Какие группы объектов входят в солнечную систему?

11 ответов на вопрос “Какие группы объектов входят в солнечную систему?”

  1. nova Ответить

    Объекты, входящие в солнечную систему
    Центральное тело нашей планетной системы – Солнце – желтый карлик, сосредоточило в себе 99,866% всей массы Солнечной системы. Оставшиеся 0,134% вещества представлены девятью большими планетами и несколькими десятками их спутников (в настоящее время их открыто более 60), малыми планетами – астероидами (примерно 100 тысяч), кометами (около 1011 объектов), огромным количеством мелких фрагментов – метеороидов и космической пылью. Механически эти объекты объединены в общую систему силой притяжения превосходящей массы Солнца. Ряд зависимостей показывают принадлежность различных по величине и физико-химическим свойствам тел к единому семейству. Средняя плотность объектов Солнечной системы изменяется в пределах от 0,5 г/см3 для ядер комет до 7,7 г/см3 для металлических астероидов и метеоритов.
    Для наглядности все тела Солнечной системы, включая и Солнце, можно разместить на диаграмме логарифмической зависимости массы и размеров (рис. 1).

    Рис. 1. Объекты Солнечной системы, представленные на диаграмме
    логарифмической зависимости массы и размеров космических тел.
    Самая крупная из планет – Юпитер отличается от Солнца на порядок по размерам и на три порядка по массе. Такое соотношение прямо указывает на одинаковую плотность вещества для обоих тел и близкий химический состав. Действительно, средняя плотность Юпитера составляет 1,32 г/см3, что очень близко к средней плотности солнечного вещества (1,41 г/см3). Основными элементами, определяющими химический состав обоих объектов, являются водород и гелий. Ближайший сосед Юпитера на диаграмме – Сатурн – по размерам почти не отличается от него, но меньшая плотность вещества планеты (0,686 г/см3) определяет и несколько меньшее значение массы. Следующие два гиганта – Уран и Нептун (с массой около 1029 г) занимают на рассматриваемой диаграмме одно и то же положение, мало отличаясь по своим свойствам – средней плотности (1,28 и 1,64 г/см3 соответственно) и химическому составу. Все четыре планеты традиционно выделяются в группу планет-гигантов, отличительной особенностью которой являются не только значительные размеры и масса, но также и низкая средняя плотность, характерная для газового состава.
    Земля и Венера занимают на диаграмме близкие позиции, почти не отличаясь по размерам, массе и средней плотности (5,52 и 5,24 г/см3 соответственно). Марс и Меркурий замыкают группу планет, которые по общепринятой классификации относятся к объектам земного типа.
    Однако, перечень “больших” планет Солнечной системы на этом не исчерпывается. Обратившись к диаграмме на рис. 1, мы увидим еще одну планету, находящуюся в области спутников планет. Этот необычный объект – Плутон – в момент своего открытия в 1930 г. занимал наиболее удаленное от Солнца положение, соответствующее месту девятой планеты Солнечной системы. Но орбита Плутона, как оказалось, обладает значительным эксцентриситетом и в 1969 г. он пересек орбиту Нептуна, превратившись в восьмую по удаленности от Солнца планету. В этом статусе Плутон будет пребывать до 2009 г. А первый после своего открытия полный оборот вокруг Солнца Плутон завершит лишь в 2178 году. Иногда возникает вопрос, является ли Плутон самостоятельной планетой. По размерам это тело меньше, чем спутник Земли – Луна. Между тем, Плутон обладает собственным спутником, обнаруженным в 1978 г. и названным Хароном. Соотношение масс планеты и спутника в системе Плутон-Харон очень необычно – приблизительно 5 :1. Эту пару тел вполне обоснованно можно назвать “двойной планетой”, компоненты которой обращаются вокруг общего барицентра. В Солнечной системе есть лишь еще одно подобное исключение – Земля и Луна. Но при этом естественный спутник нашей планеты по массе в 80 раз меньше центрального тела.
    Харон вращается по орбите, наклон которой к плоскости орбиты Плутона является также весьма нетипичным и составляет 1180. Средний радиус орбиты Харона необычно мал – менее 19700 км. Ближе к своей планете (Марсу) находится лишь еще один спутник в Солнечной системе – Фобос. Однако соотношение масс Марса и Фобоса имеет совсем другой порядок: масса спутника составляет лишь 1,5х10-8 массы планеты. Остается добавить, что наклонение орбиты самого Плутона к плоскости эклиптики также нетипично – более 170. Остальные планеты, за исключением Меркурия (i = 70), вращаются вокруг Солнца почти в одной плоскости, уклоняясь от нее не более, чем на 20-30.
    На рис. 2 приведено изображение Плутона и Харона, полученное в феврале 1994 г. Космическим телескопом им. Хаббла во время удаления двух тел друг от друга на расстояние 19640 км.

    Рис. 2. Изображение системы Плутон-Харон, полученное Космическим телескопом им. Хаббла.
    Возвращаясь к рис. 1, следует указать, что выделенные на диаграмме группы планет располагаются на различном расстоянии от Солнца. Планеты земной группы составляют внутреннюю часть Солнечной системы. Планеты-гиганты образуют ее внешнюю часть. Промежуточное положение занимает пояс астероидов, в котором сосредоточена большая часть малых планет. Распределение планетных расстояний от Солнца можно приблизительно описать известным степенным законом Тициуса-Боде, выведенным в конце XVIII века, где показателем степени служит порядковый номер планеты. Эта зависимость не имеет какого-либо физического содержания и для лучшего согласования с наблюдаемым распределением планетных расстояний приходится “подгонять” порядковые номера планет. Например, в некоторых видах формулы Тициуса-Боде для Меркурия показатель степени (номер планеты) принимался равным минус бесконечности, для Венеры – равным нулю, для Земли – единице и т.д. Несмотря на такие ухищрения, при больших расстояниях от Солнца закон оказывался неприменимым и отклонения вычисленных размеров орбит Нептуна и Плутона от наблюдаемых очень велики. Несомненно положительным результатом использования эмпирических соотношений, вытекавших из закона Тициуса-Боде, стало обнаружение Цереры и других малых планет, образующих пояс астероидов на расстоянии, где согласно закону должна была располагаться следующая за Землей большая планета. Сравнение “предвычисляемых” по закону Тициуса-Боде и действительных расстояний планет от Солнца показано на рис. 3. Расстояния представлены в астрономических единицах (1 а.е. – среднее расстояние Земли от Солнца, равное 149,6 млн. км). Кривая 1 показывает результаты расчетов по формуле Тициуса-Боде.

    Рис. 3. Сравнение вычисляемых и наблюдаемых расстояний планет от Солнца: 1 – формуле Тициуса-Боде, 2 – по формуле Фесенкова.
    В конце 50-х годов XX века В.Г. Фесенков предложил следующую зависимость между расстояниями планет от Солнца и их относительной массой:
    Ln = Ln-1 [1 + K (Mn/Ms)1/3],
    где Mn – масса планеты, Ms – масса Солнца, K – постоянный коэффициент. Результаты вычислений по формуле Фесенкова представлены кривой 2 на рис. 3. Эта же зависимость успешно воспроизводит распределение расстояний в системах спутников планет-гигантов.
    В последовательности на рис. 1 спутники планет расположились довольно компактной группой, несмотря на разную природу образующего их вещества. За исключением нашей Луны, средняя плотность которой 3,34 г/см3, и спутников Юпитера Ио и Европа (плотность которых 3,57 и 2,97 г/см3, соответственно), большинство спутников планет-гигантов состоят из льда с различными по массе примесями силикатных пород и характеризуются плотностью 1 – 2 г/см3. По соотношению масс и размеров с группой спутников планет тесно смыкаются наиболее крупные из астероидов. Резким исключением выглядят спутники Марса, массы и размеры которых более соответствуют астероидам, чем типичным спутникам больших планет. Возможно, Фобос и Деймос были захвачены Марсом из пояса астероидов.
    Конечно, на диаграмме показаны не все, а только наиболее типичные малые тела, соответствующие параметры которых к настоящему времени известны. Подобной избирательностью следует объяснить разрыв между наименьшими астероидами и наиболее крупными метеоритами, которого в действительности, по-видимому, не существует.
    Весьма примечательно, что кометы, имеющие аномально низкую плотность вещества ядер (около 0,6 г/см3), тесно примыкают к общей последовательности, дополняя ее, несмотря на уникальную природу этих тел и полную неясность их происхождения. На диаграмме показаны лишь некоторые из комет, наблюдавшихся во внутренней части Солнечной системы. Однако, исторически короткий период наших наблюдений за небесными явлениями не позволяет говорить, что эти данные полностью исчерпывают сведения о существующих в природе кометных телах. Велика вероятность того, что на окраинах Солнечной системы находится резервуар гигантских по размерам и массам комет, которые могли посещать окрестности Солнца задолго до нашего появления. Вполне возможно, что именно об этом говорят некоторые загадочные образования на поверхности таких безатмосферных тел, как Луна или Меркурий, способных сохранять следы самых древних событий в истории планет.
    Наблюдения нескольких последних лет обнаружили более 30 объектов, названных транснептуновыми. Размеры этих тел, предположительно имеющих сходство с ядрами комет, превосходят 100 км. Согласно общим оценкам, вытекающим из подобных результатов, на расстоянии между 30 и 50 а.е. от Солнца находится около 70000 тел с размерами от 100 до 400 км.
    На последовательности, представленной на рис. 1, эти гипотетические объекты заняли бы промежуток между наиболее крупными из известных комет и ледяными спутниками планет-гигантов, располагаясь несколько выше астероидов аналогичного размера.

  2. Paingrove Ответить

    Для наглядности все тела Солнечной системы, включая и Солнце, можно разместить на диаграмме логарифмической зависимости массы и размеров (рис. 1).

    Рис. 1. Объекты Солнечной системы, представленные на диаграмме
    логарифмической зависимости массы и размеров космических тел.
    Самая крупная из планет – Юпитер отличается от Солнца на порядок по размерам и на три порядка по массе. Такое соотношение прямо указывает на одинаковую плотность вещества для обоих тел и близкий химический состав. Действительно, средняя плотность Юпитера составляет 1,32 г/см3, что очень близко к средней плотности солнечного вещества (1,41 г/см3). Основными элементами, определяющими химический состав обоих объектов, являются водород и гелий. Ближайший сосед Юпитера на диаграмме – Сатурн – по размерам почти не отличается от него, но меньшая плотность вещества планеты (0,686 г/см3) определяет и несколько меньшее значение массы. Следующие два гиганта – Уран и Нептун (с массой около 1029 г) занимают на рассматриваемой диаграмме одно и то же положение, мало отличаясь по своим свойствам – средней плотности (1,28 и 1,64 г/см3 соответственно) и химическому составу. Все четыре планеты традиционно выделяются в группу планет-гигантов, отличительной особенностью которой являются не только значительные размеры и масса, но также и низкая средняя плотность, характерная для газового состава.
    Земля и Венера занимают на диаграмме близкие позиции, почти не отличаясь по размерам, массе и средней плотности (5,52 и 5,24 г/см3 соответственно). Марс и Меркурий замыкают группу планет, которые по общепринятой классификации относятся к объектам земного типа.
    Однако, перечень “больших” планет Солнечной системы на этом не исчерпывается. Обратившись к диаграмме на рис. 1, мы увидим еще одну планету, находящуюся в области спутников планет. Этот необычный объект – Плутон – в момент своего открытия в 1930 г. занимал наиболее удаленное от Солнца положение, соответствующее месту девятой планеты Солнечной системы. Но орбита Плутона, как оказалось, обладает значительным эксцентриситетом и в 1969 г. он пересек орбиту Нептуна, превратившись в восьмую по удаленности от Солнца планету. В этом статусе Плутон будет пребывать до 2009 г. А первый после своего открытия полный оборот вокруг Солнца Плутон завершит лишь в 2178 году. Иногда возникает вопрос, является ли Плутон самостоятельной планетой. По размерам это тело меньше, чем спутник Земли – Луна. Между тем, Плутон обладает собственным спутником, обнаруженным в 1978 г. и названным Хароном. Соотношение масс планеты и спутника в системе Плутон-Харон очень необычно – приблизительно 5 :1. Эту пару тел вполне обоснованно можно назвать “двойной планетой”, компоненты которой обращаются вокруг общего барицентра. В Солнечной системе есть лишь еще одно подобное исключение – Земля и Луна. Но при этом естественный спутник нашей планеты по массе в 80 раз меньше центрального тела.
    Харон вращается по орбите, наклон которой к плоскости орбиты Плутона является также весьма нетипичным и составляет 1180. Средний радиус орбиты Харона необычно мал – менее 19700 км. Ближе к своей планете (Марсу) находится лишь еще один спутник в Солнечной системе – Фобос. Однако соотношение масс Марса и Фобоса имеет совсем другой порядок: масса спутника составляет лишь 1,5х10-8 массы планеты. Остается добавить, что наклонение орбиты самого Плутона к плоскости эклиптики также нетипично – более 170. Остальные планеты, за исключением Меркурия (i = 70), вращаются вокруг Солнца почти в одной плоскости, уклоняясь от нее не более, чем на 20-30.
    На рис. 2 приведено изображение Плутона и Харона, полученное в феврале 1994 г. Космическим телескопом им. Хаббла во время удаления двух тел друг от друга на расстояние 19640 км.

    Рис. 2. Изображение системы Плутон-Харон, полученное Космическим телескопом им. Хаббла.
    Возвращаясь к рис. 1, следует указать, что выделенные на диаграмме группы планет располагаются на различном расстоянии от Солнца. Планеты земной группы составляют внутреннюю часть Солнечной системы. Планеты-гиганты образуют ее внешнюю часть. Промежуточное положение занимает пояс астероидов, в котором сосредоточена большая часть малых планет. Распределение планетных расстояний от Солнца можно приблизительно описать известным степенным законом Тициуса-Боде, выведенным в конце XVIII века, где показателем степени служит порядковый номер планеты. Эта зависимость не имеет какого-либо физического содержания и для лучшего согласования с наблюдаемым распределением планетных расстояний приходится “подгонять” порядковые номера планет. Например, в некоторых видах формулы Тициуса-Боде для Меркурия показатель степени (номер планеты) принимался равным минус бесконечности, для Венеры – равным нулю, для Земли – единице и т.д. Несмотря на такие ухищрения, при больших расстояниях от Солнца закон оказывался неприменимым и отклонения вычисленных размеров орбит Нептуна и Плутона от наблюдаемых очень велики. Несомненно положительным результатом использования эмпирических соотношений, вытекавших из закона Тициуса-Боде, стало обнаружение Цереры и других малых планет, образующих пояс астероидов на расстоянии, где согласно закону должна была располагаться следующая за Землей большая планета. Сравнение “предвычисляемых” по закону Тициуса-Боде и действительных расстояний планет от Солнца показано на рис. 3. Расстояния представлены в астрономических единицах (1 а.е. – среднее расстояние Земли от Солнца, равное 149,6 млн. км). Кривая 1 показывает результаты расчетов по формуле Тициуса-Боде.

    Рис. 3. Сравнение вычисляемых и наблюдаемых расстояний планет от Солнца: 1 – формуле Тициуса-Боде, 2 – по формуле Фесенкова.
    В конце 50-х годов XX века В.Г. Фесенков предложил следующую зависимость между расстояниями планет от Солнца и их относительной массой:
    Ln = Ln-1 [1 + K (Mn/Ms)1/3],
    где Mn – масса планеты, Ms – масса Солнца, K – постоянный коэффициент. Результаты вычислений по формуле Фесенкова представлены кривой 2 на рис. 3. Эта же зависимость успешно воспроизводит распределение расстояний в системах спутников планет-гигантов.
    В последовательности на рис. 1 спутники планет расположились довольно компактной группой, несмотря на разную природу образующего их вещества. За исключением нашей Луны, средняя плотность которой 3,34 г/см3, и спутников Юпитера Ио и Европа (плотность которых 3,57 и 2,97 г/см3, соответственно), большинство спутников планет-гигантов состоят из льда с различными по массе примесями силикатных пород и характеризуются плотностью 1 – 2 г/см3. По соотношению масс и размеров с группой спутников планет тесно смыкаются наиболее крупные из астероидов. Резким исключением выглядят спутники Марса, массы и размеры которых более соответствуют астероидам, чем типичным спутникам больших планет. Возможно, Фобос и Деймос были захвачены Марсом из пояса астероидов.
    Конечно, на диаграмме показаны не все, а только наиболее типичные малые тела, соответствующие параметры которых к настоящему времени известны. Подобной избирательностью следует объяснить разрыв между наименьшими астероидами и наиболее крупными метеоритами, которого в действительности, по-видимому, не существует.
    Весьма примечательно, что кометы, имеющие аномально низкую плотность вещества ядер (около 0,6 г/см3), тесно примыкают к общей последовательности, дополняя ее, несмотря на уникальную природу этих тел и полную неясность их происхождения. На диаграмме показаны лишь некоторые из комет, наблюдавшихся во внутренней части Солнечной системы. Однако, исторически короткий период наших наблюдений за небесными явлениями не позволяет говорить, что эти данные полностью исчерпывают сведения о существующих в природе кометных телах. Велика вероятность того, что на окраинах Солнечной системы находится резервуар гигантских по размерам и массам комет, которые могли посещать окрестности Солнца задолго до нашего появления. Вполне возможно, что именно об этом говорят некоторые загадочные образования на поверхности таких безатмосферных тел, как Луна или Меркурий, способных сохранять следы самых древних событий в истории планет.
    Наблюдения нескольких последних лет обнаружили более 30 объектов, названных транснептуновыми. Размеры этих тел, предположительно имеющих сходство с ядрами комет, превосходят 100 км. Согласно общим оценкам, вытекающим из подобных результатов, на расстоянии между 30 и 50 а.е. от Солнца находится около 70000 тел с размерами от 100 до 400 км.
    На последовательности, представленной на рис. 1, эти гипотетические объекты заняли бы промежуток между наиболее крупными из известных комет и ледяными спутниками планет-гигантов, располагаясь несколько выше астероидов аналогичного размера.

  3. ХайповыйКошаК Ответить

    Солнечная система – это система, включающая в себя центральную звезду Солнце, вокруг которой вращаются планеты и другие небесные тела.
    Образовалась она более четырёх с половиной миллиардов лет назад. Входит в состав галактики “Млечный путь”.
    Имеет суммарную массу 1,0014 Солнечной массы. Масса Солнца – число постоянное и равняется ~1,99*1030 кг.
    Отсюда понятно, что подавляющая часть массы Солнечной системы приходится на звезду (99.86%). И лишь 0.0013% распределено между всеми планетами.
    Для сравнения: масса Солнца превышает Земную примерно в 332 946 раз. Представляете?

    Структура Солнечной системы

    Вокруг Солнца вращаются восемь основных планет.
    Четыре из них имеют схожие свойства с Землёй: имеют высокую плотность, поскольку состоят по большей части из металлов и силикатов; обладают ядром планеты, состоящим преимущественно из железа и никеля; имеют мантию, состоящую из силикатов; не имеют колец.
    Планеты земной группы ещё иногда называют внутренними. Это объясняется тем, что они занимают четыре первые орбиты.
    Ближе всех к Солнцу – Меркурий. Он же является самой маленькой планетой (в 18 раз меньше массы Земли).
    Венера лишь немного уступает по размерам нашей Земле. Однако, условия планет схожими никак не назовёшь. Из-за того, что Венера находится довольно близко к звезде (на второй орбите), она обладает самой высокой температурой – более 400°C. Соответственно, воды на ней очень мало.
    Марс по массе почти в десять раз меньше Земли. Расположен он на 4-ой орбите, за счёт чего на планете преобладают низкие температуры (в среднем, -50°C). Хоть некоторые, видя красный цвет Марса (из-за оксида железа), считают, что там жарко – это не так.
    Оставшиеся 4 планеты системы – газовые гиганты. Это значит, что они куда массивнее Земли и состоят, в основном, из водорода, гелия, метана и иных элементов. Соответственно, они имеют относительно маленькую плотность.
    Ещё одной их особенностью является быстрое вращение вокруг своей оси (от 9 до 17 часов).
    Юпитер – самая большая из этих планет в Солнечной системе. Она превышает массой все остальные планеты вместе взятые в два с половиной раза. Вокруг Юпитера вращается 67 спутников, некоторые из них схожи по размерам с Меркурием.
    Вторая по величине – планета Сатурн. Он широко известен благодаря своей красивой системе колец. Также интересен своей маленькой плотностью (средняя плотность Сатурна немного меньше плотности воды). Имеет 62 спутника, один из которых обладает атмосферой (единственный такой в системе).
    Самым лёгким из гигантов является Уран. Превышает своей массой Землю всего лишь в 14 раз. Вокруг него вращается 27 спутников.
    А вот по размерам самый маленький – Нептун. У него также меньше всего спутников – всего 14.
    Помимо этих восьми основных планет, в системе также есть и множество других. Они все относятся к группе планет-карликов (таковыми они считаются, потому что не могут расчистить от других объектов свою орбиту).
    Наиболее распространёнными объектами Солнечной система являются небольшие астероиды (несколько сотен тысяч). Они не имеют атмосферы, обладают неправильной формой и небольшими размерами. Но они также, как и планеты, вращаются вокруг Солнца и могут иметь спутники (раньше их называли малыми планетами).
    Кометы – маленькие тела системы (обычно – пару километров). По большей части они состоят из летучих веществ (льдов), которые испаряются при достаточном приближении к Солнцу. Именно благодаря такому эффекту мы можем наслаждаться их красотой.
    Сейчас их насчитано более трёх тысяч. Но со временем летучие вещества из комет испаряются и они переходят в разряд астероидов.
    Похожие статьи:
    Особенности галактик
    Галактиками называют громадные системы, включающие в себя астероиды, планеты, звёзды и иные небесные тела, вращающиеся вокруг некого центра масс.
    Чёрные дыры
    Эти объекты Вселенной уникальны своей силой притяжения. Если что-то попадает в зону их действия, вырваться уже не способно и будет неминуемо поглощено дырой.

  4. Thoge Ответить




    § 63. Состав, строение и происхождение солнечной системы
    В состав Солнечной системы входит Солнце, вокруг которого обращаются восемь больших планет. В порядке удаления от Солнца они располагаются в такой последовательности: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун (рис. 167). Вокруг всех планет, кроме Меркурия и Венеры, обращаются их естественные спутники.

    Рис. 167. Расположение больших планет с их спутниками и планет-карликов в порядке их удаления от Солнца: Меркурий, Венера, Земля, Марс, Церера, Юпитер, Сатурн, Уран, Нептун, Плутон, Хаумеа, Макемаке, Эрида
    Ещё пять планет — Церера, Плутон, Хаумеа, Макемаке и Эрида, массы и размеры которых существенно меньше, чем у больших планет, — составляют группу планет-карликов. Церера расположена между орбитами Марса и Юпитера, орбиты четырёх последних планет-карликов пролегают за орбитой Нептуна.
    Кроме планет вокруг Солнца движутся так называемые малые тела Солнечной системы: астероиды, кометы, метеорные тела.
    Благодаря тому, что масса Солнца составляет почти 99,9% от всей массы Солнечной системы, силы гравитационного притяжения между Солнцем и перечисленными небесными телами оказываются достаточными для удержания последних в Солнечной системе.
    Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 5 млрд лет назад с гравитационного коллапса (т. е. катастрофически быстрого сжатия) небольшой части гигантского межзвёздного газопылевого облака. В общих чертах этот процесс можно описать следующим образом. Во вращающемся газопылевом облаке в результате взаимодействия его частиц или под действием каких-либо внешних влияний могло возникнуть уплотнение, ставшее центром гравитационного притяжения частиц окружающего вещества и вызвавшее гравитационный коллапс.
    В процессе гравитационного сжатия размеры газопылевого облака уменьшались. Из-за вращения облака его сжатие в направлении, параллельном оси вращения, происходило быстрее, чем в направлениях, перпендикулярных оси. Это приводило к уплощению облака и формированию характерного диска (рис. 168). При сжатии облака его плотность увеличивалась, движение частиц вещества становилось всё более интенсивным, особенно в центральной части диска. Как следствие увеличивалась внутренняя энергия и повышалась температура вещества. При температуре в несколько тысяч градусов атомы центральной части облака стали излучать свет, что свидетельствовало о возникновении протозвезды. — звезды в стадии образования.

    Рис. 168. Диск газопылевого облака, из которого сформировались планеты
    Под действием гравитационного притяжения вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре.
    Когда температура в центре протозвезды достигла миллионов градусов, в центральной области началась термоядерная реакция превращения водорода в гелий, происходящая с выделением энергии. Протозвезда превратилась в обычную звезду, впоследствии названную Солнцем. Во внешней области диска крупные сгущения образовали планеты.
    В протопланетном пылевом облаке температура прилегавшей к Солнцу области была более высокой, чем в окраинных его частях, из-за чего лёгкие химические элементы выносились в удалённые, холодные части облака. В результате в составе ближайших к Солнцу планет, названных впоследствии планетами земной группы, преобладают тяжёлые элементы, а четыре дальние — планеты-гиганты — состоят в основном из газов. Различия в составе вещества, образовавшего планеты, принадлежащие к разным группам, явились причиной различий их физических характеристик. Планеты земной группы обладают существенно меньшими размерами и массами, но большей плотностью. Они получают от Солнца больше света и тепла, быстрее движутся по орбитам (вследствие того, что внутренняя часть протопланетного диска вращалась быстрее внешней), гораздо медленнее вращаются вокруг своей оси и поэтому меньше сжаты у полюсов, чем планеты-гиганты. Планеты-гиганты имеют значительно большие размеры атмосферы и магнитосферы1, у них нет твёрдой или жидкой поверхности. Число естественных спутников у планет этой группы велико: 164 из 167 известных в Солнечной системе. Кроме того, у планет-гигантов есть образования из мелких частиц — кольца, которые отсутствуют у планет земной группы.
    Кольца планет-гигантов образовались из остатков околопланетного облака, представляющих собой частицы разных размеров.

    Вопросы

    Какие группы объектов входят в Солнечную систему?
    В какие виды энергии переходила гравитационная энергия сжатия протооблака при образовании Солнечной системы?
    Чем отличаются планеты земной группы от планет-гигантов? Чем эти отличия обусловлены?
    Почему планеты Солнечной системы не покидают её; не падают на Солнце?
    1 Магнитосфера — область околопланетного пространства, физические свойства которой определяются магнитным полем планеты и его взаимодействием с потоками заряженных частиц космического происхождения.

  5. Saidred Ответить




    § 63. Состав, строение и происхождение солнечной системы
    В состав Солнечной системы входит Солнце, вокруг которого обращаются восемь больших планет. В порядке удаления от Солнца они располагаются в такой последовательности: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун (рис. 167). Вокруг всех планет, кроме Меркурия и Венеры, обращаются их естественные спутники.

    Рис. 167. Расположение больших планет с их спутниками и планет-карликов в порядке их удаления от Солнца: Меркурий, Венера, Земля, Марс, Церера, Юпитер, Сатурн, Уран, Нептун, Плутон, Хаумеа, Макемаке, Эрида
    Ещё пять планет — Церера, Плутон, Хаумеа, Макемаке и Эрида, массы и размеры которых существенно меньше, чем у больших планет, — составляют группу планет-карликов. Церера расположена между орбитами Марса и Юпитера, орбиты четырёх последних планет-карликов пролегают за орбитой Нептуна.
    Кроме планет вокруг Солнца движутся так называемые малые тела Солнечной системы: астероиды, кометы, метеорные тела.
    Благодаря тому, что масса Солнца составляет почти 99,9% от всей массы Солнечной системы, силы гравитационного притяжения между Солнцем и перечисленными небесными телами оказываются достаточными для удержания последних в Солнечной системе.
    Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 5 млрд лет назад с гравитационного коллапса (т. е. катастрофически быстрого сжатия) небольшой части гигантского межзвёздного газопылевого облака. В общих чертах этот процесс можно описать следующим образом. Во вращающемся газопылевом облаке в результате взаимодействия его частиц или под действием каких-либо внешних влияний могло возникнуть уплотнение, ставшее центром гравитационного притяжения частиц окружающего вещества и вызвавшее гравитационный коллапс.
    В процессе гравитационного сжатия размеры газопылевого облака уменьшались. Из-за вращения облака его сжатие в направлении, параллельном оси вращения, происходило быстрее, чем в направлениях, перпендикулярных оси. Это приводило к уплощению облака и формированию характерного диска (рис. 168). При сжатии облака его плотность увеличивалась, движение частиц вещества становилось всё более интенсивным, особенно в центральной части диска. Как следствие увеличивалась внутренняя энергия и повышалась температура вещества. При температуре в несколько тысяч градусов атомы центральной части облака стали излучать свет, что свидетельствовало о возникновении протозвезды. — звезды в стадии образования.

    Рис. 168. Диск газопылевого облака, из которого сформировались планеты
    Под действием гравитационного притяжения вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре.
    Когда температура в центре протозвезды достигла миллионов градусов, в центральной области началась термоядерная реакция превращения водорода в гелий, происходящая с выделением энергии. Протозвезда превратилась в обычную звезду, впоследствии названную Солнцем. Во внешней области диска крупные сгущения образовали планеты.
    В протопланетном пылевом облаке температура прилегавшей к Солнцу области была более высокой, чем в окраинных его частях, из-за чего лёгкие химические элементы выносились в удалённые, холодные части облака. В результате в составе ближайших к Солнцу планет, названных впоследствии планетами земной группы, преобладают тяжёлые элементы, а четыре дальние — планеты-гиганты — состоят в основном из газов. Различия в составе вещества, образовавшего планеты, принадлежащие к разным группам, явились причиной различий их физических характеристик.
    Планеты земной группы обладают существенно меньшими размерами и массами, но большей плотностью. Они получают от Солнца больше света и тепла, быстрее движутся по орбитам (вследствие того, что внутренняя часть протопланетного диска вращалась быстрее внешней), гораздо медленнее вращаются вокруг своей оси и поэтому меньше сжаты у полюсов, чем планеты-гиганты. Планеты-гиганты имеют значительно большие размеры атмосферы и магнитосферы1, у них нет твёрдой или жидкой поверхности. Число естественных спутников у планет этой группы велико: 164 из 167 известных в Солнечной системе. Кроме того, у планет-гигантов есть образования из мелких частиц — кольца, которые отсутствуют у планет земной группы.
    Кольца планет-гигантов образовались из остатков околопланетного облака, представляющих собой частицы разных размеров.

    Вопросы

    Какие группы объектов входят в Солнечную систему?
    В какие виды энергии переходила гравитационная энергия сжатия протооблака при образовании Солнечной системы?
    Чем отличаются планеты земной группы от планет-гигантов? Чем эти отличия обусловлены?
    Почему планеты Солнечной системы не покидают её; не падают на Солнце?
    1 Магнитосфера — область околопланетного пространства, физические свойства которой определяются магнитным полем планеты и его взаимодействием с потоками заряженных частиц космического происхождения.

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *