитального электрона, называют Е-захватом. Чаще всего происходит за­хват электрона, принадлежащего ближайшей к ядру К-оболочке (К-захват). Захват электрона, входящего в состав сле­дующейL-оболочки (L-захват), происходит примерно в 100 раз реже.
    Гамма-излучение. Гамма-излучение является коротковолновым электромагнитным излучением, обладающим чрезвычайно малой длиной волны и, вследствие этого, ярко выраженными корпускулярными свойствами, т.е. представляет собой поток квантов, обладающих энергией (? ? частота излучения), импульсом и спином J (в единицахh).
    Гамма ? излучение сопровождает ираспады ядер, возникает при аннигиляции частиц и античастиц, при торможении быстрых заряженных частиц в среде, при распадах мезонов, присутствует в космическом излучении, в ядерных реакциях и др. Экспериментально установлено, что образовавшееся в результате илираспада возбужденное ядро может пройти ряд промежуточных, менее возбужденных состояний. Поэтому излучение одного и того же радиоактивного изотопа может содержать несколько видов квантов, отличающихся друг от друга значениями энергии. Время жизни возбужденных состояний ядер обычно резко возрастает с уменьшением их энергии и с увеличением разности спинов ядра в исходном и конечном состояниях.
    Испускание кванта происходит также при радиационном переходе атомного ядра из возбужденного состояния с энергией Eiв основное или менее возбужденное состояние с энергией Ek (Ei>Ek). Согласно закону сохранения энергии (с точностью до энергии отдачи ядра) энергия кванта определяется выражением: . (8.11)
    При излучении выполняются также законы сохранения импульса и момента импульса.
    В связи с дискретностью энергетических уровней ядра излучение имеет линейчатый спектр энергии и частот. В действительности энергетический спектр ядра делится на дискретную и непрерывную области. В области дискретного спектра расстояния между энергетическими уровнями ядра существенно больше энергетической ширины Г уровня, определяемой временем жизни ядра в этом состоянии:
    .(8.12)
    Время определяет скорость распада возбужденного ядра:
    , (8.13)
    где число ядер в начальный момент времени (); число нераспавшихся ядер в момент времени t.
    вопрос 29. Законы смещения. Испуская частицу, ядро теряет два протона и два нейтрона. Поэтому у получившегося (дочернего) ядра по сравнению с исходным (материнским) ядром массовое число меньше на четыре, а порядковый номер – на два.
    Таким образом, при распаде получается элемент, который в таблице Менделеева занимает место на две клетки левее по сравнению с исходным:. (8.14)
    При распаде один из нейтронов ядра превращается в протон с испусканием электрона и антинейтрино (–распад). В результате распада число нуклонов в ядре остается неизменным. Поэтому массовое число не меняется, иначе говоря, происходит превращение одного изобара в другой. Однако заряд дочернего ядра и его порядковый номер изменяются. При –распаде, когда нейтрон превращается в протон, порядковый номер увеличивается на единицу, т.е. в этом случае возникает элемент, смещенный в таблице Менделеева по сравнению с исходным на одну клетку вправо:
    . (8.15)
    При распаде, когда протон превращается в нейтрон, порядковый номер уменьшается на единицу, и вновь получившийся элемент оказывается смещенным в таблице Менделеева на одну клетку влево:
    . (8.16)
    В выражениях (8.14) ? (8.16) X – символ материнского ядра, Y – символ дочернего ядра;– ядро гелия, и ? символические обозначениясоответственно электрона, для которогоA = 0 и Z = –1, и позитрона, для которого A= 0 и Z=+1.
    Естественно-радиоактивные ядра образуют три радиоактивных семейства, называемых семейством урана(), семейством тория()и семействомактиния (). Свои названия они получили подолгоживущим изотопам с наибольшими периодами полураспада. Все семейства после цепочки ?? и ??распадов заканчиваются на устойчивых ядрах изотопов свинца – ,и . Семейство нептуния, начинающееся от трансуранового элемента нептуния , получено искусственным путем и заканчивается на изотопе висмута .

  3. Kajikinos Ответить

    Удельная энергия связи – средняя энергия, приходящаяся на 1 нуклон: . (4)
    Для большинства ядер удельная энергия связи почти одинакова и ~ 8 МэВ. Поэтому полная энергия связи примерно пропорциональна массовому числу, т.е. числу нуклонов в ядре. Это говорит о свойстве ядерных сил, называемом насыщением. Оно заключается в том, что каждый нуклон взаимодействует только с ограниченным числом соседних нуклонов.
    Нуклоны в ядре удерживаются специфическими ядерными силами, которые являются проявлением сильного взаимодействия. Ядерные силы обладают следующими свойствами:
    – являются короткодействующими, радиус их действия 10–14 м;
    – самые интенсивные, они на 2-3 порядка мощнее электромагнитных сил. Ядерные силы обеспечивают существование ядер с удельной энергией связи около 8 МэВ.
    – Обладают свойством насыщения. Это проявляется в том, что в ядре протон может образовывать связанное состояние не более, чем с двумя нейтронами. По этой причине изотоп водорода тритий уже нестабилен.
    – Обладают зарядовой независимостью, т. е. силы, действующие между протоном и нейтроном, протоном и протоном, нейтроном и нейтроном одинаковы. Это свойство не означает полную тождественность систем р – р, п – п, р – п, так как протоны и нейтроны являются фермионами и системы р – р, п – п состоят из тождественных частиц, а система р – п – из разных.
    – Имеют обменный характер. При взаимодействии нуклоны могут обмениваться своими координатами, зарядами, проекциями спинов.
    – Зависят от спина нуклонов. На эту зависимость указывает тот факт, что нет состояния дейтрона со спином 0. Т.е. спины протона и нейтрона в этом состоянии только параллельны.
    – Являются нецентральными, т. е. зависят от ориентации спинов нуклонов относительно прямой , соединяющей нуклоны.
    В 1935 г. японский физик Х. Юкава высказал гипотезу, что ядерное взаимодействие есть результат обмена нуклонов виртуальной частицей. Эти частицы должны иметь массу больше массы электрона, но меньше массы протона, поэтому их назвали мезонами. (От греч. mesos – промежуточный, средний). Мезоны стали искать экспериментально. В 1947 году они были обнаружены в космическом излучении. Эти частицы назвали пи-мезонами (от англ. рrimary – первичный). Сейчас эти частицы именуют более кратко – пионы. Пион существует в виде p0, p–, p+.
    Пи-мезоны играют важную роль при нуклон-нуклонном взаимодействии на расстояниях 1,5–2 Фм. Суть мезонной теории ядерных сил следующая. Два нуклона, находясь на расстояниях r ? h/2mpc, обмениваются пионами, что является причиной ядерного взаимодействия. Возможны 4 типа обмена:
    p « p + p0, (5)
    n « n + p0, (6)
    p « n + p+, n « p + p–, (7)
    при которых нуклоны оказываются окруженными облаком виртуальных пионов, образующих поле ядерных сил. Поглощение мезонов другим нуклоном приводит к сильному взаимодействию между нуклонами.
    На расстояниях меньше 1,5 Фм нуклоны обмениваются более тяжелыми мезонами: h (549 МэВ), r(770 МэВ), w(782 МэВ), которые определяют отталкивание нуклонов.

  4. Dagelv Ответить

    1. Ядерные силы велики по абсолютной величине. Они относятся к самым сильным из всех известных взаимодействий в природе.
    До сих пор нам было известно четыре вида взаимодействия:
    а) сильные (ядерные) взаимодействия;
    б) электромагнитные взаимодействия;
    в) слабые взаимодействия, особенно ясно наблюдаемые у частиц, не проявляющихся в сильных и электромагнитных взаимодействиях (нейтрино);
    г) гравитационные взаимодействия.
    Для примера достаточно сказать, что обусловленная ядерными силами энергия связи простейшего ядра — дейтрона — равна 2,26 Мэв, в то время как обусловленная электромагнитными силами энергия связи простейшего атома — водорода — равна 13,6 эв.
    2. Ядерные силы обладают свойством притяжения на расстояниях в области 10-13см, правда, на существенно меньших расстояниях переходят в силы отталкивания. Это свойство объясняют наличием у ядерных сил отталкивающей сердцевины. Оно было обнаружено при анализе протон- протонного рассеяния при высоких энергиях. Свойство притяжения ядерных сил следует из одного существования атомных ядер.
    3. Ядерные силы являются короткодействующими. Радиус их действия имеет порядок 10-13 см. Свойство короткодействия было выведено из сравнения энергий связи дейтрона и ? -частицы. Однако, оно следует уже из опытов Резерфорда по рассеянию ? -частиц ядрами, где оценка радиуса ядра ~10-12см.
    4. Ядерные силы носят обменный характер. Обменность является существенно квантовым свойством, благодаря которому нуклоны при столкновении могут передавать друг другу свои заряды, спины и даже координаты. Существование обменных сил прямо следует из опытов по рассеянию протонов высоких энергий на протонах, когда в обратном потоке рассеянных протонов обнаруживаются другие частицы – нейтроны.
    5.Ядерное взаимодействие зависит не только от расстояния, но и от взаимной ориентации спинов взаимодействующих частиц, а также от ориентации спинов относительно оси, соединяющей частицы. Эта зависимость ядерных сил от спина вытекает из опытов по рассеянию медленных нейтронов на орто и параводороде.
    Существование такой зависимости следует также из наличия квадрупольного момента, следовательно, ядерное взаимодействие является не центральным, а тензорным, т.е. оно зависит от взаимной ориентации суммарного спина и проекции спина. Например, при ^^ ориентации спинов n и p энергия связи дейтрона 2.23 Мэв.
    6. Из свойств зеркальных ядер (зеркальными называются ядра у которых нейтроны заменены протонами, а протоны нейтронами) следует, что силы взаимодействия между (р, р), (n, n) или (n, р) одинаковы. Т.е. существует свойство зарядовой симметрии ядерных сил. Это свойство ядерных сил носит фундаментальный характер и указывает на глубокую симметрию, существующую между двумя частицами: протоном и нейтроном. Оно получило название зарядовой независимости (или симметрии) или изотопической инвариантности и позволило рассматривать протон и нейтрон как два состояния одной и той же частицы — нуклона. Изотопический спин был введен впервые Гейзенбергом чисто формально и принято считать, что он равен Т=-1/2 – когда нуклон находится в состоянии нейтрона, и Т=+1/2 когда нуклон находится в состоянии протона. Предположим, что существует какое-то трехмерное пространство, названное изотопическим, не имеющее отношения к обычному декартовому пространству, при этом каждая частица находится в начале координат этого пространства, где она не может двигаться поступательно, а только вращается и имеет соответственно в этом пространстве собственный момент количества движения (спин). Протон и нейтрон представляют собой частицу по-разному ориентированную в изотопическом пространстве и нейтрон переходит в протон при повороте на 180 градусов. Изотопическая инвариантность означает, что взаимодействие в любых двух парах нуклонов одинаково, если эти пары находятся в одинаковых состояниях, т.е. ядерное взаимодействие инвариантно относительно поворотов в изотопическом пространстве. Данное свойство ядерных сил носит название изотопической инвариантности.

  5. Sadar Ответить

    На рис. выше показано, что в атоме водорода ядро ??и электрон очень далеки друг от друга, в том смысле, что атом гораздо больше, чем ядро (а электрон еще меньше.) Но в дейтроне расстояние между протоном и нейтроном сравнимо с их размерами. Это отчасти объясняет, почему ядерные силы являются гораздо более сложными, чем силы в атоме.
    Известно, что электроны имеют небольшую массу по сравнению с протонами и нейтронами. Отсюда следует, что
    масса атома, по существу близка к массе его ядра,
    размер атома (по существу размер электронного облака) обратно пропорционален массе электронов и обратно пропорционален общей электромагнитной силе; принцип неопределенности квантовой механики играет решающую роль.

    А если ядерные силы аналогичны электромагнитным

    Что же с дейтроном? Он так же, как и атом, сделан из двух объектов, но они почти одинаковой массы (массы нейтрона и протона отличаются лишь части примерно на одну 1500-ю часть), так что обе частицы в равной степени важны в определении массы дейтрона и его размера. Теперь предположим, что ядерная сила тянет протон к нейтрону так же, как электромагнитные силы (это не совсем так, но представьте себе, на мгновение); а затем, по аналогии с водородом, мы ожидаем, размер дейтрона обратно пропорциональным массе протона или нейтрона, и обратно пропорциональным величине ядерной силе. Если ее величина была такой же (на определенном расстоянии), как у электромагнитной силы, то это будет означать, что так как протон примерно в 1850 раз тяжелее электрон, то дейтрон (и действительно любое ядро) должно быть по крайней мере в тысячу раз меньше, чем у водорода.

    Что дает учет существенной разницы ядерных и электромагнитных сил

    Но мы уже догадались, что ядерная сила намного больше электромагнитной (на том же расстоянии), потому что, если это не так, она была бы не в состоянии предотвратить электромагнитное отталкивание между протонами вплоть до распада ядра. Так что протон и нейтрон под ее действием сближаются вместе еще более плотно. И поэтому не удивительно, что дейтрон и другие ядер не просто в одну тысячу, но в сто тысяч раз меньше, чем атомы! Опять же, это только потому, что
    протоны и нейтроны почти в 2000 раз тяжелее, чем электроны,
    на этих расстояниях, большая ядерная сила между протонами и нейтронами в ядре во много раз больше, чем соответствующие электромагнитные силы (в том числе электромагнитного отталкивания между протонами в ядре.)
    Эта наивная догадка дает примерно правильный ответ! Но это не полностью отражает сложность взаимодействия между протоном и нейтроном. Одна из очевидных проблем состоит в том, что сила, подобная электромагнитной, но с большей притягивающей или отталкивающей способностью, должна очевидно проявляться в повседневной жизни, но мы не наблюдаем ничего подобного. Так что, что-то в этой силе должно отличаться от электрических сил.

    Короткий диапазон ядерной силы

    Что их отличает, так это то, что удерживающие от распада атомное ядро ядерные силы являются очень важными и большими для протонов и нейтронов, находящихся на очень коротком расстоянии друг от друга, но на определенном расстоянии (так называемом “диапазоне” силы), они падают очень быстро, гораздо быстрее, чем электромагнитные. Диапазон, оказывается, может также быть размером с умеренно большое ядро, только в несколько раз больше, чем протон. Если поместить протон и нейтрон на расстоянии, сравнимом с этим диапазоном, они будут притягиваться друг к другу и образуют дейтон; если их разнести на большее расстояние, они едва ли будут ощущать какое-либо притяжение вообще. На самом деле, если их поместить слишком близко друг к другу, так, что они начнут перекрываться, то они будут на самом деле отталкиваются друг от друга. В этом и проявляется сложность такого понятия, как ядерные силы. Физика продолжает непрерывно развиваться в направлении объяснения механизма их действия.

    Физический механизм ядерного взаимодействия

    У всякого материального процесса, включая и взаимодействие между нуклонами, должны быть материальные же переносчики. Ими являются кванты ядерного поля – пи-мезоны (пионы), из-за обмена которыми и возникает притяжение между нуклонами.
    Согласно принципам квантовой механики, пи-мезоны, то и дело возникая и тут же исчезая, образуют вокруг «голого» нуклона что-то вроде облака, называемого мезонной шубой (вспомните об электронных облаках в атомах). Когда два нуклона, окруженные такими шубами, оказываются на расстоянии порядка 10-15 м, происходит обмен пионами подобно обмену валентными электронами в атомах при образовании молекул, и между нуклонами возникает притяжение.
    Если же расстояния между нуклонами становятся меньше 0,7•10-15 м, то они начинают обмениваться новыми частицами – т.наз. ω и ρ-мезонами, вследствие чего между нуклонами возникает не притяжение, а отталкивание.

    Ядерные силы: строение ядра от простейшего к большему

    Резюмируя все вышесказанное, можно отметить:
    сильное ядерное взаимодействие гораздо, гораздо слабее, чем электромагнетизм на расстояниях, значительно больших, чем размер типичного ядра, так что мы не сталкиваемся с ним в повседневной жизни; но
    на коротких расстояниях, сравнимых с ядром, оно становится гораздо сильнее – сила притяжения (при условии, что расстояние не слишком короткое), способна преодолеть электрическое отталкивание между протонами.
    Итак, эта сила имеет значение только на расстояниях, сравнимых с размерами ядра. На рисунке ниже показан вид ее зависимости от расстояния между нуклонами.

    Большие ядра удерживаются вместе с помощью более или менее той же силы, что держит дейтрон вместе, но детали процесса усложняются, так что их непросто описать. Они также не в полной мере понятны. Хотя основные очертания физики ядра были хорошо изучены в течение десятилетий, многие важные детали все еще активно исследуются.

  6. AvAnShOt Ответить

    Атомное ядро, состоящее из определенного числа протонов и нейтронов, является единым целым благодаря специфическим силам, которые действуют между нуклонами ядра – ядерные.
    Особенности ядерных сил.
    1. Ядерные силы являются короткодействующими силамипритяжения. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10–15 м. Расстояние (1,5 – 2,2)·10–15 м называется радиусомдействияядерных сил, с его увеличением ядерные силы быстро уменьшаются. На расстоянии (2-3) 10–15 м ядерное взаимодействие между нуклонами практически отсутствует.
    2. Ядерные силы обладают свойством насыщения,т.е. каждый нуклон взаимодействует только с опред. числом ближайших соседей. Такой характер ядерных сил проявляется в приближенном постоянстве удельной энергии связи нуклонов при зарядовом числеА>40. Если бы насыщения не было, то удельная энергия связи возрастала бы с увеличением числа нуклонов в ядре.
    3. Зарядовая независимость, т.е. они не зависят от заряда нуклонов, поэтому ядерные взаимодействия между протонами и нейтронами одинаковы. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер. Так называются ядра, в которых одинаково общее число нуклонов, ночисло протонов в одном равно числу нейтронов другом. Например, энергии связи ядер гелия и тяжелого водорода – трития составляют соответственно 7,72 МэВ и 8,49 МэВ. Разность энергий связи этих ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре . Полагая эту величину равной , можно найти, что среднее расстояние r между протонами в ядре равно 1,9·10–15 м, что согласуется с величиной радиуса действия ядерных сил.
    4. Ядерные силы не являются центральными и зависят от взаимной ориентации спинов взаимодействующих нуклонов. Это подтверждается различным характером рассеяния нейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде.

  7. Fenrilkree Ответить

    ЯДЕРНЫЕ СИЛЫ
    – силы взаимодействия между нуклонами; обеспечивают большую величину энергии связи ядер по сравнению с др. системами. Я. с. являются наиб. важным и распространённым примером сильного взаимодействия (СВ). Когда-то эти понятия были синонимами и сам термин “сильное взаимодействие” был введён для подчёркивания огромной величины Я. с. по сравнению с др. известными в природе силами: эл.-магн., слабыми, гравитационными. После открытия p-,r идр. мезонов, гиперо-нов и др. адронов термин “сильное взаимодействие” стали применять в более широком смысле – как взаимодействие адронов. В 1970-х гг.
    квантовая хромодинамика (КХД) утвердилась как общепризнанная микроскопич. теория СВ. Согласно этой теории, адроны являются составными частицами, состоящими из кварков и глюонов, а под СВ стали понимать взаимодействие этих фундам. частиц.
    С др. стороны, Я. с. как силы взаимодействия между нуклонами включают не только СВ, но и эл.-магн., слабое и гравитац. взаимодействия нуклонов. С точки зрения совр. теории, эл.-магн. и слабое взаимодействия являются проявлениями одного, более фундаментального, электрослабого взаимодействия. Однако при тех пространственно-временных масштабах (~10-13 см, ~10-23 с), с к-рыми обычно имеют дело в атомных ядрах, единая природа эл.-магн. и слабых сил практически не проявляется и их можно рассматривать как независимые. Эти взаимодействия, будучи гораздо слабее СВ, в большинстве ядерных процессов малосущественны, но возможны ситуации, когда их роль становится определяющей. Так, эл.-магн. взаимодействие (наиб. существ. часть к-рого – кулоновское отталкивание между протонами), в отличие от СВ, является дальнодействующим. Поэтому обусловленная им положит. кулоновская энергия ядра растёт с увеличением числа частиц А в ядре быстрее, чем отрицат. часть ядерной энергии, обусловленная СВ. В результате тяжёлые ядра становятся при больших А нестабильными – сначала по отношению к делению (см. Деление ядер), а затем и абсолютно нестабильными. Со слабым взаимодействием нуклонов связано такое явление, как несохранение чётности в нуклон-нуклонном рассеянии и в др. ядерных явлениях (см. Несохранение чётности в ядрах). Гравитац. силы, действующие между нуклонами, пренебрежимо малы во всех ядерных явлениях и существенны только в астрофиз. условиях (см. Нейтронные звёзды).
    Основой Я. с. является сильное взаимодействие нуклонов. Сильное взаимодействие нуклонов в ядрах отличается от взаимодействия свободных нуклонов, однако последнее является фундаментом, на к-ром строится вся ядерная физика и теория Я. с. Это взаимодействие обладает изотопической инвариантностью. Суть её в том, что взаимодействие между 2 нейтронами, 2 протонами или между протоном и нейтроном в одинаковых квантовых состояниях одинаково. Поэтому можно говорить о взаимодействии между нуклонами, не уточняя, о каких нуклонах идёт речь (см. также Изотопическая инвариантность ядерных сил). Я. с. являются короткодействующими (радиус их действия ~10-13 см) и обладают свойством насыщения, к-рое заключается в том, что с увеличением числа нуклонов в ядре уд. энергия связи нуклонов остаётся примерно постоянной (рис. 1). Это приводит к возможности существования ядерной материи.

    Поскольку нуклоны в ядре движутся, как правило, со сравнительно небольшими скоростями (в 3-4 раза меньше скорости света), то для построения модели СВ нуклонов в ядрах можно пользоваться нерелятивистской теорией и приближённо описывать его потенциалом, к-рый является ф-цией расстояния r между нуклонами. В отличие от кулоновского и гравитац. потенциалов, обратно пропорциональных расстоянию, потенциал Я. с. зависит от r гораздо сложнее. Кроме того, потенциал Я. с. зависит от спинов нуклонов и орбитального момента L относительного движения нуклонов.

    Нерелятивистский потенциал Я. с. содержит неск. компонентов: центральный VC, тензорный VT, спин-орбитальный VLS и квадратичный спин-орбитальный потенциал VLL. Наиб. важный из них – центральный – является комбинацией сильного отталкивания на малых расстояниях (т. < н. отталкивательный кор) и притяжения - на больших (см. рис. к ст. Ядерная материя). Существуют модели СВ нуклонов с бесконечным (“жёстким”) кором (напр., феноменологич. потенциал Хамады – Джонстона), а также более реалистич. модели с конечным (“мягким”) кором (напр., потенциал Рейда, рис. 2). С кон. 1950-х гг. было предпринято множество попыток построения потенциала Я. с. на основе полевой теории мезон-нуклонного взаимодействия. Очевидные трудности такой теории связаны с большой силой взаимодействия и неприменимостью теории возмущений и основанных на ней методов. Весьма популярен полуфеноменологич. потенциал “однобозонно-го обмена”, основанный на представлениях мезоннуклонной полевой теории, но использующий простейшую модель од-номезонного обмена. При этом оказалось, что для описания притяжения на промежуточных расстояниях необходимо помимо известных мезоновp, р, w,… вводить также обмен несуществующим s-мезоном, к-рый интерпретируют как эфф. учёт обмена двумя p-мезонами. Константы мезон-нуклонного взаимодействия рассматривались как феноменологич. параметры, к-рые подбирались так, чтобы потенциал описывал эксперим. фазы нуклон-нуклонного рассеяния. За короткодействующее отталкивание оказались ответственными w- и r-мезоны, а за дальнодействующее притяжение – пи-мезон. Член однопи-онного обмена вносит вклад в центральный и тензорный потенциалы:

    где fp NN – константа пион-нуклонного взаимодействия, тp масса пиона, l= с/mp=1,4 Фм – комптоновская длина волны пиона, a s1, s2 -спиновые Паули матрицы. Как видно из выражений (1), (2), потенциал однопионного обмена экспоненциально спадает на расстоянии порядка комптоновской длины пиона. Др. члены потенциала одно-бозонного обмена имеют такого же типа экспоненц. факторы, но с комптоновскими длинами соответствующих бозонов, к-рые в неск. раз меньше пионной. На таких расстояниях обмен неск. пионами может быть столь же существенным, как и обмен одним тяжёлым мезоном. Это объясняет, почему члены, отвечающие обмену тяжёлыми мезонами, воспринимаются как полуфеноменологические. В то же время вид потенциала Я. с, на больших расстояниях, без сомнения, описывается выражениями (1), (2). Такой асимптотич. вид имеют и все без исключения феноменологич. потенциалы. В настоящее время наиб. точными считают т. н. парижский и боннский потенциалы, к-рые сочетают черты феноменологич. потенциалов с мягким кором и потенциала однобозонного обмена.
    Совр. представления о природе СВ, основанные на КХД, поставили задачу расчёта потенциала СВ нуклонов в рамках КХД, но она пока не решена, поскольку не решена и более простая задача о построении теории одного нуклона. Существует неск. кварковых моделей адронов, из к-рых наиб. известна модель мешков в разл. вариантах. Она позволяет качественно понять природу отталкива-тельного кора, оценить его радиус и высоту, но не позволяет рассчитать вид потенциала на больших расстояниях. Под большим вопросом, с точки зрения КХД, оказывается статус мезонов (за исключением p-мезона) в формировании потенциала СВ нуклонов: обмен тяжёлыми мезонами между нуклонами происходит на столь малых расстояниях, что их кварк-глюонная природа становится существенной. Особое место в КХД-теории СВ принадлежит p-мезону. Согласно совр. представлениям, он интерпретируется как коллективное возбуждение вакуума, состоящее из большого числа кварк-антикварковых пар ( голд-стоуновский бозон, связанный со спонтанным нарушением в КХД киральной симметрии). Поэтому в большинстве совр. моделей все остальные адроны считают состоящими из небольшого числа кварков (антикварков, глюонов), а я-мезон вводят дополнительно как независимую частицу. С такой точки зрения понятен статус потенциалов (1), (2) как описывающих “хвост” потенциала взаимодействия нуклонов.
    Поскольку ср. расстояние между нуклонами в ядре (1,8 Фм) не сильно превышает радиус действия Я. с., то в ядрах существуют многочастичные (прежде всего, 3-частичные) силы, возникающие из-за обмена кварками и глюонами между неск. нуклонами практически одновременно. В терминах адронов это отвечает таким процессам обмена мезонами между, напр., тремя нуклонами, к-рые нельзя свести к совокупности последовательных парных обменов. Гл. роль в формировании 3-частичных сил играет обмен p-мезонами, причём существ. вклад вносят и процессы виртуального возбуждения D-изобары – первого возбуждённого состояния нуклона. Т. о., пионы и D-изоба-ры являются основными ненуклонными степенями свободы, к-рые важны в ядерных процессах. Многочастичные силы в ядрах сравнительно невелики: их вклад в энергию связи не превышает 10-15%. Однако существуют явления, где они играют осн. роль.
    Гл. часть эл.-магн. взаимодействия нуклонов составляет кулоновское отталкивание между протонами. На больших расстояниях оно определяется только зарядами протонов. СВ приводит к тому, что электрич. заряд протона не является точечным, а распределён на расстояниях 1 Фм (среднеквадратичный радиус протона равен 0,8 Фм; см. “Размер” элементарной частицы). Электрич. взаимодействие на малых расстояниях зависит и от распределения заряда внутри протона. Это распределение совр. теория СВ не может надёжно рассчитать, но оно достаточно хорошо известно из эксперим. данных по рассеянию электронов на протонах. Нейтроны в целом электронейтральны, но из-за СВ распределение заряда внутри нейтрона также существует, что приводит к электрич. взаимодействию между двумя нейтронами и между нейтроном и протоном. Магн. взаимодействие между нейтронами такого же порядка, что и между протонами, из-за большой величины аномального магнитного момента, обусловленного СВ. Менее ясна ситуация со слабым взаимодействием нуклонов. Хотя гамильтониан слабого взаимодействия известен хорошо, СВ приводит к перенормировке соответствующих констант взаимодействия (аналог аномального магн. момента) и возникновению формфакторов. Как и в случае эл.-магн. взаимодействия, эффекты слабого взаимодействия не могут быть достоверно рассчитаны, но в этом случае они не известны и экспериментально. Имеющиеся данные о величине эффектов несохранения чётности в 2-нуклонной системе позволяют установить интенсивность этого взаимодействия, но не его структуру. Существует неск. альтернативных моделей слабого взаимодействия нуклонов, к-рые одинаково хорошо описывают 2-нуклонные эксперименты, но приводят к разл. следствиям для атомных ядер.
    Лит.: Бор О., Моттельсон Б., Структура атомного ядра, пер. с англ., т. 1-2, М., 1971-77; Калоджеро Ф., Симонов Ю. А., Ядерные силы, насыщение и структура ядер, в сб.: Будущее науки, в. 9, М., 1976. Э. Е. Саперштейн.

  8. Imperator_Neron Ответить

    Нейтрон и протон имеют приблизительно одинаковые массы, поэтому их соударение при низких энергиях происходит примерно так же, как и у бильярдных шаров. При высоких энергиях из-за необходимости использования релятивистской механики расчёты осложняются, и результаты получаются не такими простыми, как при низких энергиях. Тем не менее до измерений было ясно, что вперёд должно лететь значительно больше нейтронов, чем протонов.
    Это связано с тем, что даже очень интенсивные ядер- ные силы не могут отклонить быстрый нейтрон на большой угол от первоначального направления. Между тем опыт показал, что в направлении первичного пучка летят как нейтроны, так и протоны, и примерно в одинаковых количествах. Объяснить этот результат можно было, только предположив, что в процессе ядерного взаимодействия нейтрон и протон как бы обмениваются электрическими зарядами, после чего нейтрон летит в качестве протона, а протон – в качестве нейтрона. Описанное явление называют рассеянием нуклонов с перезарядкой, а ядерные силы, ответственные за перезарядку, называют обменными. Если такой обмен происходит для каждой пары взаимодействующих нуклонов, то вперёд должны лететь преимущественно протоны, если же обмен происходит только в половине случаев, то вперёд будут лететь как протоны, так и нейтроны (и при том примерно в одинаковых количествах).
    Возникает вопрос: в чём заключается механизм обмена зарядом? Впервые идея этого механизма была сформулирована Таммом, который предположил, что в процессе ядерного взаимодействия нуклоны испускают и поглощают заряженные частицы. По предположению Тамма, нейтрон в процессе ядерного взаимодействия с протоном испускает электрон, превращаясь в протон, а протон, поглотивший электрон, становится нейтроном. Однако сам же Тамм показал, что электроны слишком легки для того, чтобы с их помощью можно было одновременно объяснить два основных свойства ядерных сил: короткодей- ствие и большую интенсивность.
    Следующий шаг был сделан Юкавой, который показал, какова должна быть масса у подходящей частицы, т.е. фактически предсказал существование в природе заряженных частиц тяжелее электрона. Эти предполагаемые частицы были названы мезонами (от греческого слова «мезос» – средний), что подчёркивает промежуточное значение их массы по сравнению с массами электронов и протонов.
    Рассуждения Юкавы можно пояснить с помощью соотношения неопределённостей:

    Из (1.8) следует: на короткое время At энергия системы может измениться на величину

    Если время At очень мало, то АЕ может быть достаточно большим. Выберем это время таким, чтобы частица, движущаяся со скоростью порядка скорости света с, успевала пролетать расстояние, равное радиусу действия ядерных сил г = (1 -н 2) • 10″15м :

    Подставив это время в (1.9), получим:

    Так как энергии Д? = 150МэВ соответствует масса
    АЕ ,ЛЛ
    т = — » 300 те, полученный результат можно интерпретировать как возникновение на короткое время 0,5 • 10-23 с частицы массой 300 те, которая за время своего существования успевает пролететь расстояние между двумя взаимодействующими нуклонами (1 2)10“|5м.
    Итак, согласно этой идее (соответствующей современным представлениям), ядерное взаимодействие двух нуклонов, находящихся на расстоянии, равном радиусу действия ядерных сил, заключается в том, что один нуклон испускает частицу массой т ~ 300 те, а другой поглощает её через ядерное время 10_23с. Частицы, которые существуют в районе действия ядерных сил в течение ядерного времени, называют виртуальными. Виртуальные частицы нельзя представлять себе существующими вне области ядерного взаимодействия, отдельно от нуклонов. Для того, чтобы виртуальная частица могла превратиться в реальную, т.е. такую, которая способна отделиться от своих «родителей» нуклонов и вести самостоятельный образ жизни за пределами области ядерного взаимодействия, нуклоны должны обладать достаточным запасом кинетической энергии, часть которой при их столкновении могла бы преобразоваться в массу покоя мезона.
    Описанные мезоны получили название я-мезонов. Они были открыты в 1947 г.
    Существуют положительный (/г+), отрицательный (я’) и нейтральный (я0) мезоны. Заряд п+ и п~ мезонов равен элементарному заряду е = 1,6 • 10“19 Кл. Масса заряженных пионов одинакова и равна 273 те (140 МэВ), масса л°-мезона равна 264 те[ 135 МэВ). Спин как заряженных, так и нейтрального я-мезона равен нулю (7 = 0) . Все три частицы нестабильны. Время жизни заряженных мезонов составляет 2,6 • 10″8с, я°-мезона -0,8 • 10″16с.
    Подавляющая часть заряженных я-мезонов распадается по схеме:

    где и ц~ – положительный и отрицательный мюоны;
    V и v – соответственно мюонное нейтрино и антинейтрино.
    В среднем 98,8 % я°-мезонов распадается на два кванта:

    Вернёмся к описанию обменного взаимодействия между нуклонами. В результате виртуальных процессов

    нуклон оказывается окружённым облаком виртуальных я-мезонов, образующих поле ядерных сил. Поглощение этих мезонов другим нуклоном приводит к сильному взаимодействию между нуклонами, которое осуществляется по одной из следующих схем:
    .р + п±>п + 7г+ + п±>п+р. Протон испускает виртуальный к+ -мезон, превращаясь в нейтрон. Мезон поглощается нейтроном, который вследствие этого превращается в протон. Затем такой же процесс протекает в обратном направлении. Каждый из взаимодействующих нуклонов проводит часть времени в заряженном состоянии, а часть – в нейтральном.
    2. п+р^р + п° + п^р + п. Протон и нейтрон обмениваются л-мезонами.
    3. р + п р + к0 + п р + п;
    р+р^р + 7г°+р^р+р’,
    П + П^П + 7Г°+П^П + П.
    Теперь мы имеем возможность объяснить существование магнитного момента у нейтрона и аномальную величину магнитного момента протона.
    В соответствии с процессом (1.13) нейтрон часть времени проводит в виртуальном состоянии (/? + тт). Орбитальное движение л~ -мезона приводит к возникновению наблюдаемого у нейтрона отрицательного магнитного момента. Аномальный магнитный момент протона (2,19ря, вместо одного ядерного магнетона) также можно объяснить орбитальным движением л+ -мезона в течение того промежутка времени, когда протон находится в виртуальном состоянии (/2 + 7Г+) (1.12).

  9. Malawield Ответить

    Конспект лекции с демонстрациями

    Наша задача: познакомить с основными свойствами ядерных сил, вытекающих из имеющихся экспериментальных данных.
    Содержание
    Общая характеристика ядерных сил
    Свойства, следующие из изучения связанного состояния – дейтрона
    Свойства, следующие из изучения рассеяния нуклонов при малых энергиях
    Свойства, следующие из изучения рассеяния нуклонов при высоких энергиях
    Зарядовая независимость ядерных сил
    Мезонная теория ядерных сил
    Начнем с перечисления известных свойств ядерных сил, чтобы потом перейти к их обоснованию:
    Это силы притяжения.
    Они короткодействующие.
    Это силы большой величины (по сравнению с электромагнитными, слабыми и гравитационными).
    Они обладают свойством насыщения.
    Ядерные силы зависят от взаимной ориентации взаимодействующих нуклонов.
    Не являются центральными.
    Ядерные силы не зависят от заряда взаимодействующих частиц.
    Зависят от взаимной ориентации спина и орбитального момента.
    Ядерные силы носят обменный характер.
    На малых расстояниях (r < 0.5·10-15 м) являются силами отталкивания.
    Не приходится сомневаться в том, что ядерные силы – это силы притяжения. Иначе кулоновские силы отталкивания протонов сделали бы невозможным существование ядер.
    Свойство насыщения ядерных сил следует из поведения зависимости удельной энергии связи от массового числа (см. лекцию).

    Зависимость энергии связи, приходящейся на нуклон, от массового числа
    Если бы нуклоны в ядре взаимодействовали со всеми другими нуклонами, энергия взаимодействия была пропорциональна числу сочетаний из
    A по 2, т.е. A(A-1)/2 ~ A2. Тогда энергия связи, приходящаяся на один нуклон, была пропорциональна A. На самом деле, как видно из рисунка, она примерно постоянна ~8 МэВ. Это и свидетельствует об ограниченном числе связи нуклона в ядре.
    Свойства, следующие из изучения связанного состояния – дейтрона
    Дейтрон 21H представляет собой единственное связанное состояние двух нуклонов – протона и нейтрона. Не существует связанных состояний протон – протон и нейтрон – нейтрон. Перечислим известные из опытов свойства дейтрона.
    Энергия связи нуклонов в дейтроне Gd = 2.22 МэВ.
    Не имеет возбужденных состояний.
    Спин дейтрона J = 1, четность положительная.
    Магнитный момент дейтрона ?d = 0.86 ?я, здесь ?я = 5.051·10-27 Дж/Тл – ядерный магнетон.
    Квадрупольный электрический момент положителен и равен Q = 2.86·10-31 м2.
    В первом приближении взаимодействие нуклонов в дейтроне можно описать прямоугольной потенциальной ямой

    Далее следует найти решение уравнения Шредингера с этим потенциалом. В сферической системе координат (естественный выбор, т.к. потенциальная энергия зависит только от r), уравнение выглядит так

    Здесь ? – приведенная масса, равная ? = mp·mn/(mp+mn).
    Это уравнение можно упростить, введя функцию χ = r*Ψ(r). Получим

    Решаем отдельно для областей r < a и r > a (учтем, что E < 0 для связанного состояния, которое ищем)

    Коэффициент B надо положить равным нулю, иначе при r > 0 волновая функция Ψ = χ/r обращается в бесконечность; и коэффициент B1 = 0, иначе решение расходится при r > ?.

  10. Shaktill Ответить

    Ядерные силы относятся к так называемым сильным взаимодействиям Короткодействие ядерных сил и свойство насыщения Перечислим основные свойства ядерных сил 1. Огромная энергия связи нуклонов в ядре свидетельствует о том, что между нуклонами действуют силы притяжения, что подтверждается существованием стабильных ядер. Эти силы самые интенсивные 2. Уже первые опыты Резерфорда показали, что ядерные силы – короткодействующие Ядерные силы удерживают нуклоны на расстояниях ~ (1,2 ? 1,4) ·10?13 см. При расстояниях между нуклонами, превышающих 2·10?13 см действие ядерных сил не обноруживается. Внутри ядра потенциальная энергия отрицательна представлена некоторой средней величиной (дно потенциальной ямы) 4. Ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов и от взаимной ориентации орбитального и спинового моментов каждого из нуклонов Если нуклоны одноименные, то наибольшее притяжение между ними наблюдается в случае антипараллельной ориентации их спинов(эффект спаривания нуклонов) 5. Интенсивность ядерного взаимодействия не зависит от электрического заряда нуклонов. Ядерные силы, (р – р), (р – n) ,(n – n), находящихся в одинаковых состояниях, одинаковы по величине- зарядовая независимостью ядерных сил.6 Постоянство средней энергии связи на нуклон указывает на свойство насыщения ядерных сил. Это означает, что каждый нуклон в ядре взаимодействует с ограниченным числом соседних нуклонов. 7.Ядерные силы имеют нецентральный характер. Центральными называются силы, которые действуют вдоль прямой, соединяющей взаимодействующие тела.
    8. Ядерные силы имеют обменный характер. Это означает, что взаимодействие между двумя нуклонами – обменом третьей частицей, пи-мезоном. Процесс взаимодействия – обмен виртуальными, а не реальными фотонами. В квантовой механике виртуальными называются частицы, которые не могут быть обнаружены за время их существования Существует три типа пионов – положительный (?+) пион с зарядом е, отрицательный (?-) с зарядом –е и нейтральный (?0). Все три частицы нестабильны. Заряженные пионы имеют одинаковую массу, равную 273mе (140 МэВ), и время жизни ? = 2,55·10-8 с. Масса нейтрального пиона составляет 264mе (135 МэВ), а время жизни ? = 2,1·10-16 с. Спин любого из пиона равен нулю. .Оценим время виртуального процесса как где радиус действия ядерных сил, а v – скорость пиона. Полагая кинетическую энергию пиона равной средней энергии связи нуклона в ядре МэВ, получим Эту величину часто называют характерным временем ядерного взаимодействия.

  11. Kornishon Ответить


    (1.9.2)
    Ядерное взаимодействие между ядром и частицей аппроксимируется отвесной линией. Нейтроны не имеют электрического заряда и потому беспрепятственно сближаются с ядрами, т.е. для них отсутствует кулоновский барьер (жирная горизонтальная линия на рис. 1.9.1б в области r > R). Ядерный потенциал у нейтрона оказывается таким же (с точностью до различия в массах), как и у протона (см. ниже п.5).
    4. Ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов и от взаимной ориентации орбитального и спинового моментов каждого из нуклонов. Это означает, что внутри ядра следует учитывать спин-орбитальное взаимодействие нуклонов. Зависимость ядерных сил от спина хорошо видна на примере дейтона, который имеет спин, равный единице, т.е. нейтрон и протон могут существовать в связанном состоянии только при параллельных спинах. При антипараллельных спинах нейтрон и протон не образует связанной системы, но притяжение между ними все же существует, что приводит к значительной эффективности рассеяния нейтронов на протонах. Поэтому рассеяние нейтронов на водородосодержащих средах оказывается также эффективным и широко используется для замедле­ния нейтронов в ядерных реакторах.
    Если нуклоны одноименные, то наибольшее притяжение между ними наблюдается в случае антипараллельной ориентации их спинов, а для разноименных нуклонов – в случае параллельной ориентации спинов. Как раз этой особенностью объясняется эффект спаривания нуклонов (см. §1.4 п.3).
    5. Интенсивность ядерного взаимодействия не зависит от электрического заряда нуклонов. Ядерные силы, действующие между двумя протонами (р – р), протоном и нейтроном (р – n) и двумя нейтронами (n – n), находящихся в одинаковых пространственных и спиновых состояниях, одинаковы по величине. Это свойство называется зарядовой независимостью ядерных сил. Другими словами, протон и нейтрон оказываются равноправными относительно ядерного взаимодействия. Это, конечно, не означает, что взаимное кулоновское отталкивание протонов не играет роли внутри ядра или при рассеянии двух свободных протонов. На рис. 1.9.2 изображена схема энергетических уровней двух зеркальных ядер и . Зеркальными называются ядра изобаров, количество протонов в одном из которых равно количеству нейтронов в другом и наоборот. В зеркальных ядрах число (р – n) связей остается постоянным, а (р – р) связи заменены на (n – n) связи. Энергии основных состояний у них сдвинуты друг относительно друга на величину разности ?Uкул кулоновской энергии ядер и разность ?mнук нуклонов (mn > mp)

    (1.9.3)
    Из рисунка видно, что соответствующие уровни энергии (энергетические спектры ядер) очень близки, а спины и четности уровней совпадают. Однако, строго говоря, приведенная информация не является прямым доказательством зарядовой независимости ядерных сил, так как сопоставляются не процессы парных взаимодействий между нуклонами отдельных типов, а рассматриваются свойства сложных нуклонных систем. Непосредственное доказательство гипотезы о зарядовой независимости ядерных сил получено в прямых опытах по изучению (р – р) и (n – р) рассеяния.
    6. Постоянство средней энергии связи на нуклон (рис. 1.4.2) указывает на свойство насыщения ядерных сил. Это означает, что каждый нуклон в ядре взаимодействует с ограниченным числом соседних нуклонов. Свойство насыщения ядерных сил имеет парный характер. Например, пара нейтронов и пара протонов образует одно из самых прочных легких ядер – aчастицу. Присоединение еще одного нейтрона к a-частице оказывается невозможным.
    7. Ядерные силы имеют нецентральный характер. Центральными называются силы, которые действуют вдоль прямой, соединяющей взаимодействующие тела. Центральные силы могут зависеть от относительной ориентации спинов частиц, но не должны зависеть от ориентации спинов относительно линии, соединяющей частицы. Рассмотрим некоторые свойства простейшего ядра , которое имеет такое же значение в ядерной физике, как атом водорода – в атомной физике. Спины нейтрона и протона в дейтоне параллельны (см. п.4), поэтому магнитный момент дейтона должен определяться алгебраической сумме магнитных моментов протона и нейтрона, равной ?d + ?d = 2,79 – 1,91 = 0,88. Измеренное значение магнитного момента дейтона ?d = 0,86 (см. таблицу 1.6.1) немного отличается, хотя величина расхождения намного превышает точность измерений. Различие можно объяснить только наличием у протона орбитального момента. Дейтон имеет квадрупольный момент +0,0028·10?24 см2 (таблица 1.6.2), т.е. распределение плотности электрического заряда (а следовательно и ядерного вещества) отлично от сферически симметричного и вытянуто вдоль спина. Таким образом, система из протона и нейтрона имеет наибольшую энергию связи только тогда, когда спины обоих нуклонов направлены вдоль оси дейтона. Это свидетельствует о том, что ядерные силы в общем случае имеют нецентральный характер, так как они зависят не только от расстояния между нуклонами, но и от ориентации спинов относительно линии, соединяющей нуклоны. Макроскопическим аналогом такого явления служит характер взаимодействия между двумя одинаково намагниченными шариками (рис. 1.9.3). При параллельных векторах магнитной индукции каждого из шариков между ними могут действовать как силы притяжения, так и отталкивания, в зависимости от ориентации векторов магнитной индукции относительно вектора, проходящего через центры инерции шариков.
    8. Ядерные силы имеют обменный характер. Это означает, что взаимодействие между двумя нуклонами вызвано обменом третьей частицей – пи-мезоном. Такую гипотезу высказали в 1934 г. И. Тамм и в 1935 г. Х. Юкава по аналогии с представлением о взаимодействии между электрическими зарядами, принятым в квантовой электродинамике. Взаимодействие между зарядами осуществляется через электромагнитное поле, которое может быть представлено как совокупность квантов энергии – фотонов. Каждый заряд создает вокруг себя поле, непрерывно испуская и поглощая фотоны. Процесс взаимодействия между двумя зарядами заключается в обмене виртуальными, а не реальными фотонами. В квантовой механике виртуальными называются частицы, которые не могут быть обнаружены за время их существования. Рассмотрим на примере покоящегося электрона процесс создания им в окружающем пространстве электрического поля:

    (1.9.4)
    Превращение, описываемое уравнением (1.9.4), сопровождается нарушением закона сохранения энергии:

    (1.9.5)
    где – энергия виртуального фотона. Изменение энергии системы должно удовлетворять квантовомеханическому соотношению неопределенностей:

    (1.9.6)
    Если до истечения времени

    (1.9.7)
    виртуальный фотон будет поглощен этим же или другим электроном, то нарушение закона сохранения энергии не может быть обнаружено. Если же электрону сообщить дополнительную энергию (от электрического поля или при соударении с другим зарядом), то может быть испущен реальный фотон, время существования которого неограниченно.
    За время виртуальный фотон может передать взаимодействие между точками, разделенных расстоянием

    (1.9.8)
    Так как энергия виртуального фотона может быть сколь угодно мала (если ), то радиус действия электромагнитных сил неограничен. Однако, если масса покоя виртуальной частицы отлична от нуля, то радиус взаимодействия соответствующих сил будет ограничен величиной (предполагая, что ее скорость )

    (1.9.9)
    Полагая в (1.9.9) радиус r действия ядерных сил равным 1,3·10-13 см, получим, что кванты поля ядерных сил должны иметь массу покоя Таким образом, для образования свободных (не виртуальных) квантов ядерного поля необходима энергия не менее 140 Мэв. Эти частицы были впоследствии открыты в составе космических лучей (1947 г., Оккиалини и Поуэлл) и были названы ?-мезонами (пионами).
    Существует три типа пионов – положительный (?+) пион с зарядом +е, отрицательный (?-) с зарядом –е и нейтральный (?0). Все три частицы нестабильны. Заряженные пионы имеют одинаковую массу, равную 273mе (140 МэВ), и время жизни ? = 2,55·10-8 с. Масса нейтрального пиона составляет 264mе (135 МэВ), а время жизни ? = 2,1·10-16 с. Спин любого из пиона равен нулю.
    В результате аналогичных (1.9.4) виртуальных процессов

    (1.9.10)

    (1.9.11)

    (1.9.12)
    нуклон оказывается окруженным облаком виртуальных ?-мезонов, которые образуют поле ядерных сил. Поглощение этих пионов другими нуклонами приводит к сильному взаимодействию между нуклонами и происходит по одной из следующих схем:

    (1.9.13)

    (1.9.14)

    (1.9.15)
    Процесс (1.9.13) находит экспериментальное подтверждение в рассеянии нейтронов на протонах. После прохождения пучка нейтронов через мишень, содержащую ядра 1Н, в пучке появляются протоны, которые имеют ту же энергию и направление движения, что и падающие нейтроны. Количество таких протонов намного превышает возможность образования протонов в результате упругого взаимодействия нейтронов с протонами мишени. Соответствующее количество нейтронов обнаруживается и в мишени. Остается признать, что часть нейтронов, пролетая вблизи ядер 1Н захватывает виртуальные ?+-мезоны и превращается в протоны.
    Орбитальное движение ? –мезонов в виртуальном процессе (1.9.11) вызывает возникновение у нейтрона отрицательного магнитного момента (см. таб. 1.6.1), так как нейтрон часть времени проводит в виртуальном состоянии . Аномальный магнитный момент протона (вместо одного ядерного магнетона, см. §1.6 п.2) можно также объяснить орбитальным движением ?+-мезонов в течение того времени, когда протон находится в виртуальном состоянии (1.9.10).
    Оценим время виртуального процесса как

    (1.9.16)
    где радиус действия ядерных сил, а v – скорость пиона. Полагая кинетическую энергию пиона равной средней энергии связи нуклона в ядре МэВ, получим

    (1.9.17)
    Эту величину часто называют характерным временем ядерного взаимодействия.
    В рамках обменной теории оказывается маловероятным обмен пионами между одним и двумя другими нуклонами, находящимися в пределе радиуса действия ядерных сил. Отсюда вытекает свойство насыщения ядерных сил со всеми вытекающими последствиями: постоянство удельной энергии связи, рост объема ядра пропорционально числу частиц нуклонов в ядре, независимость потенциала от координаты внутри ядра. Мезонная теория содержит в своей основе глубокое и правильное описание природы ядерных сил, но выяснилось, что расчеты в этой теории настолько сложны, что никому еще не удалось их проделать. И до настоящего времени не существует надежных способов решения уравнений этой теории. Это является одной из причин создания большого числа разнообразных моделей ядра в ядерной физике (см. гл.2 §1).

  12. оливочка65 Ответить

    Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами.
    С помощью экспериментальных данных (рассеяние нуклонов на ядрах, ядерные превращения и т.д.) доказано, что ядерные силы намного превышают гравитационные, электрические и магнитные взаимодействия и не сводятся к ним. Ядерные силы относятся к классу так называемых сильных взаимодействий.
    Перечислим основные свойства ядерных сил:
    1) ядерные силы являются силами притяжения;
    2) ядерные силы являются короткодействующими – их действие проявляется только на расстояниях примерно 10-15м. При увеличении расстояния между нуклонами ядерные силы быстро уменьшаются до нуля, а при расстояниях, меньших их радиуса действия, оказываются примерно в 100 раз больше кулоновских сил, действующих между протонами на том же расстоянии;
    3) ядерным силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или двумя нейтронами, или, наконец, между протоном и нейтроном, одинаковы по величине. Отсюда следует, что ядерные силы имеют неэлектрическую природу;
    4) ядерным силам свойственно насыщение, т. е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов. Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре (если не учитывать легкие ядра) при увеличении числа нуклонов не растет, а остается приблизительно постоянной;
    5) ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон (ядро изотопа Н) только при условии параллельной ориентации их спинов;
    6) ядерные силы не являются центральными, т. е. действующими по линии, соединяющей центры взаимодействующих нуклонов.
    Сложный характер ядерных сил и трудность точного решения уравнений движения всех нуклонов ядра (ядро с массовым числом А представляет собой систему из А тел) не позволили до настоящего времени разработать единую последовательную теорию атомного ядра. Поэтому на данной стадии прибегают к рассмотрению приближенных ядерных моделей, в которых ядро заменяется некоторой модельной системой, довольно хорошо описывающей только определенные свойства ядра и допускающей более или менее простую математическую трактовку. Из большого числа моделей, каждая из которых обязательно использует подобранные произвольные параметры, согласующиеся с экспериментом, рассмотрим две: капельную и оболочечную.
    I. Капельная модель ядра (1936; Н. Бор и Я. И. Френкель). Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами — молекулами в жидкости и нуклонами в ядре, — являются короткодействующими и им свойственно насыщение. Для капли жидкости при данных внешних условиях характерна постоянная плотность ее вещества. Ядра же характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависящей от числа нуклонов в ядре.

  13. Ararne Ответить

    Ядерные силы. Модели ядра
    Силы взаимодействия между нуклонами, значительно превышающие кулоновские силы отталкивания, называютсяядерными силами.
    С помощью экспериментальных данных по рассеянию нуклонов на ядрах, ядерным превращениям и т. д. доказано, что ядерные силы намного превышают гравитацион­ные, электрические и магнитные взаимодействия и не сводятся к ним. Ядерные силы относятся к классу так называемых сильных взаимодействий.
    1) ядерные силы являются силами притяжения;
    2) ядерные силы являются короткодействующими – их действие проявляется то­лько на расстояниях примерно 10-15 м. При увеличении расстояния между нуклонами ядерные силы быстро уменьшаются до нуля, а при расстояниях, меньших их радиуса действия, оказываются примерно в 100 раз больше кулоновских сил, действующих между протонами на том же расстоянии;
    3) ядерным силам свойственна зарядовая независимость: ядерные силы, дейст­вующие между двумя протонами, или двумя нейтронами, или, наконец, между прото­ном и нейтроном, одинаковы. Отсюда следует, что ядерные силы имеют неэлектрическую природу;
    4) ядерным силам свойственно насыщение, т. е. каждый нуклон в ядре взаимодей­ствует только с ограниченным числом ближайших к нему нуклонов. Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре (если не учитывать легкие ядра) при увеличении числа нуклонов не растет, а остается приблизительно постоянной;
    5) ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон (ядро изотопа H) только при условии параллельной ориентацииих спинов;
    6) ядерные силы не являются центральными силами.

  14. AtomZ Ответить

    Удельная энергия связи – средняя энергия, приходящаяся на 1 нуклон: . (4)
    Для большинства ядер удельная энергия связи почти одинакова и ~ 8 МэВ. Поэтому полная энергия связи примерно пропорциональна массовому числу, т.е. числу нуклонов в ядре. Это говорит о свойстве ядерных сил, называемом насыщением. Оно заключается в том, что каждый нуклон взаимодействует только с ограниченным числом соседних нуклонов.
    Нуклоны в ядре удерживаются специфическими ядерными силами, которые являются проявлением сильного взаимодействия. Ядерные силы обладают следующими свойствами:
    являются короткодействующими, радиус их действия 10–14 м;
    самые интенсивные, они на 2-3 порядка мощнее электромагнитных сил. Ядерные силы обеспечивают существование ядер с удельной энергией связи около 8 МэВ.
    Обладают свойством насыщения. Это проявляется в том, что в ядре протон может образовывать связанное состояние не более, чем с двумя нейтронами. По этой причине изотоп водорода тритий уже нестабилен.
    Обладают зарядовой независимостью, т. е. силы, действующие между протоном и нейтроном, протоном и протоном, нейтроном и нейтроном одинаковы. Это свойство не означает полную тождественность систем р – р, п – п, р – п, так как протоны и нейтроны являются фермионами и системы р – р, п – п состоят из тождественных частиц, а система р – п – из разных.
    Имеют обменный характер. При взаимодействии нуклоны могут обмениваться своими координатами, зарядами, проекциями спинов.
    Зависят от спина нуклонов. На эту зависимость указывает тот факт, что нет состояния дейтрона со спином 0. Т.е. спины протона и нейтрона в этом состоянии только параллельны.
    Являются нецентральными, т. е. зависят от ориентации спинов нуклонов относительно прямой , соединяющей нуклоны.
    В 1935 г. японский физик Х. Юкава высказал гипотезу, что ядерное взаимодействие есть результат обмена нуклонов виртуальной частицей. Эти частицы должны иметь массу больше массы электрона, но меньше массы протона, поэтому их назвали мезонами. (От греч. mesos – промежуточный, средний). Мезоны стали искать экспериментально. В 1947 году они были обнаружены в космическом излучении. Эти частицы назвали пи-мезонами (от англ. рrimary – первичный). Сейчас эти частицы именуют более кратко – пионы. Пион существует в виде p0, p–, p+.
    Пи-мезоны играют важную роль при нуклон-нуклонном взаимодействии на расстояниях 1,5–2 Фм. Суть мезонной теории ядерных сил следующая. Два нуклона, находясь на расстояниях r ? h/2mpc, обмениваются пионами, что является причиной ядерного взаимодействия. Возможны 4 типа обмена:
    p « p + p0, (5)
    n « n + p0, (6)
    p « n + p+, n « p + p–, (7)
    при которых нуклоны оказываются окруженными облаком виртуальных пионов, образующих поле ядерных сил. Поглощение мезонов другим нуклоном приводит к сильному взаимодействию между нуклонами.
    На расстояниях меньше 1,5 Фм нуклоны обмениваются более тяжелыми мезонами: h (549 МэВ), r(770 МэВ), w(782 МэВ), которые определяют отталкивание нуклонов.

  15. SAJOQO Ответить

    Мы знаем, что ядра любых атомов состоят из протонов и нейтронов. При этом протоны несут на себе положительный электрический заряд. Однако еще мы знаем, что одноименные заряды отталкиваются друг от друга. Притягиваются противоположные заряды, именно поэтому электроны вращаются вокруг ядер. Их притягивает положительный заряд протонов в ядре.

    Почему протоны не разлетаются из ядра

    Возникает вопрос: почему же тогда протоны, обладая одноименными зарядами, удерживаются вместе? Ведь они должны отталкиваться друг от друга и разлетаться. Что их держит? Может быть гравитационные силы? Гравитационные силы гораздо слабее электромагнитных, поэтому не в состоянии удерживать вместе частицы. То есть, сила гравитационного притяжения частиц вследствие их малого размера намного меньше силы их электромагнитного взаимодействия, в данном случае отталкивания.

    Природа ядерных сил

    Очевидно, что существуют какие-то иные силы, превосходящие электромагнитные. Оказалось, так и есть. Нуклоны в ядре удерживаются особыми, так называемыми «ядерными» силами. Природа ядерных сил такова, что они действуют на очень небольшом расстоянии.
    Когда расстояние между частицами равно 10^-15 м, ядерные силы превосходят по величине электромагнитные в сто раз. Однако уже на расстоянии 10^-14 м величина ядерных сил становится ничтожно малой и не способной сколько-нибудь существенно влиять на частицы.
    То есть радиус действия ядерных сил сравним с размерами самих частиц. Частицы в ядре удерживаются очень крепко, но частицы того же заряда, находящиеся вне ядра, уже очень и очень сильно отталкиваются. Именно поэтому ядра атомов, а соответственно, химические и физические свойства веществ довольно устойчивы, и «превратить» одно вещество в другое почти всегда очень проблематично.

    Почему алхимики не смогли превратить ртуть в золото

    Задача создания золота искусственным путем из других веществ, над которой столетиями бились алхимики, разрешима. Для этого необходимо к ядрам находящегося рядом с золотом в периодической таблице вещества добавить или отнять некоторое количество нуклонов. То есть, изменить ядро так, чтобы получить атомы золота.
    Нужно преодолеть электромагнитные силы для сближения частиц на расстояние достаточное, чтобы начали действовать ядерные силы, либо же наоборот, преодолеть ядерные силы, чтобы отдалить частицы на расстояние, когда ядерные силы уже не действуют, и частицы отталкиваются электромагнитными силами.
    Однако для этого требуется такое огромное количество энергии на преодоление электромагнитных и ядерных сил, как в случае синтеза ядер, так и в случае их деления, что получение золота таким способом становится абсолютно нецелесообразным. Лишь в недрах звезд при невероятных температурах возможны подобные процессы, так как там достаточно энергии.

    Нужна помощь в учебе?


  16. Panda__Pro Ответить

    Дефект массы и энергия связи ядра
    При образовании ядра происходит уменьшение его массы: масса ядра Мя меньше, чем сумма масс составляющих его нуклонов на Dm – дефект массы ядра:
    Dm=Zmp+(A-Z)mn-Mя. Прибавляя к первому слагаемому Zme и вычитая от последнего слагаемого Zme , где me – масса электрона, получим еще оду формулу для определения дефекта массы ядра
    Dm=ZmН+(A-Z)mn-Mа, (1)
    где – масса атома водорода, Mа- масса атома.
    Дефект массы ядра служит мерой энергии связи ядра: Есв=Dmс2.
    В состав ядра кроме нейтронов входят положительно заряженные протоны и они должны бы отталкиваться друг от друга, т.е. ядро атома должно бы разрушиться, но это не происходит. Оказывается, на малых расстояниях (например, внутри ядра) между этими частицами действуют мощные ядерные силы, по сравнению с которыми электромагнитные силы в сотни раз слабее. В пренебрежении электромагнитными силами протон и нейтрон обладают одинаковыми свойствами: при прочих равных условиях ядерные силы, действующие между двумя протонами, равны ядерным силам, действующим между двумя нейтронами, а также между нейтроном и протоном. Ядерные силы обладают насыщенностью, т.е. нуклоны взаимодейтвуют лишь с ближайшими соседними нуклонами.
    В настоящее время в природе известно четыре вида фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное. Сильное взаимодействие удерживает нуклоны в атомных ядрах. К электромагнитным взаимодействиям сводятся непосредственно воспринимаемые нами силы природы: упругие, вязкие, молекулярные, химические и пр. Слабые взаимодействия вызывают, в частности, b – распад радиоактивных ядер. Гравитационное взаимодейтвие присуще всем частицам.
    Сильные и слабые взаимодействия – короткодействующие, т.е. они проявляются только на коротких расстояниях. Радиус действия сильных взаимодействий »10-15 м, а слабых »2?10-18м. Электромагнитные силы, напротив, являются дальнодейсвующими; они убывают обратно пропорционально квадрату расстояния между частицами. По такому же закону убывают и гравитационные силы. Поэтому отношение Fэл/Fгр не зависит от расстояния между взаимодействующими частицами, т.е. Fэл/Fгр=q1q2/(Gm1m2). Для взаимодейтвия двух протонов эта формула дает Fэл/Fгр»1,23?1036. Поэтому в физике микромира гравитационное взаимодействие не учитывается. Но в макромире при рассмотрении движения больших масс: галактик, звезд, планет и пр., а также при рассматрении движения небольших макроскопических тел в поле таких больших масс гравитационное взаимодействие становится определяющим.
    Классическая физика полагала, что взаимодействие между телами передается с конечной скоростью посредством силовых полей. Квантовая физика не изменила такое представление, но учла квантовые свойства самого поля. Из-за корпускулярноволнового дуализма всякому полю должна соответствовать определенная частица (квант поля), которая и является переносчиком взаимодействия. Одна из взаимодействующих частиц испускает квант поля, другая его поглощает, происходит обмен частицами, поэтому ядерные силы имеют обменный характер. В этом и состоит механизм взаимодействия частиц. В случае электромагнитных взаимодействий квантами поля – переносчиками взаимодействия – являются фотоны. До недавнего времени считалось, что пионы (p+,p-, p0) осуществляют сильные взаимодействия. Сейчас эту роль отводят глюонам. Слабые взаимодействия осуществляются (переносятся) и Z0 – промежуточными векторными бозонами. Гравитационное взаимодействие переносится гипотетическими гравитонами.

  17. HeyDoc Ответить

    Макеты страниц

    § 69. Ядерные силы

    Огромная энергия связи нуклонов в ядре указывает на то, что между нуклонами имеется очень интенсивное взаимодействие. Это взаимодействие носит характер притяжения. Оно удерживает нуклоны на расстояниях см друг от друга, несмотря на сильное кулоновское отталкивание между протонами. Ядерное взаимодействие между нуклонами получило название сильного взаимодействия. Его можно описать с помощью поля ядерных сил. Перечислим отличительные особенности этих сил.
    1. Ядерные силы являются короткодействующими. Их радиус действия имеет порядок . На расстояниях, существенно меньших , притяжение нуклонов сменяется отталкиванием.
    2. Сильное взаимодействие не зависит от заряда нуклонов. Ядерные силы, действующие между двумя протонами, протоном и нейтроном и двумя нейтронами, имеют одинаковую величину. Это свойство называется зарядовой независимостью ядерных сил.
    3. Ядерные силы зависят от взаимной ориентации спинов нуклонов. Так, например, нейтрон и протон удерживаются вместе, образуя ядро тяжелого водорода дейтрон (или дейтон) только в том. случае, если их спины параллельны друг другу.
    4. Ядерные силы не являются центральными. Их нельзя представлять направленными вдоль прямой, соединяющей центры взаимодействующих нуклонов. Нецентральность ядерных сил вытекает, в частности, из того факта, что они зависят от ориентации спинов нуклонов.
    5. Ядерные силы обладают свойством насыщения (это означает, что каждый нуклон в ядре взаимодействует с ограниченным числом нуклонов). Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре при увеличении числа нуклонов не растет, а остается примерно постоянной. Кроме того, на насыщение ядерных сил указывает также пропорциональность объема ядра числу образующих его нуклонов (см. формулу (66.8)).
    По современным представлениям сильное взаимодействие обусловлено тем, что нуклоны виртуально обмениваются частицами, получившими название мезонов. Для того чтобы уяснить сущность этого процесса, рассмотрим прежде, как выглядит электромагнитное взаимодействие с точки зрения квантовой электродинамики.
    Взаимодействие между заряженными частицами осуществляется через электромагнитное поле. Мы знаем, что это поле может быть представлено как совокупность фотонов.
    Согласно представлениям квантовой электродинамики процесс взаимодействия между двумя заряженными частицами, например электронами, заключается в обмене фотонами. Каждая частица создает вокруг себя поле, непрерывно испуская и поглощая фотоны. Действие поля на другую частицу проявляется в результате поглощения ею одного из фотонов, испущенных первой частицей. Такое описание взаимодействия нельзя понимать буквально. Фотоны, посредством которых осуществляется взаимодействие, являются не обычными реальными фотонами, а виртуальными. В квантовой механике виртуальными называются частицы, которые не могут быть обнаружены за время их существования. В этом смысле виртуальные частицы можно назвать воображаемыми.
    Чтобы лучше понять смысл термина «виртуальный», рассмотрим покоящийся электрон. Процесс создания им в окружающем пространстве поля можно представить уравнением

    Суммарная энергия фотона и электрона больше, чем энергия покоящегося электрона. Следовательно, превращение, описываемое уравнением (69.1), сопровождается нарушением закона сохранения энергии. Однако для виртуального фотона это нарушение является кажущимся. Согласно квантовой механике энергия состояния, существующего время оказывается определенной лишь с точностью , удовлетворяющей соотношению неопределенности:

    (см. формулу (20.3)). Из этого соотношения вытекает, что энергия системы может претерпевать отклонения АЕ, длительность которых не должна превышать значения, определяемого условием (69.2). Следовательно, если испущенный электроном виртуальный фотон будет поглощен этим же или другим электроном до истечения времени (где ), то нарушение вакона сохранения энергии не может быть обнаружено.
    При сообщении электрону дополнительной энергии (это может произойти, например, при соударении его с другим электроном) вместо виртуального может быть испущен реальный фотон, который может существовать неограниченно долго.
    За определяемое условием (69.2) время виртуальный фотон может передать взаимодействие между точками, разделенными расстоянием

    Энергия фотона может быть сколь угодно мала (частота изменяется от 0 до ). Поэтому радиус действия электрод магнитных сил является неограниченным.
    Если бы частицы, которыми обмениваются взаимодействующие электроны, имели отличную от нуля массу , то радиус действия соответствующих сил был бы ограничен величиной

    где — комптоновскан длина волны данной частицы (см. (11.6)). Мы положили, что частица — переносчик взаимодействия — движется со скоростью с.
    В 1934 г. И. Е. Тамм высказал предположение, что взаимодействие между нуклонами также передается посредством каких-то виртуальных частиц. В то время, кроме нуклонов, были известны лишь фотон, электрон, позитрон и нейтрино. Самая тяжелая из этих частиц — электрон — обладает комптонозской длиной волны (см. (11.7)), на два порядка превышающей радиус действия ядерных сил. Кроме того, величина сил, которые могли бы быть обусловлены виртуальными электронами, как показали расчеты, оказалась чрезвычайно малой. Таким образом, первая попытка объяснения ядерных сил с помощью обмена виртуальными частицами оказалась неудачной.
    В 1935 г. японский физик X. Юкава высказал смелую гипотезу о том, что в природе существуют пока не обнаруженные частицы с массой, в 200—300 раз большей массы электрона, и что эти то частицы и выполняют роль переносчиков ядерного взаимодействия, подобно тому как фотоны являются переносчиками электромагнитного взаимодействия. Юкава назвал эти гипотетические частицы тяжелыми фотонами. В связи с тем, что по величине массы эти частицы занимают промежуточное положение между электронами и нуклонами, они впоследствии были названы мезонами (греческое «мезос» означает средний),
    В 1936 г. Андерсон и Неддермейер обнаружили в космических лучах частицы с массой, равной . Вначале полагали, что эти частицы, получившие название -мезонов, или мюонов, и есть переносчики взаимодействия, предсказанные Юкавой. Однако впоследствии выяснилось, что мюоны очень слабо взаимодействуют с нуклонами, так что не могут быть ответственными за ядерные взаимодействия. Только в 1947 г. Оккиалини и Поуэлл открыли в космическом излучении еще один тип мезонов — так называемые -мезоны, или пионы, которые оказались носителями ядерных сил, предсказанными за 12 лет до того Юкавой.
    Существуют положительный отрицательный и нейтральный мезоны. Заряд и -мезонов равен элементарному заряду . Масса заряженных пионов одинакова и равна , масса -мезона равна .
    Спин как заряженных, так и нейтрального -мезона равен нулю Все три частицы нестабильны. Время жизни и -мезонов составляет , -мезона — .
    Подавляющая часть заряженных -мезонов распадается по схеме

    ( — положительный и отрицательный мюоны, v — нейтрино, -антинейтрино). В среднем 2,5 распада из миллиона протекают по другим схемам (например, и т. п., причем в случае образуется т. е. позитрон, а в случае возникает т. е. электрон).
    В среднем -мезонов распадаются на два -кванта:

    Остальные распадов осуществляются по схемам:

    Частицы, называемые -мезонами или мюонами, принадлежат к классу лептонов (см. § 74), а не мезонов. Поэтому в дальнейшем мы будем называть их мюонами. Мюоны имеют положительный или отрицательный заряд, равный элементарному заряду (нейтрального мюона не существует). Масса мюона равна , спин — половине . Мюоиы, как и -мезоны, нестабильны, они распадаются по схеме:

    Время жизни обоих мюонов одинаково и равно .
    Обратимся к рассмотрению обменного взаимодействия между нуклонами. В результате виртуальных процессов

    нуклон оказывается окруженным облаком виртуальных -мезонов, образующих поле ядерных сил. Поглощение этих мезонов другим нуклоном приводит к сильному взаимодействию между нуклонами, которое осуществляется по одной из следующих схем:

    Протои испускает виртуальный -мезон, превращаясь в нейтрон. Мезон поглощается нейтроном, который вследствие этого превращается в протон.
    Затем такой же процесс протекает в обратном направлении (рис. 69.1,а). Каждый из взаимодействующих нуклонов часть времени проводит в заряженном состоянии, а часть — в нейтральном.

    Нейтрон-и протон обмениваются -мезонами (рис. 69.1,б),

    Нуклоны обмениваются -мезоиами (рис. 69.1,в).
    Первый из трех описанных выше процессов находит экспериментальное подтверждение в рассеянии нейтронов на протонах. При прохождении пучка нейтронов через водород в этом пучке появляются протоны, многие из которых имеют ту же энергию и направление движения, что и падающие нейтроны.

    Рис. 69,1.

    Рис. 69.2.
    Соответствующее число практически покоящихся нейтронов обнаруживается в мишени. Совершенно невероятно, чтобы такое большое число нейтронов полностью передавало свой импульс ранее покоившимся протонам в результате лобовых ударов. Поэтому приходится признать, что часть нейтронов, пролетая вблизи протонов, захватывает один из виртуальных -мезонов. В результате нейтрон превращается в протон, а потерявший свой заряд протон превращается в нейтрон (рис. 69.2).
    Если нуклону сообщить энергию, эквивалентную массе -мезона, то виртуальный -мезон может стать реальным. Необходимая энергия может быть сообщена при столкновении достаточно ускоренных нуклонов (или ядер) либо при поглощении нуклоном –-кванта. При очень больших энергиях соударяющихся растиц может возникнуть несколько реальных -мезонов.
    Теперь мы имеем возможность объяснить существование магнитного момента у нейтрона и аномальную величину магнитного момента протона (см. § 66). В соответствии с процессом (69.7) нейтрон часть времени проводит в виртуальном состоянии Орбитальное движение -мезона приводит к возникновению наблюдаемого у нейтрона отрицательного магнитного момента. Аномальный магнитный момент протона вместо одного ядерного магнетона) также можно объяснить орбитальным движением -мезона в течение того промежутка времени, когда протон находится в виртуальном состоянии

  18. Morn Ответить

    Из факта существования ядер следует, что между нуклонами ядра действуют специфические ядерные силы несводимые к электромагнитным силам. Ядерные силы обладают следующими свойствами.
    1.Ядерные силы короткодействующие. Они экспоненциально убывают с расстоянием Радиус взаимодействия нуклонов меньше см и связан с массой частицы переносчика взаимодействия (пи-мезоном).
    2.Ядерные силы являются силами притяжения и на расстояниях в 1 ферми в раз больше кулоновских сил отталкивания протонов в ядре. Это следует из положительного значения энергии связи ядра и существования дейтрона. Энергия кулоновского отталкивания двух протонов
    Мэв
    Удельная энергия связи нуклона в ядре гелия приблизительно 7 Мэв.
    3.Ядерные силы имеют нецентральный (тензорный) характер , т.е. зависят от взаимного расположения нуклонов. Это следует из наличия у дейтрона электрического квадрупольного момента.
    4. Потенциал ядерных сил зависит от взаимной ориентации спинов взаимодействующих частиц и их спинов. На это указывают опыты по рассеянию медленных нейтронов на молекулярном водороде.
    5. Ядерные силы обладают свойством насыщения. Каждый нуклон взаимодействует только с ограниченным числом ближайших к нему нуклонов. Это следует из того, что энергия связи пропорциональна числу нуклонов А. Если бы каждый нуклон взаимодействовал со всеми остальными, тогда было бы Eсв ~А2.
    6.Ядерные силы обладают свойством зарядовой независимости (изотопической инвариантности). Взаимодействие двух протонов, двух нейтронов, нейтрона с протоном в одинаковых квантовых пространственных и спиновых состояниях одинаково, если исключить кулоновское взаимодействие. Об этом свидетельствуют эксперименты по рассеянию (n,p) и (p,p), а также реакции с образованием двух нейтронов в конечных состояниях. в зеркальных ядрах ( при замене всех протонов на нейтроны) все свойства почти одинаковы.
    7.Ядерные силы имеют обменный характер. Нуклоны взаимодействуя обмениваются координатами, спинами. и зарядами. ?-мезон является квантом ядерного взаимодействия при низких энергиях.
    8.Большая интенсивность и отталкивательный характер ядерных сил при очень малых расстояниях ( ) следует из наличия внутри нуклонов массивных заряженных частиц (кварков).
    9. Экспериментально наблюдается спин-орбитальная зависимость ядерных сил.
    10.Наблюдается существенная зависимость ядерных сил от величины изотопического спина Т (1или 0) при энергиях нуклонов меньше 1 Гэв, и независимость от изоспина при энергиях больше 10 Гэв.
    11. Общий характер (n,p) и (p,p)- рассеяния при высоких энергиях больших 100 Мэв приводит к заключению о существовании очень сильного отталкивания нуклонов на расстояниях меньших 0,5 10 -13 см , обменном характере ядерных сил, и спин-орбитальной зависимости ядерных сил(нецентральный тензорный характер ядерных сил следует из фазового анализа (p,p)- рассеяния).

  19. landscape Ответить

    Между составляющими ядро нуклонами действуют ядерные силы, значительно превышающие кулоновские силы отталкивания между протонами. С точки зрения полевой теории элементарных частиц ядерные силы, в основном, являются силами взаимодействия магнитных полей нуклонов в ближней зоне. На больших расстояниях потенциальная энергия такого взаимодействия убывает по закону 1/r3 – этим объясняется их короткодействующий характер. На расстоянии (3 •10-13 см) ядерные силы становятся доминирующими, а на расстояниях менее (9,1 •10-14 см) они превращаются в еще более мощные силы отталкивания.

    Ядерные силы являются короткодействующимисилами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10–15 м. Длина (1,5 – 2,2)·10–15 м называется радиусом действия ядерных сил.
    Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нейтронного. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов другом. Например, ядра гелия и тяжелого водорода – трития . Энергии связи этих ядер составляют 7,72 МэВ и 8,49 МэВ.
    Разность энергий связи ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре .

    Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел A. Практически полное насыщение ядерных сил достигается у ?-частицы, которая является очень устойчивым образованием.
    Ядерные силы зависят от ориентации спинов взаимодействующих нуклонов. Это подтверждается различным характером рассеяния нейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде. Ядерные силы не являются центральными.
    Взаимодействие между нуклонами возникает в результате испускания и поглощения квантов ядерного поля?-мезонов. Они определяют ядерное поле по аналогии с электромагнитным полем, которое возникает как следствие обмена фотонами.


    Энергия связи
    Прочность ядер характеризуется энергией связи. По своей величине энергия связи равна той работе, которую необходимо затратить для разрушения ядра на составляющие его нуклоны без придания им кинетической энергии. Такое же количество энергии освобождается при образовании ядра из нуклонов. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

    При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Количество заключенной в веществе энергии непосредственно связано с его массой соотношением Эйнштейна
    E = mc2.
    В соответствии с этим соотношением масса и энергия представляют собой разные формы одного и того же явления. Ни масса, ни энергия не исчезают, а при соответствующих условиях переходят из одного вида в другой, т.е. любому изменению массы m системы соответствует эквивалентное изменение ее энергии Е.
    Разность между суммой масс свободных нуклонов и массой ядра называется дефектом массы атомного ядра. Если ядро с массой m образовано из Z протонов с массой mp и из (А – Z) нейтронов с массой mn, то дефект массы ?m определяется соотношением

    При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом гамма-кванты как раз обладают энергией Есв и массой m.
    По дефекту массы, с помощью уравнения Эйнштейна (Е = mc2) можно определить энергию, выделившуюся в результате образования ядра, т.е. энергию связи (Еcв):
    Еcв = ?mc2
    Энергия связи, приходящаяся на один нуклон (т. е. полная энергия связи поделенная на число нуклонов в ядре), называется удельной энергией связи:

    Чем больше по абсолютной величине удельная энергия связи, тем сильнее взаимодействие между нуклонами и тем прочнее ядро. Наибольшая энергия связи, приходящаяся на один нуклон, порядка 8,75 МэВ, присуща элементам средней части таблицы Менделеева.

    Ядерные спектры
    Атомное ядро, как и другие объекты микромира, является квантовой системой. Это означает, что теоретическое описание его характеристик требует привлечения квантовой теории. В квантовой теории описание состояний физических систем основывается на волновых функциях, или амплитудах вероятности ?(?,t). Квадрат модуля этой функции определяет плотность вероятности обнаружения исследуемой системы в состоянии с характеристикой ? – ?(?,t) = |?(?,t)|2. Аргументом волновой функции могут быть, например, координаты частицы.
    Квантовый характер атомных ядер проявляется в картинах их спектров возбуждения. Ядра обладают дискретными спектрами возможных энергетических состояний. Таким образом, квантование энергии и ряда других параметров является свойством не только атомов, но и атомных ядер. Состояние атомного ядра с минимальным запасом энергии называется основным, или нормальным, состояния с избыточной энергией (по сравнению с основным состоянием) называются возбужденными.

    Спектр состояний ядра 12С
    Атомы обычно находятся в возбужденных состояниях примерно 10-8 секунды, а возбужденные атомные ядра избавляются от избытка энергии за гораздо более короткое время — порядка 10-15 – 10-16секунды. Как и атомы, возбужденные ядра освобождаются от избытка энергии, испуская кванты электромагнитного излучения. Эти кванты называются гамма-квантами (или гамма-лучами). Дискретному набору энергетических состояний атомного ядра соответствует дискретный спектр частот излучаемых ими гамма-квантов.
    Многие закономерности в ядерных спектрах можно объяснить, если воспользоваться так называемой оболочечной моделью строения атомного ядра. Согласно этой модели, нуклоны в ядре не перемешаны в беспорядке, а, подобно электронам в атоме, располагаются связанными группами, заполняя разрешенные ядерные оболочки. При этом протонные и нейтронные оболочки заполняются независимо друг от друга. Максимальные числа нейтронов: 2, 8, 20, 28, 40, 50, 82, 126 и протонов: 2, 8, 20, 28, 50, 82 в заполненных оболочках получили название магических. Ядра с магическими числами протонов и нейтронов обладают многими замечательными свойствами: повышенным значением удельной энергии связи, меньшей вероятностью вступления в ядерное взаимодействие, устойчивостью по отношению к радиоактивному распаду и т. п. “Дважды магическими” являются, например, ядра4He,16O,28Si. Именно из-за своей особо высокой стабильности эти ядра максимально распространены в природе.

    Переход ядра из основного состояния в возбужденное и возвращение его в основное состояние, с точки зрения оболочечной модели, объясняется переходом нуклона с одной оболочки на другую и обратно.
    Спонтанные переходы ядер из более высоких возбужденных состояний дискретного спектра ядра в более низкие (в том числе в основное состояние) реализуются, как правило, путем излучения ?-квантов, т.е. за счет электромагнитных взаимодействий. В области больших энергий возбуждения, когда E > Eотд, ширины уровней возбужденного ядра резко возрастают. Дело в том, что в отделении нуклона от ядра главную роль играют ядерные силы – т.е. сильные взаимодействия. Вероятность сильных взаимодействий на порядки выше вероятности электромагнитных, поэтому ширины распада по сильным взаимодействиям велики и уровни ядерных спектров в области E > Eотд перекрываются – спектр ядра становится непрерывным. Главным механизмом распада высоковозбужденных состояний из этой области энергий является испускание нуклонов и кластеров (?-частиц и дейтронов). Излучение ?-квантов в этой области высоких энергий возбуждения E > Eотд происходит с меньшей вероятностью, чем испускание нуклонов. Возбужденное ядро имеет, как правило, несколько путей, или каналов, распада.

  20. Кавказ Ответить

    Изотопы

    Изучение явления радиоактивности привело к важному открытию: была выяснена природа атомных ядер.
    В результате наблюдения огромного числа радиоактивных превращений постепенно обнаружилось, что существуют вещества, тождественные по своим химическим свойствам, но имеющие совершенно различные радиоактивные свойства (т. е. распадающиеся по-разному).
    Их никак не удавалось разделить ни одним из известных химических способов.
    На этом основании Содди в 1911 г. высказал предположение о возможности существования элементов с одинаковыми химическими свойствами, но различающихся, в частности, своей радиоактивностью.
    Эти элементы нужно помещать в одну и ту же клетку периодической системы Д. И. Менделеева.
    Содди назвал их изотопами (т. е. занимающими одинаковые места).
    Предположение Содди получило блестящее подтверждение и глубокое толкование год спустя, когда Дж. Дж. Томсон провел точные измерения массы ионов неона методом отклонения их в электрическом и магнитном полях.
    Он обнаружил, что неон представляет собой смесь двух видов атомов.
    Бо?льшая часть их имеет относительную массу, равную 20.
    Но существует незначительная часть атомов с относительной атомной массой 22.
    В результате относительная атомная масса смеси была принята равной 20,2.
    Атомы, обладающие одними и теми же химическими свойствами, различались массой.
    Оба вида атомов неона, естественно, занимают одно и то же место в таблице Д. И. Менделеева и, следовательно, являются изотопами.
    Таким образом, изотопы могут различаться не только своими радиоактивными свойствами, но и массой.
    Именно поэтому у изотопов заряды атомных ядер одинаковы, а значит, число электронов в оболочках атомов и, следовательно, химические свойства изотопов одинаковы.
    Но массы ядер различны.
    Причем ядра могут быть как радиоактивными, так и стабильными.
    Различие свойств радиоактивных изотопов связано с тем, что их ядра имеют различную массу.
    В настоящее время установлено существование изотопов у большинства химических элементов.
    Некоторые элементы имеют только нестабильные (т. е. радиоактивные) изотопы.
    Изотопы есть у самого тяжелого из существующих в природе элементов — урана (относительные атомные массы 238, 235 и др.) и у самого легкого — водорода (относительные атомные массы 1, 2, 3).
    Особенно интересны изотопы водорода, так как они различаются по массе в 2 и 3 раза.
    Изотоп с относительной атомной массой 2 называется дейтерием.
    Он стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси (1 : 4500) в обычный водород.
    При соединении дейтерия с кислородом образуется так называемая тяжелая вода.
    Ее физические свойства заметно отличаются от свойств обычной воды.
    При нормальном атмосферном давлении она кипит при 101,2 °С и замерзает при 3,8 °С.
    Изотоп водорода с атомной массой 3 называется тритием.
    Он ?-радиоактивен, и его период полураспада около 12 лет.
    Существование изотопов доказывает, что заряд атомного ядра определяет не все свойства атома, а лишь его химические свойства и те физические свойства, которые зависят от периферии электронной оболочки, например размеры атома.
    Масса же атома и его радиоактивные свойства не определяются порядковым номером в таблице Д. И. Менделеева.
    Примечательно, что при точном измерении относительных атомных масс изотопов выяснилось, что они близки к целым числам.
    А вот атомные массы химических элементов иногда сильно отличаются от целых чисел.
    Так, относительная атомная масса хлора равна 35,5.
    Это значит, что в естественном состоянии химически чистое вещество представляет собой смесь изотопов в различных пропорциях.
    Целочисленность (приближенная) относительных атомных масс изотопов очень важна для выяснения строения атомного ядра.
    Большинство химических элементов имеют изотопы.
    Заряды атомных ядер изотопов одинаковы, но массы ядер различны.
    Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин

  21. Слив Ответить


    (1.9.2)
    Ядерное взаимодействие между ядром и частицей аппроксимируется отвесной линией. Нейтроны не имеют электрического заряда и потому беспрепятственно сближаются с ядрами, т.е. для них отсутствует кулоновский барьер (жирная горизонтальная линия на рис. 1.9.1б в области r > R), а ядерный потенциал у нейтрона оказывается таким же (с точностью до различия в массах), как и у протона (см. ниже п.5).
    4. Ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов и от взаимной ориентации орбитального и спинового моментов каждого из нуклонов. Это означает, что внутри ядра следует учитывать спин-орбитальное взаимодействие нуклонов. Зависимость ядерных сил от спина хорошо видна на примере дейтона, который имеет спин, равный единице, т.е. нейтрон и протон могут существовать в связанном состоянии только при параллельных спинах. При антипараллельных спинах нейтрон и протон не образует связанной системы, но притяжение между ними все же существует, что приводит к значительной эффективности рассеяния нейтронов на протонах. Поэтому рассеяние нейтронов на водородосодержащих средах оказывается также эффективным и широко используется для замедле­ния нейтронов в ядерных реакторах.
    Если нуклоны одноименные, то наибольшее притяжение между ними наблюдается в случае антипараллельной ориентации их спинов. Как раз этой особенностью объясняется эффект спаривания нуклонов (см. §1.4 п.3).
    5. Интенсивность ядерного взаимодействия не зависит от электрического заряда нуклонов. Ядерные силы, действующие между двумя протонами (р – р), протоном и нейтроном (р – n) и двумя нейтронами (n – n), находящихся в одинаковых пространственных и спиновых состояниях, одинаковы по величине. Это свойство называется зарядовой независимостью ядерных сил. Другими словами, протон и нейтрон оказываются равноправными относительно ядерного взаимодействия. Это, конечно, не означает, что кулоновское расталкивание протонов не играет роли внутри ядра или при рассеянии двух свободных протонов. На рис. 1.9.2 изображена схема энергетических уровней двух зеркальных ядер и . Зеркальными называются ядра изобаров, количество протонов в одном из которых равно количеству нейтронов в другом и наоборот. В зеркальных ядрах число (р – n) связей остается постоянным, а (р – р) связи заменены на (n – n) связи. Энергии основных состояний у них сдвинуты друг относительно друга на величину разности ?Uкул кулоновской энергии ядер и разность ?mнук нуклонов (mn > mp)

    (1.9.3)
    Из рисунка видно, что соответствующие уровни энергии (энергетические спектры ядер) очень близки, а спины и четности уровней совпадают. Однако, строго говоря, приведенная информация не является прямым доказательством зарядовой независимости ядерных сил, так как сопоставляются не процессы парных взаимодействий между нуклонами отдельных типов, а рассматриваются свойства сложных нуклонных систем. Непосредственное доказательство гипотезы о зарядовой независимости ядерных сил получено в прямых опытах по изучению (р – р) и (n – р) рассеяния.
    6. Постоянство средней энергии связи на нуклон (рис. 1.4.2) указывает на свойство насыщения ядерных сил. Это означает, что каждый нуклон в ядре взаимодействует с ограниченным числом соседних нуклонов. Свойство насыщения ядерных сил имеет парный характер. Например, пара нейтронов и пара протонов образует одно из самых прочных легких ядер – aчастицу. Присоединение еще одного нейтрона к a-частице оказывается невозможным.
    7. Ядерные силы имеют нецентральный характер. Центральными называются силы, которые действуют вдоль прямой, соединяющей взаимодействующие тела. Центральные силы могут зависеть от относительной ориентации спинов частиц, но не должны зависеть от ориентации спинов относительно линии, соединяющей частицы. Рассмотрим некоторые свойства простейшего ядра , которое имеет такое же значение в ядерной физике, как атом водорода – в атомной физике. Спины нейтрона и протона в дейтоне параллельны (см. п.4), поэтому магнитный момент дейтона должен определяться алгебраической сумме магнитных моментов протона и нейтрона, равной ?d + ?d = 2,79 – 1,91 = 0,88. Измеренное значение магнитного момента дейтона ?d = 0,86 (см. таблицу 1.6.1) немного отличается, хотя величина расхождения намного превышает точность измерений. Различие можно объяснить только наличием у протона орбитального момента. Дейтон имеет квадрупольный момент +0,0028·10?24 см2 (таблица 1.6.2), т.е. распределение плотности электрического заряда (а следовательно и ядерного вещества) отлично от сферически симметричного и вытянуто вдоль спина. Таким образом, система из протона и нейтрона имеет наибольшую энергию связи только тогда, когда спины обоих нуклонов направлены вдоль оси дейтона. Это свидетельствует о том, что ядерные силы в общем случае имеют нецентральный характер, так как они зависят не только от расстояния между нуклонами, но и от ориентации спинов относительно линии, соединяющей нуклоны. Макроскопическим аналогом такого явления служит характер взаимодействия между двумя одинаково намагниченными шариками (рис. 1.9.3). При параллельных векторах магнитной индукции каждого из шариков между ними могут действовать как силы притяжения, так и отталкивания, в зависимости от ориентации векторов магнитной индукции относительно вектора, проходящего через центры инерции шариков.
    8. Ядерные силы имеют обменный характер. Это означает, что они обусловлены (по крайней мере, частично) обменом третьей частицей, пи-мезоном. Такую гипотезу высказали в 1934 г. И. Тамм и в 1935 г. Х. Юкава по аналогии с представлением о взаимодействии между электрическими зарядами, принятым в квантовой электродинамике. Взаимодействие между зарядами осуществляется через электромагнитное поле, которое может быть представлено как совокупность квантов энергии – фотонов. Каждый заряд создает вокруг себя поле, непрерывно испуская и поглощая фотоны. Процесс взаимодействия между двумя зарядами заключается в обмене виртуальными, а не реальными фотонами. В квантовой механике виртуальными называются частицы, которые не могут быть обнаружены за время их существования. Рассмотрим на примере покоящегося электрона процесс создания им в окружающем пространстве электрического поля:

    (1.9.4)
    Превращение, описываемое уравнением (1.9.4), сопровождается нарушением закона сохранения энергии:

    (1.9.5)
    где – энергия виртуального фотона. Изменение энергии системы должно удовлетворять квантовомеханическому соотношению неопределенностей:

    (1.9.6)
    Если до истечения времени

    (1.9.7)
    виртуальный фотон будет поглощен этим же или другим электроном, то нарушение закона сохранения энергии не может быть обнаружено. Если же электрону сообщить дополнительную энергию (от электрического поля или при соударении с другим зарядом), то может быть испущен реальный фотон, время существования которого неограниченно.
    За время виртуальный фотон может передать взаимодействие между точками, разделенных расстоянием

    (1.9.8)
    Так как энергия виртуального фотона может быть сколь угодно мала (если ), то радиус действия электромагнитных сил неограничен. Однако, если масса покоя (предполагая, что ее скорость ) виртуальной частицей отлична от нуля, то радиус взаимодействия соответствующих сил будет ограничен величиной

    (1.9.9)
    Полагая в (1.9.9) радиус действия ядерных сил равным 1,3·10-13 см, получим, что кванты поля ядерных сил должны иметь массу покоя Таким образом, для образования свободных (не виртуальных) квантов ядерного поля необходима энергия не менее 140 Мэв. Эти частицы были впоследствии открыты в составе космических лучей (1947 г., Оккиалини и Поуэлл) и были названы ?-мезонами (пионами).
    Существует три типа пионов – положительный (?+) пион с зарядом е, отрицательный (?-) с зарядом –е и нейтральный (?0). Все три частицы нестабильны. Заряженные пионы имеют одинаковую массу, равную 273mе (140 МэВ), и время жизни ? = 2,55·10-8 с. Масса нейтрального пиона составляет 264mе (135 МэВ), а время жизни ? = 2,1·10-16 с. Спин любого пиона равен нулю.
    В результате аналогичных (1.9.4) виртуальных процессов

    (1.9.10)

    (1.9.11)

    (1.9.12)
    нуклон оказывается окруженным облаком виртуальных ?-мезонов, которые образуют поле ядерных сил. Поглощение этих пионов другими нуклонами приводит к сильному взаимодействию между нуклонами и происходит по одной из следующих схем:

    (1.9.13)

    (1.9.14)

    (1.9.15)
    Процесс (1.9.13) находит экспериментальное подтверждение в рассеянии нейтронов на протонах. После прохождения пучка нейтронов через мишень, содержащую ядра в пучке появляются протоны, которые имеют ту же энергию и направление движения, что и падающие нейтроны. Количество таких протонов на много превышает возможность образования протонов в результате упругого взаимодействия нейтронов с протонами мишени. Соответствующее количество нейтронов обнаруживается и в мишени. Остается признать, что часть нейтронов, пролетая вблизи ядер захватывает виртуальные ?+-мезоны и превращается в протоны.
    Орбитальное движение ? –мезонов в процессе (1.9.11) вызывает возникновение у нейтрона отрицательного магнитного момента (см. таб. 1.6.1), так как нейтрон часть времени проводит в виртуальном состоянии . Аномальный магнитный момент протона (вместо одного ядерного магнетона, см. §1.6 п.2) можно также объяснить орбитальным движением ?+-мезонов в течение того времени, когда протон находится в виртуальном состоянии (1.9.10).
    Оценим время виртуального процесса как

    (1.9.16)
    где радиус действия ядерных сил, а v – скорость пиона. Полагая кинетическую энергию пиона равной средней энергии связи нуклона в ядре МэВ, получим

    (1.9.17)
    Эту величину часто называют характерным временем ядерного взаимодействия.
    В рамках обменной теории оказывается маловероятным обмен пионами между одним и двумя другими нуклонами, находящимися в пределе радиуса действия ядерных сил. Отсюда вытекает свойство насыщения ядерных сил со всеми вытекающими последствиями: постоянство удельной энергии связи, рост объема ядра пропорционально числу частиц нуклонов в ядре, независимость потенциала от координаты внутри ядра. Мезонная теория содержит в своей основе глубокое и правильное описание природы ядерных сил, но уравнения этой теории настолько сложны математически, что до настоящего времени не существует надежных способов решения этих уравнений. Это является одной из причин создания большого числа разнообразных моделей ядра в ядерной физике (см. гл.2 §1).

  22. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *