Как изменяется свариваемость с уменьшением содержания углерода в стали?

17 ответов на вопрос “Как изменяется свариваемость с уменьшением содержания углерода в стали?”

  1. Nalkree Ответить

    Многие низкоуглеродистые стали легко свариваются. Сварка среднеуглеродистых и высокоуглеродистых сталей представляет собой более трудную задачу, так при сварке зоне термического влияния сварки может образовываться мартенсит, что приведет к значительному снижению вязкости сварного шва.
    Для повышения свариваемости сталей предпринимают различные меры, такие как подогрев материала или минимизация поглощения сталью водорода. Поглощение сталью водорода делает сталь более хрупкой.

    Свариваемость низкоуглеродистых сталей

    В низкоуглеродистых сталях прочность сварных участков является более высокой, чем у основного металла. Это связано с тем, что при охлаждении зоны термического влияния сварки в ней образуется мелкодисперсная перлитная структура. Кроме того, остаточный аустенит вдоль границ перлитных зерен сдерживает кристаллизацию и поэтому способствует сохранению мелкого зерна, что также дает вклад в повышение прочности сварного участка.

    Превращения стали в зоне сварного шва

    В ходе сварки сталь вблизи сварного шва разогревается выше критической температуры А1 и образуется аустенит (рисунок а). При охлаждении аустенит в этой нагретой зоне превращается в новую структуру, тип которой зависит от скорости охлаждения и диаграммы термокинетического превращения стали.
    Обыкновенная низкоуглеродистая сталь имеет настолько низкую закаливаемость, что при обычных скоростях охлаждения на воздухе мартенсит почти никогда не образуется (рисунок б).
    Легированную же сталь перед сваркой специально подогревают, чтобы снизить скорость охлаждения сварного шва или подвергают сварное соединение дополнительной термической обработке для отпуска образовавшегося мартенсита (рисунок в).
    Рисунок – Превращения стали в зоне термического влияния сварки:
    а) структура стали при максимальной температуре нагрева в зоне сварки;
    б) структура стали  с низкой закаливаемостью в зоне сварки после охлаждения;
    в) структура стали с высокой закаливаемостью в зоне сварки после охлаждения.

     Свариваемость закаленной стали

    Свариваемость стали, которая перед  сваркой подвергалась закалке и отпуску, имеет два рода проблем. Во-первых, участок зоны термического влияния сварного шва, который нагревается выше температуры А1, может при охлаждении образовывать мартенсит. Во-вторых, участок зоны термического влияния сварного шва, который нагрелся ниже температуры А1, может подвергнуться чрезмерному отпуску. По-хорошему, сталь в закаленном и отпущенном состоянии сваривать нельзя.

  2. Dik Ответить

    Возможности и условия образования качественного сварного соединения определяются многими факторами, важнейшими из которых являются:
    характеристики и свойства свариваемых металлов;
    выбор электродного и присадочного металла;
    режимы сваривания;
    температура нагревания и т. д.
    На свариваемость существенно влияет химический состав стали, в частности, содержание углерода и легирующих элементов. Воздействие отдельных элементов проявляется по-разному – особенно в соединении с углеродом.
    Среди главных характеристик свариваемости сталей стоит выделить склонность к образованию трещин и механические свойства сварного соединения. Их можно определить путем сваривания контрольных образцов.

    Формула определения свариваемости стали

    Если известен химический состав стали, можно определить ее свариваемость по эквивалентному содержанию углерода. Для этого используют формулу:
    С экв. = С + Mn/20 + Ni/15 + (Cr + Mo + V)/10.
    Цифры в этой формуле – это постоянные величины, а символы каждого из химических элементов обозначают максимальное включение его в сталь определенной марки, выражаемое в процентах.
    Эквивалентное содержание углерода, полученное по этой формуле, является указанием на свариваемость сталей, которые можно условно разделить на четыре группы:
    хорошо свариваемые (Сэкв не превышает 0,25%);
    удовлетворительно свариваемые (Сэкв = 0,25% – 0,35%);
    ограниченно свариваемые (Сэкв = 0,35 – 0,45%);
    плохо свариваемые (Сэкв превышает 0,45%).
    О хорошей свариваемости низкоуглеродистых сталей можно судить по прочному сварному соединению с основным металлом без трещин и снижения пластичности в околошовной зоне.
    Свариваемость легированных сталей оценивается по возможности получения соединений, устойчивых к образованию трещин и закаленных структур, а также по снижению прочности, коррозии и так далее.
    Однородные металлы свариваются гораздо легче, чем разнородные. Металл шва и металл зоны термического воздействия являются неоднородными. Признак неудовлетворительной свариваемости – склонность к образованию трещин, категорически недопустимых в сварных соединениях.
    Характеристикой свариваемости термически упроченных сталей является склонность к снижению прочности в зоне термического воздействия при температуре 400-720? C, в зависимости от температуры отпуска стали при ее изготовлении на заводе. Таким образом, изготовление прочной сварной конструкции возможно только при условии детального изучения и учета свариваемости стали.

    Влияние основных элементов на свариваемость сталей

    Углерод, если его в стали менее 0,25%, свариваемость не ухудшает, а при большем его содержании свариваемость ухудшается, поскольку в зоне термического воздействия образуются закаленные структуры, что имеет следствием образование трещин. Если повышенное содержание углерода отмечается в присадочном материале, это приводит к пористости шва.
    Марганец при его содержании не более 0,8% свариваемость не ухудшает, но при превышении этого показателя велики риски появления трещин из-за того, что этот элемент способствует закаленности стали.
    Кремний в пределах 0,02–0,35% никак не воздействует на качество сваривания, а при содержании от 0,8 до 1,5% существенно затрудняет сварку по причине повышенной жидкотекучести и образования тугоплавких оксидов кремния.
    Ванадий способствует закаленности стали, что усложняет процесс сварки. При сваривании ванадий, активно окисляясь, выгорает.
    Вольфрам повышает прочность стали и усложняет сварку по причине сильного окисления.
    Никель повышает пластичность и мощность, при этом не ухудшая свариваемость стали.
    Молибден при сварке активно окисляется и выгорает, способствуя образованию трещин.
    Хром, образующий тугоплавкие карбиды, значительно затрудняет сварку.
    Ниобий и титан в процессе сварки соединяются с углеродом и препятствуют образованию карбида хрома, способствуя улучшению свариваемости.
    Медь улучшает свариваемость, повышая прочность и пластичность стали, делая ее более устойчивой к коррозии.
    Кислород работает на снижение пластичности и прочности стали, ухудшая ее свариваемость.
    Азот обладает способностью создавать нитриды, то есть химические соединения с железом, которые повышают твердость и прочность, существенно снижая показатели пластичности стали.
    Водород негативно сказывается на свариваемости, поскольку он накапливается в шве, вызывая образование пор и мелких трещин.
    Фосфор – вредная добавка, повышающая твердость стали и делающая ее более хрупкой, что приводит к образованию холодных трещин.
    Сера крайне нежелательна, поскольку она способствует быстрому образованию горячих трещин. При превышении содержания серы свариваемость резко ухудшается.

  3. litlle Princess Ответить

    Низкоуглеродистые стали вообще отличаются хорошей свариваемостью. Снижать свариваемость могут вредные примеси, если содержание их превышает норму. Вредные примеси могут ухудшать свариваемость даже и при среднем содержании, не выходящем за норму, если они образуют местные скопления, например вследствие ликвации. Вредными для сварки элементами в низкоуглеродистой стали могут являться углерод, фосфор и сера, причем последняя особенно склонна к ликвации с образованием местных скоплений.
    Отрицательное влияние на свариваемость может оказывать также засоренность металла газами и неметаллическими включениями. Засоренность металла вредными примесями зависит от способа его производства, и о ней частично можно судить по маркировке металла: сталь повышенного качества сваривается лучше, чем сталь обычного качества соответствующей марки; сталь мартеновская — лучше, чем сталь бессемеровская, а сталь мартеновская спокойная — лучше, чем кипящая. При изготовлении ответственных сварных изделий указанные отличия в свариваемости низкоуглеродистых сталей должны обязательно приниматься во внимание и учитываться при выборе марки основного металла.
    Углеродистые стали, содержащие более 0,25% углерода, обладают пониженной свариваемостью по сравнению с низкоуглеродистыми, причем свариваемость постепенно снижается по мере повышения содержания углерода. Стали с повышенным содержанием углерода легко закаливаются, что ведет к получению твердых хрупких закалочных структур в зоне сварки и может сопровождаться образованием трещин. С повышением содержания углерода растет склонность металла к перегреву в зоне сварки. Увеличенное содержание углерода усиливает процесс его выгорания с образованием газообразной окиси углерода, вызывающей вскипание ванны и могущей приводить к значительной пористости наплавленного металла.
    При содержании свыше 0,4—0,5% С сварка стали становится одной из сложных задач сварочной техники. Углеродистые стали вообще обладают пониженной свариваемостью и, если это возможно, рекомендуется заменять их низколегированными конструкционными сталями, которые дают ту же прочность при значительно меньшем содержании углерода за счет других легирующих элементов. При сварке углеродистых сталей плавлением обычно не придерживаются соответствия химического состава присадочного и основного металлов, стремясь получить наплавленный металл равнопрочным с основным за счет легирования марганцем, кремнием и др. при пониженном содержании углерода.
    Сварка углеродистых сталей часто выполняется с предварительным подогревом и последующей термообработкой, причем, если возможно, во многих случаях стремятся совместить термообработку с процессом сварки, например, с газовой сваркой мелких деталей, с газопрессовой, точечной, со стыковой контактной сваркой и т. д.
    Большинство низколегированных конструкционных сталей обладает удовлетворительной свариваемостью. Ввиду возросшего значения сварки конструкционная низколегированная сталь новых марок, как правило, отличается удовлетворительной свариваемостью. Если же испытания пробных партий стали показывают недостаточно удовлетворительную свариваемость, то обычно для улучшения свариваемости изготовители корректируют состав стали. В некоторых случаях требуется небольшой предварительный подогрев стали до 100—200 °С, реже приходится прибегать к последующей термообработке.
    По структуре низколегированные стали относятся обычно к перлитному классу. Большое разнообразие химического состава низколегированных сталей весьма затрудняет получение одинакового состава наплавленного и основного металлов при сварке плавлением, что требует большого разнообразия присадочных материалов. Поэтому, за исключением некоторых особых случаев, когда требуется соответствие химического состава основного и наплавленного металлов (например, получение устойчивости против коррозии, крипоустойчивости и т. п.), обычно ограничиваются получением необходимых механических свойств наплавленного металла, не принимая во внимание его химический состав. Это позволяет при сварке многих сортов сталей пользоваться немногими видами присадочных материалов, что является существенным практическим преимуществом. Например, электродами УОНИ-13 успешно свариваются десятки марок углеродистых и низколегированных сталей. В сварных конструкциях низколегированные стали обычно предпочитают углеродистым той же прочности. Для установления необходимости небольшого предварительного подогрева и последующего отпуска часто принимают во внимание максимальную твердость металла зоны влияния. Если твердость не превышает НВ 200—250, то подогрев и отпуск не требуются, при твердости НВ 250—300 подогрев или отпуск желательны, при твердости выше НВ 300—350 — обязательны.
    Из высоколегированных сталей обладают хорошей свариваемостью и находят широкое применение в сварных конструкциях стали аустенитного класса. Наиболее широко применяются хромо-никелевые аустенитные стали, например общеизвестная нержавеющая сталь 18-8 (18% Сг и 8% Ni). Хромоникелевые аустенитные стали применяются как нержавеющие, а при более высоком легировании, например при содержании 25% Сг и 20% Ni, они являются и жароупорными сталями. Содержание углерода в хро-моникелевых аустенитных сталях должно быть минимальным, не превышающим 0,10—0,15%, иначе возможно выпадение карбидов хрома, резко снижающее ценные свойства аустенитной стали.
    Сварка аустенитных сталей должна, как правило, сохранить структуру аустепита в сварном соединении и связанные с ценные свойства: высокое сопротивление коррозии, высокую пластичность и т. д. Распад аустенита сопровождается выпадением карбидов, образуемых освобождающимся из раствора избыточным углеродом. Распаду аустенита способствуют нагрев металла до температур ниже точки аустенитного превращения, уменьшение содержания аустенитообразующих элементов, повышение содержания углерода в низкоуглеродистых аустенитных сталях, загрязнение металла примесями и т. д. Поэтому при сварке аустенитных сталей следует сокращать до минимума продолжительность нагрева и количество вводимого тепла и применять возможно более интенсивный отвод тепла от места сварки — посредством медных подкладок, водяного охлаждения и т. д.
    Аустенитная сталь, предназначенная для изготовления сварных изделий, должна быть высшего качества, с минимальным количеством загрязнений. Поскольку распад хромоникелевого аустенита вызывается образованием и выпадением карбидов хрома, стойкость аустенита может быть повышена введением в металл карбидообразователей более сильных, чем хром. Для этой цели оказались пригодными титан и ниобий, в особенности первый элемент, к тому же не являющийся дефицитным. Титан весьма прочно связывает освобождающийся углерод, не позволяя образовываться карбидам хрома, и тем самым предотвращает распад аустенита. Для сварки рекомендуется применять аустенитную сталь с небольшим содержанием титана. Хорошей свариваемостью отличается, например, нержавеющая аустенитная хромо-никелевая сталь Х18Н9Т типа 18-8 с небольшим количеством титана (не свыше 0,8%).
    Более строгие требования, естественно, предъявляются к присадочному металлу, который должен быть аустенитным, желательно с некоторым избытком легирующих элементов, с учетом возможного их выгорания при сварке и со стабилизирующими добавками — титаном или ниобием. ГОСТ 2246—60 предусматривает аустенитную присадочную проволоку для сварки нержавеющих и жароупорных сталей. Аустенитная присадочная проволока иногда применяется и для сварки сталей мартенсигного класса. Дефицитность и высокая стоимость аустенитной хромоникелевой проволоки заставляют разрабатывать более дешевые заменители.
    Стали мартенситного класса, отличающиеся высокой прочностью и твердостью, находят применение как инструментальные стали, как броневые и т. д. Сварка их связана с известными трудностями. Стали легко и глубоко закаливаются, поэтому после сварки обычно необходима последующая термообработка, заключающаяся в низком или высоком отпуске. Часто необходим также предварительный подогрев изделия. Существенное значение может иметь предшествующая термообработка изделия перед сваркой; желательно по возможности равномерное мелкодисперсное распределение структурных составляющих. При сварке плавлением часто отказываются от сходства наплавленного и основного металла не только по химическому составу, но и по механическим свойствам, стремясь в первую очередь обеспечить повышенную пластичность наплавленного металла и устранить образование в нем трещин. Для этой цели при дуговой сварке довольно часто применяют, например, электроды из аустенитной стали.
    Стали карбидного класса применяют главным образом как инструментальные, и на практике чаще приходится иметь дело не со сваркой, а с наплавкой этих сталей при изготовлении и восстановлении металлорежущего инструмента, штампов и т. п. Предварительный подогрев и последующая термообработка для этих сталей по большей части обязательны. Для дуговой сварки и наплавки применяются электродные стержни легированных сталей, близких по свойствам к основному металлу, а также стержни низкоуглеродистой стали с легирующими покрытиями, содержащими соответствующие ферросплавы. По окончании сварки или наплавки обычно производится термообработка, состоящая из закалки и отжига.
    Стали ферритного класса отличаются тем, что в них совершенно подавлено или ослаблено образование аустенита при высоких температурах за счет введения больших количеств стабилизаторов феррита. Существенное практическое значение имеют хромистые ферригные стали с содержанием 16—30% Сг и не свыше 0,1—0,2% С, отличающиеся кислотоупорностью и исключительной жаростойкостью. Стали могут быть сварены с присадочным металлом того же состава или аустенитным. Обязателен предварительный подогрев; по окончании сварки производится продолжительный отжиг в течение нескольких часов, за которым следует быстрое охлаждение.
    Для автоматической дуговой сварки легированных сталей открывает новые возможности применение керамических флюсов.
    —-
    Свариваемость сталей зависит от степени легирования, структуры и содержания примесей. Наибольшее влияние на свариваемость сталей оказывает углерод. С увеличением содержания углерода, а также ряда других легирующих элементов свариваемость сталей ухудшается. Для сварки конструкций в основном применяют конструкционные низкоуглеродистые, низколегированные, а также среднелегированные стали.
    Главными трудностями при сварке этих сталей являются:
    – чувствительность к закаливаемости и образованию холодных трещин;
    – склонность к образованию- горячих трещин;
    – обеспечение равнопрочности сварного соединения.
    В зависимости от эквивалентного содержания углерода и связанной с этим склонности к закалке и образованию холодных трещин стали по свариваемости делят на четыре группы: хорошо, удовлетворительно, ограниченно и плохо сваривающиеся стали.

    Свариваемостью называется способность стали образовывать сварное соединение без дефектов, имеющее физические и механические свойства, близкие к свойствам основного металла. Под свариваемостью понимается отношение стали к конкретному способу и режиму сварки.
    Под сварным соединением понимается металл шва и околошовная зона основного металла. Околошовной зоной называется узкий участок основного металла вдоль шва, который в процессе сварки не расплавлялся, но подвергался воздействию высоких температур. У некоторых сталей на участке околошовной зоны при нагреве до критической температуры (723°С) и выше происходят структурные фазовые превращения (изменение формы и размеров зерен). Это явление называется вторичной кристаллизацией. Участок околошовной зоны таких сталей, на котором произошла вто-р^чная кристаллизация, называется зоной термического влияния. При ручной дуговой сварке покрытыми электродами ширина зоны термического влияния мсжет составлять 3—6 мм. В металле шва могут возникнуть дефекты — трещины и поры. На участке зоны термического влияния также могут появляться трещины.
    Оценка степени свариваемости. Степень свариваемости данной стали тем выше, чем больше способов сварки может быть к ней применено и чем шире пределы режимов каждого способа.
    Свариваемость сталей оценивают по следующим, наиболее характерным показателям:
    1) Стойкость металла шва против образования горячих трешки;
    2) Стойкость сварного соединения против образования холодных трещин;
    3) Структура шва и околошовной зоны, их твердость;
    4) Прочность, пластичность и вязкость сварного соединения;
    5) Свойства сварного соединения, обусловленные эксплуатационными требованиями (жаростойкость, стойкость против химической коррозии и т. д.).
    Из перечисленных показателей в каждом конкретном случае определяют не все, а только те, которые имеют решающее значение для данной конструкции. В зависимости от условий эксплуатации могут определяться другие показатели свариваемости. Но во всех случаях основным показателем свариваемости сталей является стойкость сварного соединения против образования горячих и холодных трещин.
    Горячие и холодные трещины. Трещины являются самым серьезным дефектом сварки, часто приводящим к неисправимому браку. Различают трещины горячие и холодные.
    Горячие трещины возникают в сварных соединениях при температурах свыше 1000°С в период кристаллизации. В большинстве случаев они возникают по границам зерен металла.
    Причины образования горячих трещин:
    а) неправильное, жесткое закрепление свариваемых деталей, в результате чего в металле появляются растягивающие усилия;
    б) уменьшение объема металла при затвердевании, вызывающее образование усадочных раковин и возникновение внутренних остаточных напряжений.
    С увеличением содержания в стали элементов, образующих химические соединения с низкой температурой плавления (сера, хром, молибден), вероятность образования горячих трещин увеличивается.
    Холодные трещины возникают в сварных соединениях при температурах ниже 1000°С в процессе остывания до окружающей температуры, а также появляются в условиях эксплуатации. Они возникают, как правило, по кристаллам (зернам).
    Образование холодных трещин при сварке вызывается резкими изменениями механических свойств, характером напряженного состояния в процессе структурных превращений (вторичная кристаллизация).
    Причины образования холодных трещин:
    а) повышенное содержание в стали углерода и легирующих элементов, вызывающих закалку и местные структурные напряжения;
    б) растягивающие напряжения, вызванные неравномерным нагревом и остыванием при сварке.
    Загрязнение основного металла фосфором и насыщение металла шва водородом в процессе сварки увеличивают склонность к образованию холодных трещин.
    Влияние химического состава сталей на свариваемость. На свариваемость сталей решающее влияние оказывает химический состав. От него зависят физические свойства стали и структура, которые могут измениться под влиянием нагрева и охлаждения в процессе сварки.
    Повышенное содержание в стали углерода, марганца (Г), кремния (С), хрома (X), ванадия (Ф), вольфрама (В) улучшает эксплуатационные характеристики сталей, но затрудняет сварку конструкций из таких сталей.
    Присутствие в стали меди (Д), титана (Т), ниобия (Б) повышает эксплуатационные характеристики сталей и одновременно положительно отражается на свариваемости таких сталей.
    Никель (Н) на свариваемость сталей не влияет. Его присутствие повышает прочность, пластичность стали, способствует получению мелкозернистой структуры ее.
    Классификация сталей по степени свариваемости. По степени свариваемости все стали условно делят на четыре группы: хорошо, удовлетворительно, ограниченно и плохо сваривающиеся.
    Хорошо сваривающиеся стали свариваются любыми способами без применения сложной технологии. К этой группе относятся малоуглеродистые стали с нормальным содержанием марганца, кремния, хрома и низколегированные стали с содержанием углерода до 0,2%. Такие стали свариваются в общем случае без предварительного подогрева. Сварка при отрицательных температурах, особенно конструкций из толстого металла, требует иногда предварительного подогрева до температуры 100—160 °С. Необходимость предварительного подогрева устанавливается в каждом конкретном случае. Примером таких сталей служат: углеродистые обыкновенного качества (Ст 2пе, Ст 2сп, Ст Зпс, Ст Зсп, Ст 4пс, Ст 4сп); углеродистые качественные конструкционные (10, 15, 20); низколегированные конструкционные (09Г2С, 09Г2, 10Г2С1, 12ГС, 16ГС, 14ХГС, 10ХСНД).
    Удовлетворительно сваривающиеся стали требуют строгого соблюдения режима сварки, тщательной очистки свариваемых кромок, нормальных температурных условий (температура выше нуля, отсутствие ветра). К этой группе относятся среднеуглеродистые стали с содержанием углерода до 0,35% и низколегированные стали с содержанием углерода до 0,3%- Такие стали требуют предварительного подогрева до температуры 150—250°С при сварке в условиях отрицательных температур. Некоторые из таких сталей в зависимости от условий эксплуатации и ответственности конструкции после сварки требуют последующей термической обработки (отжиг, высокий отпуск). Примером таких сталей служат углеродистые обыкновенного качества (Ст 5пс, Ст 5сп, Ст 5Гпс); углеродистые качественные конструкционные (30, 35); низколегированные конструкционные (15ХСНД, 25Г2С, 20ХГ2С).
    Ограниченно сваривающиеся стали склонны к образованию трещин при сварке в обычных нормальных условиях. Такие стали свариваются с предварительным подогревом до температуры 250— 350°С. К этой группе относятся среднеуглеродистые стали с содержанием углерода до 0,5%, низколегированные стали с повышенным содержанием легирующих элементов, некоторые легированные стали. После сварки таких сталей рекомендуется отжиг или высокий отпуск, а при сварке ответственных конструкций отжиг и отпуск обязательны. Примеры таких сталей: углеродистые обыкновенного качества (Ст бпс); углеродистые качественные конструкционные (40, 45, 50); низколегированные и легированные конструкционные (ЗО-.ХМА, 30 ХГС, 35 ХМ, 35 ХГСА).
    Плохо сваривающиеся стали образуют трещины при с-варке в обычных условиях. Такие стали сваривают определенными способностями с предварительным и сопутствующим подогревом до температуры 300—450 °С и последующей термообработкой. К этой группе относятся углеродистые стали с содержанием углерода свыше, 0,5%, низколегированные стали с повышенным содержанием марганца, кремния, большинство легированных специальных сталей. Примером таких сталей служат: углеродистые качественные конструкционные (60, 65, 70); низколегированные и легированные конструкционные (40Г2, 50Г2, 40ХГ, 40ХГР, 40ХФА, 40ХС).
    Определение степени свариваемости. Знание показателей свариваемости различных сталей облегчает выбор ориентировочной технологии сварки, которая обязательно проверяется на образцах (технологических пробах).
    Для определения степени свариваемости сталей разработано много различных практических способов в зависимости от требований, предъявляемых к сварным соединениям и условиям их эксплуатации.
    Одним из распространенных способов определения свариваемости является технологическая проба по методу Кировского завода (г. Ленинград). Из испытуемой стали изготавливается пластина 130X130X12 мм. В ней делается выточка диаметром 80 мм, в которой наплавляется по диаметру валик. Нижняя часть пластины (донышко с наплавленным валиком) охлаждается воздухом, водой или подогревается. После наплавки валика пластину выдерживают двое суток, затем разрезают, шлифуют и протравливают кислотой для выявления трещин.
    Если при охлаждении водой пластина не дает трещин, то сталь считается хорошо сваривающейся.
    Удовлетворительно сваривающаяся сталь дает трещины при охлаждении водой и не дает трещин при охлаждении на воздуха.

    Рис. 1. Технологическая проба Кировского завода

    Рис. 2. Технологическая проба МВТУ
    Если пластина дает трещины при охлаждении на воздухе и не дает трещин при предварительном подогреве до 150 °С, то сталь считается ограниченно сваривающейся.
    Технологическая листовая проба МВТУ дает качественную оценку сопротивляемости шва образованию горячих трещин. Пластины различной ширины соединяются прихватками. На пластины наплавляется валик в направлении от узких пластин к более широким. Трещины образуются в местах пересечения стыка пластин наплавленным валиком. Показателем стойкости является наименьшая ширина пластины, при которой горячие трещины не образуются.
    Характерным приближенные показателем свариваемости стали является твердость околошовной зоны. Если твердость не превышает 300 единиц по Бринеллю, значит, сварку такой стали можно вести без подогрева. При большей величине твердости требуется предварительный подогрев основного металла.

  4. Не важно Ответить

    Сера(S) в количествах, превышающих предельно допустимые, ухудшает свариваемость стали, вызывает появление Горячих трещин.
    Фосфор(Р) в концентрациях, превышающих предельно до­пустимые, ухудшает свариваемость стали, вызывает появление холодных трещин.
    Кислород(О) содержится в сплаве в виде оксида железа, ухуд­шает свариваемость стали, снижая ее механические свойства.
    Азот(N) образует с железом химические соединения (нитри­ды) в металле сварочной ванны при ее охлаждении, что снижает пластичность стали.
    Водород(Н) является вредной примесью. Скапливаясь в от­дельных местах сварного шва, он образует газовые пузырьки, вызывает появление пористости и мелких трещин.
    Свариваемость стали можно приближенно определить по коли­честву легирующих элементов, эквивалентных (приравненных) углероду:
    „ „ Мп Si Cr Ni Мо V Си Р
    Сэ =С +——- + — + —+—+—+— + — + —,
    6 24 5 10 4 5 13 2
    где Сэ — эквивалент углерода, %; С, Мп, Si, Cr, Ni, Мо, V, Си, Р — содержание в стали легирующих элементов, %.
    Легирующие элементы в различной степени влияют на свари­ваемость сталей. Поэтому их воздействие сравнивают с влиянием углерода — приводят к эквиваленту углерода. Чтобы опреде­лить Сэ, в формулу вместо символов подставляется процентное содержание легирующих элементов. При Сэ< 0,35 % сталь хо­рошо сваривается. Если толщина свариваемых элементов менее 8 мм, то сталь хорошо сваривается при Сэ 0,35 % требуется предваритель­ный подогрев, другие технологические методы сварки или по­следующая термообработка.
    Как видно из приведенной выше формулы, увеличение в стали содержания кремния, никеля, меди в меньшей степени влияет на ухудшение свариваемости. Ухудшают свариваемость стали увеличение содержания марганца, хрома, молибдена, ванадия. Значительно ухудшает свариваемость увеличение содержания фосфора (более 0,05 %). Наличие фосфора в количестве 0,05 % и менее в формуле не учитывается.
    При суммарном содержании в стали примесей марганца, крем­ния, хрома и никеля меньше 1 % сталь хорошо сваривается, если содержание углерода не превышает 0,25 %, удовлетворительно — 0,25…0,35; ограниченно — 0,35…0,45 и плохо — свыше 0,45 % углерода.
    Если суммарное содержание указанных примесей составляет 1…3 %, сталь сваривается хорошо при содержании до 0,20 % углерода, удовлетворительно — при 0,2…0,3, ограниченно — при 0,3…0,4 и плохо — при содержании более 0,4 % углерода.
    При суммарном содержании указанных примесей в стали свы­ше 3 % сталь хорошо сваривается, если количество углерода не превышает 0,18 %, удовлетворительно — 0,18…0,28, ограничен­но — 0,28…0,38 и плохо, если в стали более 0,38 % углерода.
    Формула эквивалентного углерода в сталях получена опыт­ным путем и не всегда отражает точную картину взаимодействия различных элементов в сварочной ванне и изменения структуры при охлаждении металла шва. Поэтому для определения свари­ваемости обычно сваривают специальные образцы, исследуют микроструктуру наплавленного металла и т.д.
    Особую сложность представляет сварка металлов, разли­чающихся своими свойствами. Разные температуры плавления, склонность к образованию хрупких соединений и другие причи­ны вынуждают разрабатывать специальные приемы сварки, осо­бые сварочные материалы.
    Для оценки свариваемости металла берут, например, две пластины и сваривают их на нескольких режимах. Затем изго­товляют образцы и определяют ударную вязкость, критическую температуру хрупкости, зернистость, твердость наплавленного металла и зоны термического влияния.
    При оценке свариваемости стали помимо химического состава учитываются: форма сварной конструкции, толщина металла и его механические свойства, количество и расположение швов в конструкции, технологические особенности сварки и другие характеристики.

  5. KIBOTU Ответить

    Молибденспособствует измельчению кристаллов (зерен стали), повышает прочность стали. Особенно это важно при ударных нагрузках и высоких температурах, но молибден вызывает появление трещин в наплавленном металле и в зоне термического влияния. В процессе сварки молибден активно окисляется и выгорает. В ответственных сварных конструкциях содержание молибдена не должно превышать 1%.
    Ванадий способствует закаливаемости стали, чем, затрудняет сварку; он активно окисляется и выгорает. В ответственных сварных конструкциях содержание ванадия не должно превышать 1%.
    Вольфрамувеличивает твердость стали и ее износостойкость при высоких температурах (красностойкость), но затрудняет процесс сварки ввиду сильного окисления. В состав стали, подлежащей сварке, вольфрам не вводится.
    Кислород активно окисляет расплавленное железо, образуя хрупкие структуры, он окисляет и легирующие элементы. Расплавленный металл сварного шва необходимо защищать от взаимодействия с кислородом воздуха. Это является одной из функций электродного покрытия, которое при сгорании выделяет защитный (углекислый) газ. Для защиты от окисления сварку ответственных конструкций из нержавеющих сталей и цветных металлов осуществляют в таких защитных газах, как аргон, гелий.
    Водород.При сварке атомы водорода легко растворяются в расплавленном металле, а при затвердевании металла вновь соединяются в молекулы, которые собираются в разных местах шва, образуя газовые пузырьки. Водород вызывает в металле шва пористость и мелкие трещины, он повышает хрупкость стали, снижая ее прочность и вязкость. Водород, как и кислород, который может соединиться с расплавленным металлом шва, находится в окружающем воздухе, влаге, оставшейся в непросушенном электродном покрытии, во флюсах и на поверхности свариваемого металла в виде воды, снега, инея. Водород также содержится и в ржавчине, которая может быть на сварочной проволоке или кромках заготовок. Защита расплавленного металла шва от водорода осуществляется одновременно с защитой от кислорода.
    Наименее насыщается металл водородом при сварке постоянным током обратной полярности, большее насыщение – при сварке переменным током.
    Никель, содержащийся в легированных сталях, значительно улучшает их свариваемость: он измельчает зерно, придает шву пластичность и прочность. При сварке никелесодержащих сталей требуется надежная защита их от воздействия кислорода воздуха. Никель дорог. Применение никелевых сталей должно быть технико-экономически обосновано.
    Содержание никеля в сталях в количестве 2-3% значительно улучшает ее свариваемость. В сталях для ответственных конструкций, предназначенных для восприятия больших нагрузок, рекомендуется содержание никеля до 8-10%.
    Титан,содержащийся в легированных сталях, измельчает зерно, повышает пластичность шва и качество соединения. Нержавеющие стали для ответственных сварных конструкций должны содержать в своем составе помимо никеля, еще 4 -5% титана.
    На свариваемость стали также, влияют режимы и способы сварки.
    Чтобы правильно выбрать способ и режимы сварки, исключающие возникновение дефектов, необходимо знать технологическую свариваемость металла. Это его реакция на тепловые воздействия в околошовной зоне без расплавления, а также металлургические процессы плавления и последующей кристаллизации металла. По известному химическому составу стали можно прогнозировать, какова ее технологическая свариваемость. Но точность таких прогнозов не всегда надежна и, полагаться на них, можно при сварке небольшого количества малоответственных изделий. В случае изготовления значительного числа ответственных сварных конструкций, необходимо экспериментально определять технологическую свариваемость той партии металла, из которой будут изготовлены изделия. Способыопределения технологической свариваемости можно разделить на две группы.
    Первая – когда прямым способом устанавливают свариваемость путем сварки одного или нескольких образцов изделия. При этом узнают о склонности металла к закалке или отсутствии таковой, о прочности и пластичности металла, об изменении микроструктуры. Полученные результаты отличаются высокой достоверностью;
    Вторая– группа способов определения свариваемости проще и основана на имитации сварочных процессов. При этом косвенным способом, например, термообработкой при температурах, близких к сварочному процессу, определяют изменения в металле. Полнота и достоверность такой информации значительно ниже.
    По свариваемости стали подразделяются на четыре группы, характеризующиеся способностью металлов образовывать при сварке соединения с заданными свойствами – прочные, герметичные, без хрупкости.
    Первая группа – хорошо свариваемые стали, образующие сварные соединения высокого качества без применения особых приемов и подогрева до и после сварки. Это – низкоуглеродистые, низко- и среднелегированные стали. Например, от БСт1 до БСт4; от ВСт1 до ВСт4; от стали 08 до стали 25; стали 15Х; 20ХГА, 12ХН4А; 10ХСНД; 20Х23Н18Т; 12Х18Н9Т и другие требуемого химического состава.
    Вторая группа – стали удовлетворительно свариваемые, которые для получения сварных соединений высокого качества требуют строгого соблюдения режимов сварки, применения специального присадочного материала, особо тщательной очистки свариваемых кромок, а в некоторых случаях – предварительного и сопутствующего подогрева до 1500 С, последующий отжиг. Например, это стали БСт5сп; БСт5Гсп; сталь 30; сталь 35; сталь 20ХНЗА; сталь 12ХА и др.
    Третья группа – стали с ограниченной свариваемостью в обычных условиях и склонные к образованию трещин. Содержат углерод от 0,35% до 0,5%, это могут быть и высоколегированные стали. Во избежание образования трещин их перед сваркой подвергают подогреву до 200…4000С с последующим отжигом. Например, БСт5пс; стали 40, 45, 50, 35ХН.
    Четвертая группа – стали плохо свариваемые, практически не подлежащие сварке ввиду большого содержания углерода и легирующих элементов, приводящих к образованию трещин. Например, это стали 60Г, 70Г, 50ХН, 80С, У7, У10, У13, 9ХС, ХВГ, 3Х2ВФ. Качество сварных соединений таких сталей низкое, несмотря на предварительную сопутствующую и последующую термообработку.
    К неудовлетворительно свариваемым сталям относятся и холодноупрочненные стали; арматура, упрочненная вытяжкой, сварка которой приводит к разупрочнению и повышению хрупкости.
    Необходимо отметить, что свариваемость арматурной стали отличается от показателей свариваемости листа, фасонного проката для металлоконструкций. Например, арматурные стержни из Ст5 свариваются лучше, чем листовая сталь той же марки.
    . Сварка сталей на морозе не допускается.

  6. believer Ответить

    Влияние легирующих элементов на свариваемость металлов
    При сварке металлов, имеющих различные легирующие элементы (Молибден, Кремний, Хром и др.) могут возникать различные проблемы, влияющие непосредственно на качество полученного сварного соединения (трещины, поры, непровары и т.д.). Для того, чтобы избежать трудностей и проблем, необходимо очень хорошо знать, как влияет тот или иной легирующий элемент на свариваемость изделия.
    Знание влияния легирующих элементов на свариваемость различных сталей поспособствует лучшему пониманию процессов сварки.
    Углерод
    Один из самых значительных химических элементов в сталях.
    Содержание углерода в сталях влияет на прочность, закаливаемость, вязкость, свариваемость.
    У низкоуглеродистых сталей (углерода менее 0,25%) свариваемость практически не ухудшается.
    При увеличении содержания углерода свариваемость резко ухудшается, так как в зонах ЗТВ (зонах термического влияния) возникает большое количество закалочных структур, которые вызывают трещины.
    При высоком содержании углерода в присадочном материале увеличивается вероятность образования пор.
    Марганец
    Марганец является хорошим раскислителем. Электроды или проволоку необходимо применять при сварке в среде СО2. При содержании марганца в металле до 0,8 %, процесс сварки не усложняется. При увеличении содержания стали в металле (1,8%-2,5%) появляется опасность возникновения ХТ (холодных трещин), т.к. марганец способствует появлению хрупких структур (закалочных). При повышенном содержании марганца (11-16%) во время сварки происходит интенсивное выгорание данного вещества. Следовательно, необходимо применять специальные меры, например, использовать сварочные материалы с бОльшим содержанием марганца.
    Кремний
    Так же как и марганец является хорошим раскислителем. При малом количестве кремний (до 0,03%) на свариваемость не влияет. При содержании кремния 0,8-1,5% свариваемость ухудшается из-за повышенной жидкотекучести кремнистой стали и образования тугоплавких оксидов кремния. При повышенном содержании кремния, из-за увеличенной жидкотекучести особенно опасно появление горячих трещин.
    Хром
    Содержание хрома в сталях способствует увеличению коррозионной стойкости. Но, при сварке сталей образуются карбиды хрома, которые увеличивают твердость в ЗТВ (зоне термического влияния). Также образуются тугоплавкие окислы, которые затрудняют процесс сварки, а значит ухудшают свариваемость.
    Никель
    Содержание никеля в сталях способствует увеличению ударной вязкости, которая особенно важная при работе сталей при низких температурах. Также никель способствует увеличению пластичности, прочности стали и измельчению зерна. При этом свариваемость стали не ухудшается. Но, из-за высокой цены данного легирующего элемента, применение ограничено экономическими соображениями.
    Молибден
    Содержание молибдена в сталях увеличивает несущую способность при высоких температурах и ударных нагрузках, измельчает зерно.
    С другой стороны, молибден способствует образованию трещин в ЗТВ и наплавленном металле шва.
    Во время сварке окисляется и выгорает. Следовательно, необходимо использовать специальные меры.
    Вольфрам
    Содержание вольфрама в сталях резко увеличивает твердость стали и ее работоспособность при высоких температурах (красностойкость).
    С другой стороны, вольфрам затрудняет процесс сварки и активно окисляется.
    Ванадий
    Содержание ванадия в сталях резко увеличивает закаливаемость стали. Из-за закаливаемости, а также из-за окисления ванадия и его выгорания, ухудшается свариваемость сталей.
    Титан
    Использование титана как легирующий элемент обусловлено его высокой коррозионной стойкостью.
    Ниобий
    Использование ниобия, аналогично титану, обусловлено его высокой коррозионной стойкостью. При сварке сталей ниобий способствует образованию горячих трещин.

  7. Ragewind Ответить

    СВАРИВАЕМОСТЬ – способность металлов образовывать качественное сварное соединение, удовлетворяющее эксплуатационным требованиям
    ЭКВИВАЛЕНТНОЕ СОДЕРЖАНИЕ УГЛЕРОДА (Сэк) – количественная характеристика свариваемости. Она определяется по формуле:

    где С – содержание углерода, %;
    Mn, Cr… – содержание легирующих элементов, %
    ГРУППА СВАРИВАЕМОСТИ
    Сэк, %
    МАРКИ СТАЛЕЙ
    Углеродистые
    Легированные
    Высоколегированные
    I
    Хорошая
    До 0,25 вкл
    ВСт1; ВСт2; ВСт3; ВСт4; Стали 08; 10; 15; 20; 25
    15Г; 20Г; 15Х; 15ХА; 20Х; 15ХМ; 20ХГСА; 10ХСНД; 10ХГСНД; 15ХСНД
    08Х20Н14С2; 20Х23Н18; 08X18Н10; 12X18Н9Т; 15X5
    II
    Удовлетворительная
    Свыше 0,25 до 0,35 вкл
    ВСт5; Стали 30; 35
    12ХН2; 12ХНЗА; 20ХНЗА; 20ХН; 20ХГСА; 30Х; 30ХМ; 25ХГСА
    30X13; 12X17; 25X13Н2
    III
    Ограниченная
    Свыше 0,35 до 0,45 вкл
    ВСт6; Стали 40; 45
    35Г; 40Г; 45Г; 40Г2; 35Х; 40Х; 45Х; 40ХМФА; 40ХН; 30ХГС; 30ХГСА; 35ХМ; 20Х2Н4МА
    17X18Н9; 12Х18Н9; 36X18Н25С2; 40Х9С2
    IV
    Плохая
    Свыше 0,45
    Стали 50; 55; 60; 65; 70; 75; 80; 85
    50Г; 50Г2; 50Х; 50ХН; 45ХНЗМФА; ХГС; 6ХС; 7X3
    40X10С2М; 40X13; 95X18; 40X14Н14В2М; 40X10С2М
    ГРУППА СВАРИВАЕМОСТИ
    УСЛОВИЯ СВАРКИ
    I
    Без ограничений, в широком диапазоне режимов сварки независимо от толщины металла, жесткости конструкций, температуры окружающей среды
    II
    Сварка только при температуре окружающей среды не ниже – 5 °С, толщине металла менее 20 мм при отсутствии ветра
    III
    Сварка с предварительным или сопутствующим подогревом до 250 °С в жестком диапазоне режимов сварки
    IV
    Сварка с предварительным и сопутствующим подогревом, термообработкой после сварки

  8. МиЛеЙ НеТ Ответить

    Стали группы Б поставляют с гарантией по химическому составу, так как они в дальнейшем обычно подвергаются различной обработке с целью получения нужного заказчику комплекса механических свойств, а именно горячей обработке давлением и ТО.
    Сплавы группы – В поставляются с гарантией совместно по химическому составу и механическим свойствам – по нормам для сталей групп А и Б. Их употребляют в производстве сварных конструкций.
    Степень раскисленности, обозначают буквами кп – кипящие, пс – полуспокойные и сп – спокойные. Кипящими являются стали марки Ст0 – Ст4, полуспокойными и спокойными могут выплавляться все марки от Ст1 до Ст6.
    При маркировке указывают только группы Б и В, например Ст2кп или ВСтЗпс, что означает сталь 2, группы А, кипящая или сталь 3, группы В, полуспокойная и т. п.
    В качественных сплавах максимальное содержание вредных примесей составляет не более чем 0,04 % серы и фосфора. Они менее загрязнены неметаллическими включениями и имеют меньшее количество растворенных газов. Их поставляют по химическому составу и механическим свойствам.
    Марки углеродистых качественных конструкционных сталей (ГОСТ 1050-74 и ГОСТ 4543-71) обозначают цифрами, указывающими среднее содержание углерода в сотых долях процента, степень раскисленности – буквами, например сталь 10кп (это 0,10 % С, кипящая); 20пс (0,20 % С, полуспокойная). Для спокойных сталей индекс не ставится.
    Углеродистые качественные инструментальные сплавы (ГОСТ 1435-74) маркируются буквой – У, которая означает что сталь углеродистая, и следующим за ней числом, показывающим среднее содержание углерода в десятых долях процента – 0,7 – 1,5 %, например У7, У7А, У13, У13А. Высококачественные сплавы характеризуются минимально возможным количеством серы и фосфора в них менее 0,035 %. Для обозначения высокого качества стали в конце марки ставят букву – А. например У7А, У13А, У10А.
    По структуре в отожженном (равновесном) состоянии различают следующие группы сталей:
    1) техническое железо с содержанием углерода менее 0,02%. Структура сплава однофазная – феррит;
    2) доэвтектоидные стали с содержанием углерода от 0,02 до 0,8%. Структура сплавов состоит из феррита и перлита, причем с увеличением содержания углерода доля перлита в структуре возрастает (рис.20.а);
    3) эвтектоидная сталь с содержанием углерода 0,8%. Структура стали – перлит: чередующиеся пластинки феррита и цементита (рис.20, б, в);
    4) заэвтектоидные стали с содержанием углерода от 0,8 до 2,14%. Структура состоит из участков перлита, разделенных хрупкими цементитными оболочками (рис.20, г).

    Рис.20 Микроструктуры сталей:
    а – доэвтектоидная сталь (феррит+перлит); б – эвтектоидная сталь (пластинчатый перлит); в – эвтектоидная сталь (зернистый перлит); г – заэвтектоидная сталь (перлит + вторичный цементит).
    Легированные стали – это сплавы на основе железа, в состав которых специально введены химические элементы, обеспечивающие ему требуемую структуру и свойства. В свою очередь легированные стали в зависимости от числа легирующих добавок делят на одно- и многокомпонентные. Более применяемым является название с указанием легирующих элементов, например, стали хромистые, хромоникелевые, хромоникельмолибденовые и др.
    Обычно концентрация легирующих добавок больше, чем количество этих же элементов в виде примесей. По степени легирования, т. е. по содержанию специально введенных добавок сплавы условно подразделяют на низко-, средне- и высоколегированные. Количество этих элементов, в общем, составляет 2,5 – 5,0%; до 10 % и более 10 % соответственно.
    Понятие специальные стали более широкое, чем легированные сплавы, так как к первым, кроме легированных могут относиться и углеродистые, которым приданы специальные свойства посредством определенных способов производства и обработки
    В легированных сплавах (ГОСТ 5632-72, ГОСТ 20072-74) содержатся специально вводимые в различных количествах легирующие элементы, обозначаемые буквами русского алфавита: хром – X, никель – Н, молибден – М, вольфрам – В, кобальт – К, титан – Т, марганец – Г, медь – Д, ванадий – Ф, кремний – С, фосфор – П, алюминий –Ю, кобальт-К, бор – Р, ниобий – Б, цирконий – Ц, азот – А. Цифры после буквы указывают примерное содержание данной добавки в процентах округленное до целого числа. Если после буквы не стоит цифра, то это означает, что количество элемента меньше или около 1,0 %. Стоящая цифра 1, показывает, что концентрация добавки от 1,5 до 2,0%.
    Марка стали обозначается сочетанием букв и цифр. Для конструкционных марок первые две цифры указывают среднее содержание углерода в сотых долях процента. Количество легирующих элементов, если они превышают 1,0 %, ставят после соответствующей буквы в целых единицах. Например, сталь марки 18ХГТ содержит около 0,18 % углерода; 1,0 % хрома, 1,0 % марганца и около 0,1 % титана.
    У стали, легированной азотом, букву А ставят в середине обозначения марки, например 15X17AГI4, если же она поставлена в конце марки, это говорит о том, что сплав высококачественный – 30ХГСА. Буква – А, находящаяся в начале марки, указывает, что сталь автоматная, повышенной обрабатываемости, например, А35Г2.
    Особовысококачественными являются только легированные железоуглеродистые сплавы. Они содержат не более 0,015 % серы и 0,025 % фосфора. К ним предъявляют высокие требования и по содержанию других примесей.

  9. Kaktak Ответить

    Углерод (С) – одна из важнейших примесей, определяющая прочность, пластичность, закаливаемость и др. характеристики стали. Содержание углерода в сталях до 0,25% не снижает свариваемости. Более высокое содержание «С» приводит к образованию закалочных структур в металле зоны термического влияния (далее по тексту – ЗТВ) и появлению трещин.
     Сера (S) и фосфор (P) – вредные примеси. Повышенное содержание «S» приводит к образованию горячих трещин – красноломкость, а «P» вызывает хладноломкость. Поэтому содержание «S» и «P»  в низкоуглеродистых сталях ограничивают до 0,4?0,5%.
     Кремний (Si) присутствует в сталях как примесь в к-ве до 0,3% в качестве раскислителя. При таком содержании «Si» свариваемость сталей не ухудшается. В качестве легирующего элемента при содержании «Si» – до 0,8?1,0% (особенно до 1,5%) возможно образование тугоплавких оксидов «Si», ухудшающих свариваемость.
     Марганец (Mn) при содержании в стали до 1,0% – процесс сварки не затруднен. При сварке сталей с содержанием «Mn» в к-ве 1,8?2,5% возможно появление закалочных структур и  трещин в металле ЗТВ.
     Хром (Cr) в низкоуглеродистых сталях ограничивается как примесь в количестве до 0,3%. В низколегированных сталях возможно содержание хрома в пределах 0,7?3,5%. В легированных сталях его содержание колеблется от 12% до 18%, а в высоколегированных сталях достигает 35%. При сварке хром образует карбиды, ухудшающие коррозионную стойкость стали. Хром способствует образованию тугоплавких оксидов, затрудняющих процесс сварки.
     Никель (Ni) аналогично хрому содержится в низкоуглеродистых сталях в количестве до 0,3%. В низколегированных сталях его содержание возрастает до 5%, а в высоколегированных – до 35%. В сплавах на никелевой основе его содержание является пре­валирующим. Никель увеличивает прочностные и пластические свойства стали, оказывает положительное влияние на свариваемость.
     Ванадий (V) в легированных сталях содержится в количестве 0,2?0,8%. Он повышает вязкость и пластичность стали, улучшает ее структуру, способствует повышению прокаливаемости.
     Молибден (Мо) в сталях ограничивается 0,8%. При таком содержании он положительно влияет на прочностные показатели сталей и измельчает ее структуру. Однако при сварке он выгорает и способствует образованию трещин в наплавленном металле.
     Титан и ниобии (Ti и Nb) в коррозионностойких и жаропрочных сталях содержатся в количестве до 1%. Они снижают чувствительность стали к межкристаллитной коррозии, вместе с тем ниобий в сталях типа 18-8 способствует образованию горячих трещин.
     Медь (Си) содержится в сталях как примесь (в количестве до 0,3% включительно), как добавка в низколегированных сталях (0,15 до 0,5%) и как легирующий элемент (до 0,8?1%). Она повышает коррозионные свойства стали, не ухудшая свариваемости.

  10. Malalbine Ответить

    Легированные стали подразделяют на низколегированные (до 2.5% легирующих элементов), среднелегированные (2.5-10%) и высоколегированные. Большое влияние на свариваемость оказывает влияние содержание в стали легирующих элементов C, Mn, Si, Cr, Ni, Mo, V, W, Ti, Nb и вредных примесей S, P.
    Углеродявляется одним из элементов, в наибольшей степени определяющих свариваемость. При [С]<0.25% стали свариваются хорошо. Сувеличением [C] свариваемость ухудшается. В ОШЗ появляются закалочные структуры, а шов получается пористым. Для получения качественного соединения применяют специальные технологические приемы: предварительные и сопутствующий подогрев соединения (t подогрева зависит от [C]).
    Марганец в сталях содержится обычно 0.3-1% и в таких количествах не затрудняет сварку стали. При [Mn] 1.8-3% прочность, твердость и закаливаемость сталей возрастают и это способствует образованию трещин. При сварке высокомарганцовистых сталей (11-18%) происходит выгорание марганца, поэтому надо компенсировать его через электродное покрытие, флюсы, проволоку и т.д.
    Кремний в низколегированых сталях (0.02-1%) существенного влияния на сварку не оказывает. При [Si] 1-2% кремний затрудняет сварку, так придает стали жидкотекучесть и образует тугоплавкие окислы и шлаки. В высоколегированных Cr-Ni сталях способствует трещинообразованию.
    Хрома содержится в сталях: конструкционных 0.7-3.5, в хромистых 12-18, в хромоникелевых 9-35%. С повышением содержания хрома свариваемость ухудшается, так как хром образует тугоплавкие оксиды, повышает твердость стали, образуя карбиды хрома, способствует возникновению закалочных структур.
    Никель в конструкционных сталях 1-5, в хромоникелевых 8-35%. Никель способствует измельчению кристаллических зерен, повышению пластичности и прочностных свойств стали, не ухудшает свариваемость.ъ
    Молибдена в теплоустойчивых сталях содержится до 0.8%, в сталях, работающих при высоких температурах и ударных нагрузках до 3.5%. Способствует измельчению кристаллических зерен, повышению ударной вязкости и прочностных свойств стали, однако ухудшает свариваемость, способствуя образованию трещин в металле шва и в ЗТВ.
    Ванадий при содержании 0.2-1.5% придает стали высокую прочность, повышает вязкость и упругость. Ухудшает свариваемость, так как способствует образованию закалочных структур в металле шва и в ЗТВ.
    Вольфрам при содержании 0.8-1.9 повышает твердость стали и ее теплостойкость. Снижает свариваемость.
    Титан и ниобий содержатся в нержавеющих и жаропрочных сталях 0.5-1%. Являясь хорошими карбидообразователями, препятствуют образованию карбидов хрома, измельчают зерно. При сварке нержавеющих сталей Nb способствует образованию горячих трещин.
    Фосфор (содержится до 0.05%) ухудшает свариваемость, способствуя образованию холодных трещин.
    Сера (не более 0.05%) образует с железом легкоплавкую эвтектику, способствуя образованию горящих трещин. Для нейтрализации вредного влияние серы увеличивают содержание марганца в металле.
    Оценка свариваемости металлов в зависимости от свойств свариваемого металла, требований, предъявляемых к сварному соединению, оценку свариваемости проводится по различным показателям: по данным изменения структуры металла, механических свойств соединения, склонности к образованию определенных дефектов и др.
    Оценку структуры металла различных областей сварного соединения проводят по равновесным диаграммам состояния и термокинетическим графикам структурно-фазовых превращений в свариваемых мате­риалах. Получаемые данные дополняют результатами специальных исследований механических свойств металла по методике и на специальных машинах, позволяющих нагревать и охлаждать по программе с задан­ной скоростью образцы металла и подвергать их механическим испытаниям на любом этапе выполнения термической обработки. Такие испытания позво­ляют проводить имитацию сва­рочных термических циклов любого участка сварного соединения и получать результаты по воздействию их на структуру и свойства металла.
    Для этой же цели используют и специальные технологические пробы, например так называемую валиковую пробу (ГОСТ 13585-68). Для этого на пластины металла толщиной 14 – 30 мм наплавляют валики на режимах с различной погонной энергией (рис. 6).

    Рис. 6. Оценка свариваемости с помощью валиковой пробы: а – образец валиковой пробы, б – разметка образцов для испытаний; 1 – исследование структуры, 2 – на ударный изгиб, 3 – на статический изгиб
    Из пластин вырезают поперечные образцы для испытаний на статический 1 и ударный 2 изгиб, определение твердости и структуры 3. Валиковая проба позволяет оценить влияние технологии сварки на свойства и структуру металла в соединении. Оценку свариваемости проводят и по данным определения механических свойств металла сварного соединения и отдельных его участков по ГОСТ 6996-66. Стандарт предусматривает испытания на статическое растяжение, ударный изгиб, старение, твердость. О свариваемости судят или по нормативным значениям соответствующих свойств, или по отношению их к аналогичному свойству основного металла. Горячие трещины представляют собой хрупкие межкристал­лические разрушения металла шва и околошовной зоны, возникающие в твердо-жидком состоянии в процессе кристаллизации. При кристаллизации жидкий металл шва переходит в жидко-твердое, затем в твердо-жидкое и, наконец, в твердое состо­яние. В твердо-жидком состоянии образуется скелет из кристаллитов затвердевшего металла (твердой фазы), в промежутках которого находится еще жидкий расплав. Металл в таком состоянии обладает очень низкой деформационной способностью и малой прочностью. Когда металл полностью закристаллизуется, его плас­тичность и прочность возрастут. Температурный интервал, в котором металл находится в твердо-жидком состоянии с низкой пластичностью и прочностью, называют температурным интервалом хрупкости. При охлаждении одновременно с кристаллизацией в этом интервале начинаются усадка и линейное сокращение шва, ведущее к возникновению внутренних напряжений и деформаций, которые приводят к образованию горячих трещин. Горячие трещины могут образовываться как вдоль, так и поперек шва. Для оценки свариваемости металлов по критерию сопротивляемости горячим трещинам применяют два основных вида испытаний: на машинах и сварку технологических проб. При машинных испытаниях свариваемый образец растягивают или изгибают во время сварки. Эта деформация имитирует сварочную деформацию. Склонность материала к горячим трещинам оценивают по критической величине или скорости деформирования образца, при которых в нем возникают трещины. Чем выше скорость Деформации или ее величина для образования трещины, тем выше сопротивляемость материала к трещинообразованию при сварке.
    Для качественной характеристики склонности к трещинам используют технологические пробы, имитирующие сварное соединение с угловыми или стыковыми швами (рис. 7). Оценку производят по наличию и протяженности образующейся трещины в контрольном шве. Существуют и другие виды технологических проб.

    Рис. 7. Технологическая проба для оценки склонности металла к трещинам: а – с угловыми швами, б – со стыковыми швами; 1 – контрольный шов
    Холодные трещины свое название получили в связи с тем, что их появление наблюдается при относительно низкой температуре. Для оценки свариваемости металлов по критерию сопротивляемости холодным трещинам также применяют два вида испытаний: технологические пробы и методы количественной оценки с приложением к образцам внешней механической нагрузки. Пробы представляют собой жесткие сварные соединения. Стойкость материала оценивают качественно по наличию или отсутствию трещин. Примерами проб могут служить крестовая проба и проба Кировского завода (рис. 8).

    Рис. 8. Крестовая технологическая проба для оценки склонности швов к холодным трещинам: 1, 2, 3, 4 – последовательность наложения швов
    В крестовой пробе цифрами показана последовательность наложения швов. В наиболее жестких условиях находится последний шов – 4-й, где и возможно образование трещин. В пробе Кировского завода, изменяя толщину металла в зоне выточки, меняют скорость охлаждения металла и степень его подкладки. По этим показателям судят о сопротивляемости металла образованию холодных трещин.
    Количественными показателями оценки сопротивляемости сварного соединения образованию холодных трещин являются минимальные внешние нагружения, при которых начинают возникать холодные трещины при выдержке образцов под нагруз­кой, прикладываемой сразу же после сварки. В качестве показателя сопротивляемости служит минимальная нагрузка, при которой происходит разрушение с образованием трещины.

  11. MasterObsheniya Ответить

    При выборе легирующих элементов предпочтение елементовоказывать тем, которые максимально замедляют процессы отпуска и мини­мально пони-жают температуру Мн.
    Для характеристики ле­гирующих элементов можно использовать отноше-ние
    К= сопротивление отпуску / понижение температуры Мн
    Чем больше это отноше­ние, тем благоприятнее действие легирующего эле-мента. Эти отношения составляют для хрома – 0, марганца -0,24, никеля -0 ,5, молибдена – 0,8, вольфрама –0,9; кремния – 1,8; кобальта более 8.
    Исходную мартенситную структуру получали после закалки в воду, бей-нитную – после нормализации. Изменение твердости стали после отпуска исследовали в зависимости от время –температурного па­раметра
    Т(20 + logt) -10 -3,
    где Т температура нагрева, ° К, t— продолжительность выдержки при данной температуре,ч.
    Параметр дает возможность анализировать зависимость твердости ста-ли от температуры и продолжительности выдержки отпуска в широких преде-лах. Например, параметр равен 8, он эквивалентен отпуску в течение 1 чпри 625° С или 100 чпри 540° С. Исследования проводили на стали с основой 0,10-0,18% С; 0,10-0,3% Si; 0,6-0,8% Мn, 0,5% Мо-В. В нее вводили требуемые ко-личества легирующих до­бавок.
    В высокопрочные низкоуглеродистые стали, как правило,вводят незна-чительное количество бора (0,001 …0,005%) и его процентное содер­жание в стали не приводится. Бор способствует повыше­нию прокаливаемости стали и образованию бейнитной структуры. Многочисленные исследования показали, что в низкоуглеродистых многоком­понентных сталях Мn – Сг – Ni – Mo – V, Cr – Mn – Mo – V, Cr- Si – Mn – Mo – V и других бор не понижает пластичности и вязкости мартенсита и бейнита.
    Легирование 0,5% Мо приводит ко вторичному твер­дению мартенситной и бейнитной стали вследствие образования карбидов Мо2С). Образование кар-бидов молибдена сопровождается коалесценцией частиц Fe3C и заменой их (Fe3C) карбидами М23С6 по границам аустенитных зерен.
    С увеличением содержания молибдена до 3% подъем кривых твердости, обусловленный вторичным твердением, увеличивается. Максимальная твер-дость соответствует появлению мелких игл Мо2С, а спад — их укрупнению, приводящему к образованию типичной видманштеттовой структуры из игл Мо2С.
    Вольфрам, как легирующий элемент, действует анало­гично молибдену. Замена 0,5% молибдена 1% вольфрама в основном составе не изменяет свойств бейнитной стали. При содержании вольфрама до 3% разупрочнение существен-но задерживается, причем вторичное твердение происходит при тех же пара-метрах отпуска, что и у молибденосодержащих сталей. Сталь с 3% W по мик-роструктуре не отличается от молибденовой; вто­ричное твердение в ней про-исходит за счет образова­ния мелкодисперсных частиц W2C. Однако на величину Fe3C вторичной твердости вольфрам оказывает значительно меньшее влияние, чем молибден.
    Добавка 0,1% V приводит к заметному вторичному твердению. Этот эф-фект заметно увеличивается с повышением содержания ванадия. Однако вре-мя-темпе­ратурный параметр отпуска, соответствующий максимуму вторич-
    го твердения, понижается. При этом разность его значений для нормализован-ного и закаленного состоя­ния больше, чем при легировании молибденом. Неболь­шие добавки ванадия повышают интенсивность вторичного твердения; при введении его свыше 0,5% интенсивность твердения уменьшается.
    Вторичная твердость связана с образованием мелко­дисперсных выделе-ний V4C3 в момент растворения частиц Fe3C.При низком содержании ванадия частицы V4C3 имеют сферическую форму, а при высоком — пластинча­тую. При последующем отпуске пластинчатые частицы V4C3растут и приобретают ок-руглую форму.
    При содержании в стали 0,1% V на границах зерен образуются крупные частицы М23С6, последние не наблюдаются при содержании ванадия свыше 0,29%. По-види­мому, это объясняется присутствием в стали 0,5% Мо. Извест-но, что при небольших концентрациях ванадия в стали карбид ванадия содер-жит до 40 ат.% молибдена.
    Максимальное вторичное твердение отмечается при 0,4% V или при со-отношении V: С = 3: 1. Вероятно, это критическое значение связано со степе-нью несоответствия решеток карбида ванадия V4C3 и феррита. С увеличением содержания ванадия степень несоответствия решеток карбида V4C3 и -Fe уве-личивается. При этом когерент­ные напряжения, а следовательно, и вторичная твердость повышаются до тех пор, пока не нарушится когерент­ность. С нару-шением когерентности решеток вторичная твердость понижается.
    Титан в небольшом количестве вводят в сталь для связывания углерода. Его добавляют перед введением бора. Титан, связывая углерод и таким образом умень­шая его содержание в мартенсите, снижает твердость стали в закален-ном состоянии. Незначительное влияние титана на бейнитную структуру объяс-няется тем, что твердость бейнита обуслов­лена главным образом раз­мером зе-рен. Эффект вторичного твердения зависит от наличия титана и больше всего проявляется при содержании его в пределах 0,1…0,3%.
    Параметры отпуска, дающие максимальное вторичное твердение, близки к аналогичным параметрам стали, со­держащей ванадий. Наибольший эффект наблюдается при содержании титана 0,21…0,24%.
    Наличие хрома заметно сказывается на твердости неотпущенной мартен-ситной и бейнитной структуры. Вто­ричное твердение наблюдается только в стали с 0,5% Сг. Увеличение содержания хрома свыше 1% задерживает процесс разупрочнения при отпуске. Твердость при низких параметрах отпуска возрас-тает с увеличением содержания хрома. Однако при увеличении продолжитель-ности и повышении температуры отпуска увеличение содержания хрома приво-дит к интенсивному разупрочне­нию. При длительных выдержках и высоких температурах отпуска хром способствует повышению твердости вслед­ствие упрочнения твердого раствора.
    С введением 0,5% хрома заметно повышается твер­дость стали, содержа-щей 0,5% молибдена, что очевидно, происходит в результате растворения хро-ма в Мо2С. При содержании хрома более 1,0% карбид молибдена не обра­зуется. Появляются небольшие самостоятельно зарожда­ющиеся пластинки Сг7 Сз в матрице и происходят «мест­ные» превращения Fe3Cв Сг7 Сз. При продолжи-тельном отпуске частицы Сг7 Сз вырастают в небольшие пластинки, которые затем перерастают в крупные частицы.
    Основной особенностью хромистой стали является разупрочнение при низких параметрах отпуска. Это озна­чает, что хром, как карбидообразующий элемент, заме­няет молибден или вольфрам, но прочность хромистой стали при отпуске резко снижается.
    Марганец используют при изготовлении высокопроч­ных бейнитных ста-лей. Увеличение содержания марганца способствует повышению твердо­сти нормализованной ста­ли, а на закаливаемую сталь влияет незначитель­но. Вто-ричного твердения, задерживающего разупрочнение при отпуске, не наблюда-ется ни в мартенситной, ни в бейнитной марганцевых сталях.
    Добавка никеля способствует повышению твердости стали после норма-лизации и закалки. Твердость сохраняется при сравнительно низких парамет-рах отпуска, так как в никелевых сталях вторичное твердение не происходит. Никелевые мартенситные стали разупрочняются при более низких температу-рах, чем бейнитные.
    Введение марганца и никеля приводит к ускорению процесса разупрочне-ния при отпуске.
    Основной особенностью высокопрочных мартенситных и бейнитных ста-лей является низкое содержание углеро­да, что обеспечивает надлежащую сва-риваемость и вяз­кость стали. Увеличение содержания углерода не оказывает влияния на процессы, протекающие при отпуске, форма кривых отпуска и пара-метры вторичного твердения не изменяются. В нестареющей стали повыше­ние содержания углерода ускоряет разупрочнение.
    Состав мартенситных сталей следует выбирать таким образом, чтобы обе-спечивалась требуемая закаливае­мость. Прочность бейнитной стали придает сочетание марганца, хрома и никеля, необходимая устойчивость свойств при отпуске достигается введением соответствую­щих количеств молибдена, воль-фрама и ванадия.
    Легирование хромом производят для повышения прокаливаемости стали. Его содержание может быть ограничено 1 % . Из группы Мо – W – V предпоч-тение следует отдать молибдену, так как он дешевле вольфрама, и тем­пературы аустенизации молибденовых сталей ниже, чем ванадиевых.
    Эффективны добавки Si и Со. Они повышают сопро­тивляемость стали от-пуску.
    Комплексное легирование позволяет получать стали с повышенной проч-ностью, вязкостью и пластичностью. Легирующие элементы, вводимые в сталь в определен­ном оптимальном сочетании, оказывают значительно большее вли-яние на свойства стали, чем каждый в от­дельности. Комплекснолегированные стали, как правило, наиболее экономичны и стабильны по своим свойствам.
    Основными легирующими элементами являются Mn; Si; Cr; Mo; Ni. Легирование многокомпонентное, однако содержание каждого легирующего элемента невелико и, как правило, не превышает 2 %. Это связано с тем, что практически все легирующие элементы повышая прочность, снижают пласти-ческие свойства стали.
    Влияние содержания легирующих элементов на относительную проч-ность и пластичность показано на рис. 6.11 и 6.12.
    Рис. 6.11. Влияние легирующих Рис. 6.12. Влияние легирующих
    элементов на прочность стали элементов на пластичность стали
    На вертикальной оси обозначены соответственно отношения прочности или ударной вязкости стали, легированной данным элементом, к этому пока-зателю для стали, не легированной данным элементом. Из гра­фиков следует, что при содержании более 1…3 % практически все элементы, за исключением Ni, снижают ударную вязкость стали.
    Основная сложность при сварке среднелегированных сталей –предотвра-щение образования холодных трещин. Как известно, хо­лодные трещины обра-зуются в шве или околошовной зоне при на­личии закалочных структур, отри-цательное влияние которых воз­растает при повышенном содержании водорода и неблагоприятных полях внутренних напряжений.
    Для каждой стали существует своя скорость охлаждения, пре­вышение ко-торой приводит к образованию холодных трещин. Она называется первой кри-тической скоростью охлаждения – WКр1/
    Наиболее радикальным приемом снижения скорости охлажде­ния являет-ся предварительный подогрев свариваемых кромок. Температура предваритель-ного подогрева может быть определена черезэквивалент углерода. Эквивалент углерода – это коэффици­ент, приводящий влияние легирующих элементов на термический циклсварки к влиянию углерода. Он определяется по эмпириче­ским формулам, которые несколько отличаются друг от друга в разныхлитера-
    турных источниках.
    Приведем наиболее часто применяемые:
    Сэ = Сх +Ср
    гдеСх – химический эквивалент углерода;
    Ср – размерный коэф­фициент углерода.
    Ср=0,005 Сх,
    где – толщина свариваемого металла.
    Температура предварительного подогрева может быть опреде­лена по формуле
    В некоторых случаях размерный коэффициент не учитывают, и этот эк-вивалент углерода определяют по формуле
    При этом температура предварительного подогрева определяется по гра-фику, приведенному на рис. 6.13.
    Рисунок 6.13 – Зависимость температу­ры предварительного подогрева от эквивалента углерода в стали
    Предварительный подогрев должен обеспечить снижение скоро­сти ох-лаждения до значения WKpl. Однако чрезмерный подогрев при­водит к очень ме-дленному охлаждению шва и околошовной зоны, что также неблагоприятно сказывается на процессе сварки, так как при­водит к интенсивному росту зерна. Это в свою очередь снижает плас­тические свойства металла в зоне сварного со-единения и его способ­ность сопротивляться действию растягивающих напря-жений. На рис. 6.14 приведены различные термические циклы сварки.
    Рисунок 6.14 –Различные термические циклы сварки:
    1большаяскорость охлаждения; 2ма­лая скорость охлаждения;
    3 – сварка с со­путствующим подогревом после остывания шва ниже температуры роста зерна
    При малых скоростях охлаждения (кривая 2) время tр.з пребы­вания стали при температуре выше температуры роста зерна увели­чивается, и зерно успева-ет вырасти до крупных размеров. Поэтому для каждой стали существует вторая критическая скорость охлаж­дения WKp2, медленнее которой вести охлаждение не рекомендует­ся. В табл.6.18 приведены значения Wкр.1 и WKp2 для некоторых сталей. Чем больше между ними разница, тем легче подобрать тер­мический цикл сварки.
    Таблица 6.18. Значения первой и второй критической скорости охлаждения для некоторых сталей
    Способность высокопрочных низколегированных сталей свариваться яв-ляется важной характсристикой, определяющей возможность получения свар-ного соединения с заданными свойствами по технологии, доступной для заво-дов.
    Принято считать, что с повышением прочности стали свариваемость ее ухудшается. Однако высокопрочные стали свариваются удовлетворительно. Связано это прежде всего с низким содержанием углерода и ограниченным ле-гированием. Последнее оказалось возможным в связис тем, что высокая проч-ность стали достигается не только за счет упрочнения твердого раствора, но и вследствие максимального измельчения структуры.
    Исследования свариваемости высокопрочных сталей сводятся к определе-нию оптимальных условий сварки, при которых исключается возможность по-явления трещин и металл околошовной зоны сохраняет требуемые пластич-ность, прочность и хладностойкость.

  12. UBETU Ответить

    Без предварительного подогрева такие стали можно сваривать в случаях, когда соединения не имеют жестких контуров, толщина металла не более 14мм, температура окружающей среды не ниже +5°С и свариваемые соединения имеют вспомогательный характер. Во всех остальных случаях обязателен предварительный подогрев до температуры 200°С.
    Термообработка данной группы сталей назначается по режиму, выбираемому для конкретной стали.
    К четвертой группе относят углеродистые и легированные стали ([С]х?0,60) перлитного класса, наиболее трудно поддающиеся сварке и склонные к образованию трещин. При сварке этой группы сталей с использованием рациональных технологий не всегда достигаются требуемые эксплуатационные свойства сварных соединений. Эти стали свариваются ограниченно, поэтому их сварку выполняют с обязательной предварительной термообработкой, с подогревом в процессе сварки и последующей термообработкой. Перед сваркой такая сталь должна быть отожжена. Независимо от толщины и типа соединения сталь необходимо предварительно подогреть до температуры не ниже 200°С. Термообработку изделия после сварки проводят в зависимости от марки стали и ее назначения.
    Эксплуатационная надежность и долговечность сварных конструкций из низколегированных теплоустойчивых сталей зависит от предельно допустимой температуры эксплуатации и длительной прочности сварных соединений при этой температуре. Эти показатели определяются системой легирования теплоустойчивых сталей. По системе легирования стали можно разделить на хромомолибденовые, хромомолибденованадиевые и хромомолибденовольфрамовые (табл. 1.2). В этих сталях значение углеродного эквивалента изменяется в широких пределах и оценка свариваемости сталей по его значению нецелесообразна. Расчет температуры предварительного подогрева выполняется для каждой кон­кретной марки сталей.
    Разделение высоколегированных сталей по группам (нержаве­ющие, кислотостойкие, жаростойкие и жаропрочные) в рамках ГОСТ5632-72 выполнено условно в соответствии с их основными служебными характеристиками, так как стали жаропрочные и жаростойкие являются одновременно кислотостойкими в определенных агрессивных средах, а кислотостойкие стали обладают одновременно жаропрочностью и жаростойкостью при определенных температурах.
    Остановимся на кратких рекомендациях по технологии сварки высоколегированных сталей, которые, как уже отмечалось, разделяются на четыре группы.
    Для хорошо сваривающихся высоколегированных сталей термообработку до и после сварки не проводят. При значительном наклепе металл необходимо закалить от 1050-1100°С. Тепловой режим сварки нормальный. К этой группе сталей можно отнести ряд кислотостойких и жаропрочных сталей с аустенитной и аустенитно-ферритной структурой.
    Для удовлетворительно сваривающихся высоколегированных сталей перед сваркой рекомендуется предварительный отпуск при 650-710°С с охлаждением на воздухе. Тепловой режим сварки нормальный. При отрицательной температуре сварка не допускается. Предварительный подогрев до 150-200°С необходим при сварке элементов конструкции с толщиной стенки более 10мм. После сварки для снятия напряжений рекомендуется отпуск при 650-710°С. К этой группе в первую очередь можно отнести большую часть хромистых сталей и некоторых хромоникелевых сталей.
    Таблица 2. Марки теплоустойчивых и высоколегированных сталей и сплавов на железоникелевой и никелевой основе.

  13. FYNA Ответить

    По содержанию углерода стали можно разделить на:
    низкоуглеродистую (с содержанием углерода до 0,25%)
    среднеуглеродистую (с содержанием углерода 0,25 — 0,6%)
    высокоуглеродистую (с содержанием углерода 0,6 — 2,0%)
    По способу производства различают сталь:
    1. Обыкновенного качества (углерода до 0,6%) кипящую, полуспокойную, спокойную
    Существует 3 группы сталей обыкновенного качества:
    Группа А. Поставляется по механическим свойствам без регламентации состава сталей. Стали эти обычно используются в изделиях без последующей обработки давлением и сваркой. Чем больше число условного номера, тем выше прочность и меньше пластичность стали.
    Группа Б. Поставляется с гарантией химического состава. Чем больше число условного номера, тем выше содержание углерода. В дальнейшем могут обрабатываться ковкой, штамповкой, температурным воздействием без сохранения начальной структуры и механических свойств.
    Группа В. Могут свариваться. Поставляются с гарантией состава и свойств. Эта группа сталей имеет механические свойства в соответствии с номерами по группе А, а химический состав – с номерами по группе Б с коррекцией по способу раскисления.
    2. Высококачественную с содержанием серы до 0,030 % и фосфора до 0,035%. Сталь имеет повышенную чистоту и обозначается буквой А после марки стали
    По назначению стали могут быть:
    строительные
    машинострои­тельные (конструкционные)
    инструментальные
    стали с осо­быми физическими свойствами

    Сварка низкоуглеродистых сталей

    Такие стали хорошо свариваются. Чтобы правильно выбрать электроды нужного типа и марки, необходимо учитывать следующие требования:
    Равнопрочное сварочное соединение с основным металлом
    Бездефектный сварной шов
    Оптимальный химический состав шовного металла
    Устойчивость сварных соединений при вибрационных и ударных нагрузках, повышенных и пониженных температурах
    Для сварка низкоуглеродистых сталей используются электроды марок ОММ-5,СМ – 5, ЦМ – 7, КПЗ-32Р, ОМА – 2, УОНИ – 13/45, СМ – 11

    Сварка углеродистых сталей

    Углерод увеличивает возможность закалки стали. Сталь с содержанием углерода (0,25–0,55%) подвержена закалке и отпуску, что значительно увеличивает ее твердость и износостойкость. Эти качества стали используются в производстве деталей механизмов, осевых валов, зубчатых колес, корпусов, звездочек и других деталей, требующих повышенной износостойкости. Зачастую сварка становится единственной технологией изготовления и ремонта деталей машин, станин производственного оборудования и т.д.

    Проблемы сварки углеродистых сталей и методы их решения

    Однако, сварка углеродистых сталей затруднена по следующей причине: углерод, содержащийся в таких сталях, способствует образованию при сварке кристаллизационных горячих трещин и малопластичных закалочных образований и трещин в околошовных зонах. Металл самого шва отличается по свойствам от основного металла, а углерод снижает устойчивость швов к образованию трещин, усиливая отрицательное влияние серы и фосфора.
    Критическое содержание углерода в шве зависит от:
    конструкции узла
    формы шва
    содержания в шве различных элементов
    предварительного подогрева участка шва
    Соответственно, методы повышения устойчивости от образования горячих трещин направлены на:
    Ограничение элементов, способствующих образованию трещин
    Снижение растягивающих напряжений в шве
    Формирование оптимальной формы шва максимально однородного химического состава
    Кроме того, повышенное содержание углерода способствует формированию малопластичных структур, которые под действием различных напряжений склонны к образованию холодных трещин и разрушению. Для предотвращения этого используются способы, исключающие факторы, способствующие возникновению таких условий.

    Требования к технологии сварки углеродистых сталей


    При выполнении сварных соединений сталей с повышенным содержанием углерода для стойкости швов к образованию трещин следует соблюдать следующие условия:
    Применять сварочные электроды и проволоку с низким содержанием углерода
    Использовать режимы сварки и технологические меры, ограничивающие дрейф углерода из основного металла в сварочный шов (разделку кромок, увеличенный вылет, использование присадочной проволоки и пр.)
    Вводить элементы, способствующие образованию в шве тугоплавких или округлых сульфидных образований (марганца, кальция и т.д.)
    Использовать определенный порядок наложения швов, снижать жесткость узлов. Использовать другие режимы и методы, обеспечивающие снижение напряжений в сварочном шве
    Выбирать нужные формы шва и снижать его химическую неоднородность
    Минимизировать содержание диффузионного водорода (применять низко-водородные электроды, сушку защитных газов, очистку кромок и проволоки, прокаливать электроды, проволоку, флюсы)
    Обеспечивать медленное охлаждение сварочного шва (использовать многослойную, двухдуговую или многодуговую сварку, наплавку отжигающего валика, использовать экзотермические смеси и др.)

    Технологические особенности сварки углеродистых сталей

  14. VideoAnswer Ответить

Добавить комментарий для VideoAnswer Отменить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *