Какие компоненты клетки участвуют в биосинтезе белка на втором этапе?

8 ответов на вопрос “Какие компоненты клетки участвуют в биосинтезе белка на втором этапе?”

  1. Kulanadar Ответить



    Пластический обмен
    Пластический обмен (ассимиляция) — совокупность химических процессов в живом организме, направленных на образование и обновление структурных частей клеток и тканей.
    В ходе пластического обмена простые вещества, неспецифические для данного организма, превращаются в сложные соединения, которые способны выполнять специфические функции, характерные для данного организма.
    Примером процесса ассимиляции служит биосинтез белков.
    Биосинтез белков в живой клетке
    Каждая живая клетка создает (синтезирует) составляющие ее вещества. Этот процесс называют биосинтезом. Биосинтез (от греч. bios – “жизнь” и synthesis – “соединение”) – образование органических веществ, происходящее в живых клетках с помощью ферментов и внутриклеточных структур.
    Биосинтез, осуществляемый в процессе обмена веществ, всегда идет с потреблением энергии. Биосинтез, например, простых углеводов у зеленых растений происходит за счет энергии света. Биосинтез белков идет с потреблением энергии химических связей в органических веществах.
    Главным поставщиком энергии для биосинтеза служит аденозинтрифосфорная кислота (АТФ). Ферменты, отщепляя остатки фосфорной кислоты от молекул АТФ, обеспечивают выделение энергии и тем создают возможность ее использования для биосинтеза.
    В биосинтезе молекул белка участвуют разные аминокислоты, многочисленные ферменты, рибосомы и разные РНК (рРНК – рибосомная, тРНК – транспортная и иРНК – информационная).
    Характер биосинтеза определяется наследственной информацией, закодированной в определенных участках ДНК хромосом – в генах. Гены содержат информацию об очередности аминокислот того или иного синтезируемого белка, иными словами, кодируют его первичную структуру. Молекулы иРНК передают этот код для биосинтеза.
    Схематически процесс биосинтеза можно представить так:
    Перенос генетической информации в виде копий ДНК из ядра в рибосому осуществляет информационная РНК.
    Этот процесс происходит в ядре. Благодаря действию ферментов участок ДНК раскручивается, и вдоль одной из цепей по принципу комплементарности, т. е. избирательного соответствия, выстраиваются нуклеотиды. Соединяясь между собой, они образуют полинуклеотидную цепочку иРНК.
    После этого происходит так называемое созревание, когда с участием ферментов вырезаются внутренние участки молекулы, а оставшиеся фрагменты “сшиваются” в одну линейную структуру. В результате образуется иРНК.
    При этом разные ферменты способны вырезать разные участки РНК, и таким образом образуются разные иРНК. Смысл созревания иРНК заключается в том, что на основе информации одного гена возможен синтез нескольких иРНК, а в дальнейшем и разных белков.
    Образовавшаяся таким образом новая информационная цепь иРНК оказывается точной копией генетической информации, “списанной” с ДНК как с матрицы. Этот процесс называется транскрипцией (лат. transcriptio – “переписывание”).

    Транскрипция – первый этап биосинтеза белка. На этом этапе происходит “списывание” генетической информации путем создания иРНК.
    Образовавшаяся иРНК выходит из ядра в цитоплазму через поры в ядерной оболочке и вступает в контакт с многочисленными рибосомами.
    Рибосома – уникальный “сборочный аппарат”. Рибосома скользит по иРНК как по матрице и в строгом соответствии с последовательностью расположения ее нуклеотидов выстраивает определенные аминокислоты в длинную полимерную цепь белка. Порядок аминокислот в этой цепи соответствует генетической информации, скопированной (“списанной”) с определенного участка ДНК. “Считывание” информации с иРНК и создание при этом полимерной цепи белка называется трансляцией (лат. translatio – “передача”). В процессе трансляции информация о строении будущего белка, записанная в виде последовательности нуклеотидов в молекулах иРНК, переводится с нуклеотидного кода в последовательность аминокислот в синтезируемых белках. Трансляция (“считывание”) происходит в цитоплазме клетки.
    “Считывание” (трансляция) генетической информации с иРНК и создание (сборка) полимерной цепи на рибосомах – второй этап биосинтеза белка.

    Аминокислоты доставляются к рибосомам с помощью транспортных РНК (тРНК), которые, находясь в цитоплазме в свободном состоянии и в большом количестве, обеспечивают создание полимерной молекулы белка.
    Для каждой аминокислоты требуется своя тРНК, комплементарная определенному участку иРНК. Такой участок всегда представлен триплетом – сочетанием трех нуклеотидов, называемым кодоном. В свою очередь, и каждая аминокислота, входящая в белок, тоже закодирована определенным сочетанием трех нуклеотидов (антикодон), по которым они и находят друг друга.
    (Внимание! Данное интерактивное задание содержит ошибки! Найдите их!)
    Многие аминокислоты кодируются не одним, а несколькими триплетами. В то же время известны три триплета, которые не кодируют ни одной аминокислоты (стоп-кодоны – УАА, УАГ и УГА). Эти триплеты прерывают синтез белковой цепочки.
    Генетический код — это свойственный всем живым организмам единый способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов в молекуле ДНК.
    Генетический триплетный код биосинтеза молекул белка был расшифрован в 1965 г. Из 4 типов нуклеотидов можно составить 64 триплетных сочетания. В построении белков участвует всего 20 аминокислот. Но генов в ДНК хромосом очень много, поэтому в клетке может синтезироваться много различных белков. Значительная их часть – ферменты.
    Изменение последовательности нуклеотидов (мутация) может привести к изменению аминокислот в белке. Такой белок приобретает новые свойства и может оказывать значительное влияние на жизнедеятельность организма – как положительное, так и отрицательное.
    Обычно вдоль одной молекулы иРНК движется сразу несколько рибосом, при этом одновременно синтезируется несколько молекул белка.
    Срок жизни иРНК – от двух минут у бактерий до многих дней у высших организмов. В конце концов ферменты разрушают иРНК до отдельных нуклеотидов. Нуклеотиды затем используются для синтеза новых РНК. Расщепляя и синтезируя иРНК, клетка строго регулирует синтез белков, их тип и количество.
    Процесс биосинтеза молекул белков осуществляется только в живой клетке.
    < Предыдущая страница “Обмен веществ – основа существования клетки”
    Следующая страница “Биосинтез углеводов – фотосинтез” >

  2. НеПодарок Ответить

    Основные характеристики процесса транскрипции
    1.  РНК – копия содержит в себе весь объем информации определенного участка ДНК.
    2.  РНК сохраняет способность к образованию водородных связей между комплементарными основаниями (так как урацил, присутствующий в РНК вместо тимина спаривается с аденином)
    3.  Транскрипция отличается от репликации, при этом РНК-копия, после завершения ее синтеза освобождается от ДНК-матрицы, после чего происходит восстановление исходной двойной спирали ДНК.
    4.  Синтезирующие молекулы РНК имеют одноцепочечную структуру, она короче ДНК и соответствует длине участка ДНК, который достаточен для кодирования одного или нескольких белков.
    Особенности данного процесса
    1.  В клетках эукариот – прежде чем превратится в и-РНК и попасть в цитоплазму, РНК претерпевает химические изменения.
    2.  В цитоплазме на каждой и-РНК синтезируются тысячи копий. Скорость этого процесса очень высока.

    Генетический код

    Генетический код – это аминокислотная последовательность белков. Он был расшифрован в 1961 году учеными Миренберпом и Маттеи. Они установили:
    Кодирование аминокислот осуществляется триплетами нуклеотидов (кодонами) Из 4-х азотистых оснований можно составить 64 различные комбинации, которых достаточно для кодирования 20 аминокислот.
    Кодон – это последовательность трех нуклеотидов, в результате которой кодируется определенная аминокислота.
    Необходимо помнить, что:
    Точность синтеза полипептидной цепи достигается за счет комплементарного узнавания азотистых оснований двух компонентов:
    кодона информационной РНК антикодона транспортной РНК
    Последовательность аминокислот в любом белке зависит от последовательности азотистых оснований в ДНК, содержащихся в той клетке, где синтезируется данный белок. Заложенная в ДНК информация считывается в процесс транскрипции матричной РНК (м-РНК) и переносится в белоксинтезирующую систему на рибосомы. Ученый Крик доказал триплетную теорию кодона, которая и объясняет способ перевода четырехбуквенного языка нуклеиновых кислот на 20-буквенный язык белковых молекул.
    Кодон-антикодоновое взаимодействие – это способ узнавания триплетом (которым является м-РНК) комплементарного триплета (им является антикодон), входящего в состав соответствующей т-РНК.
    Кодон и антикодон спариваются антипараллельным образом (теорий качаний Крика):
    1.  Два первых основания кодонов образуют прочные пары с соответствующими азотистыми основаниями антикодона.
    2.  Находящиеся в третьем положении азотистые основания кодонов образуют слабые водородные связи с антикодоном.
    3.  Вывод Крика: находящиеся в третьем положении основания большинства кодонов имеют некоторую степень свободы при образовании пары с соответствующими азотистым основанием антикодона – это и есть качающиеся основания.
    4.  Именно такое взаимодействие кодона с антикодоном обеспечивает включение аминокислоты в соответствующие участки полипептидной цепи синтезирующегося белка.

    Этапы биосинтеза белка

    1 этап – этап активации аминокислот
    Компоненты:
    1.  20 аминокислот
    2.  20 ферментов аминоацил-т-РНК-синтетаз
    3.  20 и более т-РНК, а также АТФ и ионы Мg?+
    На этом этапее осуществляется АТФ-зависимые превращения аминокислот в аминоацил-т-РНК.
    1 стадия – из аминокислоты и АТФ образуется аминоацил-аденилат – это активированное соединение (ангидрид), в котором карбоксильная группа аминокислоты соединена с фосфатной группой адениновой кислоты.
    2 стадия – аминоацидная группа аминоацил-аденилата переносится на молекулу соответствующей т-РНК. В результате образуется аминоацил-т-РНК – это активированное соединение, участвующее в биосинтезе белка. Этот процесс активизируется аминоцаил-т-РНК-синтетазами.
    Во всех случаях на 2-ой стадии активированная аминокислота присоединяется к остатку адениловой кислоты, или адениловому нуклеотиду в триплете ЦЦА (ССА) на третьем конце молекулы т-РНК (3’-Т-РНК).
    Молекулы т-РНК переводят информацию, заключенную в и-РНК на язык белка.
    Таким образом, генетический код расшифровывается с помощью двух адаптаров: это т-РНК и аминоцаил-т-РНК-синтетаза, в результате чего каждая аминокислота может занять место, определенное ей триплетной нуклеотидной последовательностью в и-РНК, т. е. своим кодоном.
    Для дальнейшего синтеза необходимы рибосомы. Синтез белков, входящих в состав рибосомной структуры, происходит цитоплазме, самосборка – в ядрышке за счет взаимодействия молекул белков и рибосомной РНК при участии ионов Мg?+.
    р-РНК выполняет роль каркасов для упорядоченного расположения рибосомных полипептидов.
    Суб-частицы в рибосоме расположены несимметрично, имеют неправильную форму, и соединены друг с другом так, что между ними остается бороздка, через которую проходит молекула и-РНК в процесс синтеза полипептидной цепи, а также 2-ая бороздка, удерживающая растущую полипептидную цепь.
    2 этап – Инициация полипептидной цепи
    Компоненты:
    1.  и-РНК, гуанозинтрифосфат (ГТФ), ионы Мg?+
    2.  N-формилметионил-т-РНК
    3.  Инициирующий кодон в и-РНК
    4.  Рибосомные субчастицы (30S, 50S)
    5.  Факторы инициации (IF 1;2;3)
    У E. coli и других прокариот N-концевой аминокислотой при сборке полипептидной цепи всегда является остаток N-формилметианила.
    Стадии образования инициирующего комплекса
    1 стадия
    A)  В результате взаимодействия 30S субъединицы (субчастицы) и фактора инициации образуется структура, в которой белок препятствует ее ассоциации с 50S субчастицей.
    B)  Присоединение к 30S субчастице и-РНК достигается с помощью инициирующего сигнала, представляющего собой богатую пуриновыми основаниями последовательность, центр которой находится на расстоянии 10 нуклеотидов от 5’-конца инициирующего кодона и-РНК.
    C)  Первый транслируемый кодон расположен на расстоянии 25 нуклеотидов от 5’ конца.
    D)  Инициирующий сигнал, представленный коротким участком и-РНК, в результате взаимодействия с комплементарной последовательностью нуклеотидов, расположенных с 3-го конца 30S субчастицы, способствует фиксированию и-РНК в нужном для инициации положении.
    E)  Это взаимодействие обеспечивает правильное положение инициирующего кодона на 30S субчастице.
    2 стадия
    A)  К комплексу, состоящему из 30S субчастицы, фактора инициации и и-РНК, присоединяются ранее связавшиеся с N-формилметионилом т-РНК, второй фактор инициации и гуанозин-трифосфат (ГТФ).
    B)  Возникновение функционально активной 70S рибосомы а результате присоединения 50S-рибосомной субчастицы к ранее образовавшейся комплексной структуре.
    3 стадия – приготовление инициирующего комплекса к продолжению процесса трансляции.
    3 этап – Элонгация
    На этой стадии происходит синтез полипептидной цепи.
    Компоненты:
    1.  Инициирующий комплекс – 70S рибосома.
    2.  Набор аминоацил-т-РНК
    3.  Фактор элонгации, цианозинтрифосфат (ГТФ)
    4.  Пептидилтрансфераза, ионы Мg?+
    Элонгация – это циклический процесс.
    Стадии элонгации
    1 стадия – образование аминоацил-т-РНК, которая является комплементарным кодон-антикодоновым взаимодействием, а также специфической связью между участками молекул т-РНК и р-РНК.
    2 стадия – подготовка для вступления остатков аминокислот в реакцию образования пептидной связи.
    3 стадия (транслокация) – это перемещение рибосомы вдоль и-РНК на один кодон. На образование однопептидной связи затрачивается энергия гидролиза 2-х молекул ГТФ.
    A)  Свободная т-РНК отделяется и уходит в цитоплазму.
    B)  В дальнейшем аминоацильный участок вновь подготовлен для связывания очередной аминоацил-т-РНК, антикодон который комплементарен следующему кодону и-РНК – начинается новый цикл элонгации.
    4 этап – Терминация.
    Компоненты:
    АТФ Терминирующий кодон и-РНК Факторы освобождения полипептида
    1)  Рост полипептидной цепи продолжается, пока один из 3-х терминирующих кодонов (УАА, УГА, УАГ) не поступит в рибосому. В этом случае кодон-антикодо-нового взаимодействия не происходит.
    2)  К терминирующему кодону присоединяется ответственный за терминацию фактор, в результате прекращается дальнейший рост белковой цепи.
    3)  Синтезируемый белок, и-РНК и т-РНК определяются от рибосомы.
    4)  И0РНК распадается до свободных рибонуклеидов, а т-РНК и рибосомы, распавшись на две субъединицы, участвуют в новых циклах трансляции.
    5 этап – Процессинг
    Компоненты:
    1.  Специфические ферменты
    2.  Кофакторы
    Образующиеся полипептидные цепи формируют более сложные белки или управляют процессами метаболизма в качестве ферментов.
    На одной молекуле и-РНК работает несколько и более (до 100) рибосом. Они образуют полисому, и на каждой рибосоме строится своя полипептидная цепь (в биосинтезе гемоглобина участвуют полсомы из 5-6 рибосом).
    Отличие биосинтеза белка
    1.  У прокариот – транскрипция и трансляция связаны между собой и синтез белка начинается сразу же на продолжающей синтезироваться молекуле и-РНК.
    2.  У эукариот – сначала на ДНК синтезируется и-РНК, затем она созревает и только зрелая участвует в трансляции.

    Регуляция синтеза белка

    В процессе эволюции был создан механизм регуляции действия генов. Геном каждой клетки приобрел характер комплекса, состоящего из:
    Структурных генов, которые кодируют синтез белковых молекул (т-РНК и и-РНК); и Генов-регуляторов, которые обеспечивают упорядоченность в действии структурных генов.
    Регуляция экспрессии (выражения) генов осуществляется на нескольких уровнях:
    Генный – обусловлен изменением количества и локализации генов, контролирующих тот или иной признак. Транскрипционный – отвечает за то, какие и когда включать гены для наработки и-РНК. Трансляционный – обеспечивает отбор и-РНК, транслирующихся на рибосомах. Функциональный – связан с регуляцией активности ферментов.

  3. Mr.Guardian Ответить

    К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (транскрипцию) и синтез белка на и-РНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов.
    Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах. В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.

    Репликация ДНК

    Структура молекулы ДНК, установленная Дж. Уотсоном и Ф. Криком в 1953 г., отвечала тем требованиям, которые предъявлялись к молекуле-хранительнице и передатчику наследственной информации. Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов. Процесс удвоения ДНК происходит полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией.
    Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях. Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться. Этот процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.
    Репликация — это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.
    Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

    Биосинтез белка и нуклеиновых кислот

    В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.

    Транскрипция — это биосинтез молекул иРНК на соответствующих участках ДНК. Транскрипция происходит только на одной цепи ДНК, которая называется кодирующей, в отличие от другой — некодирующей, или кодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности.
    Синтезированные в процессе транскрипции в ядре молекулы иРНК покидают его через ядерные поры, а митохондриальные и пластидные иРНК остаются внутри органоидов. После транскрипции происходит процесс активации аминокислот, в коде которой аминокислота присоединяется к соответствующей свободной тРНК.
    Трансляция — это биосинтез полипептидной цепи на молекуле иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.
    Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).
    Для начала транскрипции (инициации) к молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону АУГ подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь.
    Когда рибосома передвигается на один кодон иРНК, первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется, и шаг за шагом полипептидная цепь удлиняется, то есть происходит ее элонгация.
    Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.
    Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.
    Репликация ДНК и синтез белка в клетке протекают по принципу матричного синтеза, поскольку новые молекулы нуклеиновых кислот и белков синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).

    Это конспект для 10-11 классов по теме «Биосинтез белка. Репликация ДНК».
    Читайте также другие конспекты, относящиеся к разделу ЕГЭ 2.6:
    Генетическая информация в клетке. Гены, генетический код и его свойства.
    Вернуться в Кодификатор ЕГЭ.

  4. ps1h1ator Ответить

    Все
    этапы биосинтеза белка

    1.
    Транскрипция
    (переписывание информации
    с ДНК на иРНК). В определенном участке
    ДНК разрываются водородные связи,
    получается две одинарных цепочки. На
    одной из них по принципу комплементарности
    строится иРНК. Затем она отсоединяется
    и уходит в цитоплазму, а цепочки ДНК
    снова соединяются между собой.
    2. Процессинг
    (только у эукариот) – созревание иРНК:
    удаление из нее участков, не кодирующих
    белок, а так же присоединение управляющих
    участков.
    Процессинг
    —это процесс превращения транскрипта
    (пре-иРНК, полученной при транскрипции)
    в зрелую иРНК, пригодную для трансляции.
    Стадии процессинга:
    1) Кэпирование
    К 5′-концу
    транскрипта присоединяется кэп
    («шапочка», англ.), состоящая из
    модифицированного гуанина.
    2)
    Полиаденирование

    К 3′-концу
    транскрипта присоединяется от 100 до 200
    адениновых нуклеотидов.
    3) Сплайсинг
    Это процесс
    вырезания из транскрипта нужных участков
    и склеивания их между собой. У эукариот
    из транскрипта выбрасывается в среднем
    5/6 длины.
    3. Экспорт
    иРНК из ядра в цитоплазму
    (только у
    эукариот). Происходит через ядерные
    поры; всего экспортируется примерно 5%
    от общего количества иРНК в ядре.
    4. Синтез
    аминоацил-тРНК.
    В цитоплазме имеется
    61 фермент аминоацил-тРНК-синтетаза. Он
    комплементарно узнает аминокислоту и
    тРНК, которая должна ее переносить, и
    соединяет их между собой, при этом
    затрачивается 1 АТФ.
    5. Трансляция
    (синтез белка).
    Внутри рибосомы к
    кодонам иРНК по принципу комплементарности
    присоединяются антикодоны тРНК. Рибосома
    соединяет между собой аминокислоты,
    принесенные тРНК, получается белок.
    Инициация.
    1. Узнавание
    стартового кодона (AUG), сопровождается
    присоединением тРНК аминоацилированной
    метионином (М) и сборкой рибосомы из
    большой и малой субъединиц.
    Элонгация.
    2. Узнавание
    текущего кодона соответствующей ему
    аминоацил-тРНК (комплементарное
    взаимодействие кодона мРНК и антикодона
    тРНК увеличено).
    3. Присоединение
    аминокислоты, принесённой тРНК, к концу
    растущей полипептидной цепи.
    4. Продвижение
    рибосомы вдоль матрицы, сопровождающееся
    высвобождением молекулы тРНК.
    5.
    Аминоацилирование высвободившейся
    молекулы тРНК соответствующей ей
    аминоацил-тРНК-синтетазой.
    6. Присоединение
    следующей молекулы аминоацил-тРНК,
    аналогично стадии (2).
    7. Движение
    рибосомы по молекуле мРНК до стоп-кодона
    (в данном случае UAG).
    Терминация.
    Узнавание
    рибосомой стоп-кодона сопровождается
    (8) отсоединением новосинтезированного
    белка и в некоторых случаях (9) диссоциацией
    рибосомы.
    6. Созревание
    белка
    . Вырезание из белка ненужных
    фрагментов, присоединение небелковых
    компонентов (например, гема), соединение
    нескольких полипептидов в четвертичную
    структуру.

  5. KaTrek Ответить

    Рассмотрим подробнее основные этапы биосинтеза белков:
    1 этап. Транскрипция ДНК. На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарная цепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.
    2 этап. Процессинг (созревание) мРНК. Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Процесс соединения экзонов «без узелков» называется сплайсинг.
    Сплайсинг характерен для эукариот и архебактерий, но иногда встречается и у прокариот. Существует несколько видов сплайсинга. Сущность альтернативного сплайсинга заключается в том, что одни и те же участки исходной мРНК могут быть и интронами, и экзонами. Тогда одному и тому же участку ДНК соответствует несколько типов зрелой мРНК и, соответственно, несколько разных форм одного и того же белка. Сущность транс–сплайсинга заключается в соединение экзонов, кодируемых разными генами (иногда даже из разных хромосом), в одну зрелую молекулу мРНК.
    3 этап. Трансляция мРНК. Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).

    Инициация

    Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.
    Первоначально образуется инициирующий комплекс, в состав которого входят: малая субъединица рибосомы, специфические белки (факторы инициации) и специальная инициаторная метиониновая тРНК с аминокислотой метионином – Мет–тРНКМет. Инициирующий комплекс узнает начало мРНК, присоединяется к ней и скользит до точки инициации (начала) биосинтеза белка: в большинстве случаев это стартовый кодон АУГ. Между стартовым кодоном мРНК и антикодоном метиониновой тРНК происходит кодонзависимое связывание с образованием водородных связей. Затем происходит присоединение большой субъединицы рибосомы.
    При объединении субъединиц образуется целостная рибосома, которая несет два активных центра (сайта): А–участок (аминоацильный, который служит для присоединения аминоацил-тРНК) и Р – участок (пептидилтрансферазный, который служит для образования пептидной связи между аминокислотами).
    Первоначально Мет–тРНКМет находится на А–участке, но затем перемещается на Р–участок. На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, который комплементарен кодону мРНК, следующему за кодоном АУГ. В нашем примере это Гли–тРНКГли с антикодоном ЦЦГ, который комплементарен кодону ГГЦ. В результате кодонзависимого связывания между кодоном мРНК и антикодоном аминоацил-тРНК образуются водородные связи. Таким образом, на рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Ковалентная связь между первой аминокислотой (метионином) и её тРНК разрывается.
    После образования пептидной связи между двумя первыми аминокислотами рибосома сдвигается на один триплет. В результате происходит транслокация (перемещение) инициаторной метиониновой тРНКМет за пределы рибосомы. Водородная связь между стартовым кодоном и антикодоном инициаторной тРНК разрывается. В результате свободная тРНКМет отщепляется и уходит на поиск своей аминокислоты.
    Вторая тРНК вместе с аминокислотой (в нашем примере Гли–тРНКГли) в результате транслокации оказывается на Р–участке, а А–участок освобождается.

    Элонгация

    Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А–участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А–участка.
    На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, соответствующим следующему кодону мРНК (в нашем примере это Тир–тРНКТир с антикодоном АУА, который комплементарен кодону УАУ).
    На рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Связь между предыдущей аминокислотой и её тРНК (в нашем примере между глицином и тРНКГли) разрывается.
    Затем рибосома смещается еще на один триплет, и в результате транслокации тРНК, которая была на Р–участке (в нашем примере тРНКГли), оказывается за пределами рибосомы и отщепляется от мРНК. А–участок освобождается, и рабочий цикл рибосомы начинается сначала.

    Терминация

    Заключается в окончании синтеза полипептидной цепи.
    В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.

  6. WildBLOOD Ответить


    Рис. 7.5. Строение молекулы Т-РНК
    Различают три этапа в биосинтезе белка: инициацию, элонгацию и терминацию.
    В малой субъединице рибосомы расположен функциональный центр рибосомы (ФЦР) с двумя участками — пептидильным (Р-участок) и аминоацильным (А-участок). В ФЦР может находиться шесть нуклеотидов иРНК, три – в пептидильном и три – в аминоацильном участках.
    Инициация. Синтез белка начинается с того момента, когда к 5′-концу иРНК присоединяется малая субъединица рибосомы, в Р-участок которой заходит метиониновая тРНК.
    За счет АТФ происходит передвижение инициаторного комплекса (малая субъединица рибосомы, тРНК с метионином) по НТО до метионинового кодона АУГ. Этот процесс называется сканированием.
    Элонгация. Как только в Р-участок сканирующего комплекса попадает кодон АУГ, происходит присоединение большой субъединицы рибосомы. В А-участок ФЦР поступает вторая тРНК, чей антикодон комплементарно спаривается с кодоном иРНК, находящимся в А-участке.
    Пептидилтрансферазный центр большой субъединицы катализирует образование пептидной связи между метионином и второй аминокислотой. Отдельного фермента, катализирующего образование пептидных связей, не существует. Энергия для образования пептидной связи поставляется за счет гидролиза ГТФ.
    На один цикл расходуется 2 молекулы ГТФ. В А-участок заходит третья тРНК, и образуется пептидная связь между второй и третьей аминокислотами. Синтез полипептида идет от N-конца к С-концу, то есть пептидная связь образуется между карбоксильной группой первой и аминогруппой второй аминокислоты.
    Скорость передвижения рибосомы по иРНК — 5–6 триплетов в секунду, на синтез белковой молекулы, состоящей из сотен аминокислотных остатков, клетке требуется несколько минут.
    Терминация. Когда в А-участок попадает кодон-терминатор (УАА, УАГ или УГА), с которым связывается особый белковый фактор освобождения, полипептидная цепь отделяется от тРНК и покидает рибосому. Происходит диссоциация, разъединение субъединиц рибосомы.

    Рис. 7.6. Процесс трансляции (шаг 1)

    Рис. 7.7. Процесс трансляции (шаг 2)

    Рис. 7.8. Процесс трансляции (шаг 3)

    Рис. 7.9. Процесс трансляции (шаг 4)

    Рис. 7.10. Биосинтез белка (общая схема)
    Так постепенно наращивается белковая цепочка, в которой аминокислоты располагаются в строгом соответствии с локализацией кодирующих их триплетов в молекуле иРНК. Синтез полипептидных цепей белков по матрице иРНК называется трансляцией (рис. 10).
    В клетках растительных и животных организмов белки непрерывно обновляются. Интенсивность синтеза тех или иных специфических белков определяется активностью соответствующих генов, с которых «считывается» иРНК. Следует отметить, что не все гены функционируют одновременно: активность проявляют лишь те, которые кодируют информацию о структуре белков, необходимых для жизнедеятельности организма в данный момент.

  7. I am God Ответить

    Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК.
    Этапы биосинтеза белка:
    1. Транскрипция(переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.
    2. Процессинг (только уэукариот) – созревание иРНК: удаление из нее участков, не кодирующих белок, а так же присоединение управляющих участков.
    3. Экспорт иРНК из ядра в цитоплазму (только у эукариот). Происходит через ядерные поры; всего экспортируется примерно 5% от общего количества иРНК в ядре.
    4. Синтез аминоацил-тРНК. В цитоплазме имеется 61 фермент аминоацил-тРНК-синтетаза. Он комплементарно узнает аминокислоту и тРНК, которая должна ее переносить, и соединяет их между собой, при этом затрачивается 1 АТФ.
    5. Трансляция (синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.
    6. Созревание белка. Вырезание из белка ненужных фрагментов, присоединение небелковых компонентов (например, гема), соединение нескольких полипептидов в четвертичную структуру.
    Ответ

  8. Петросян Ответить

    Этапы биосинтеза белка:
    1) Транскрипция (переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.
    2) Процессинг (только уэукариот) – созревание иРНК: удаление из нее участков, не кодирующих белок, а так же присоединение управляющих участков
    3) Экспорт иРНК из ядра в цитоплазму (только у эукариот). Происходит через ядерные поры; всего экспортируется примерно 5% от общего количества иРНК в ядре.
    4) Синтез аминоацил-тРНК. В цитоплазме имеется 61 фермент аминоацил-тРНК-синтетаза. Он комплементарно узнает аминокислоту и тРНК, которая должна ее переносить, и соединяет их между собой, при этом затрачивается 1 АТФ
    5) Трансляция (синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.
    6) Созревание белка. Вырезание из белка ненужных фрагментов, присоединение небелковых компонентов (например, тема), соединение нескольких полипептидов в четвертичную структуру.
    Биосинтез, белка – это реакция матричного синтеза, потому что последовательность аминокислот в полипептиде жестко определена последовательностью нуклеотидов в гене (а непосредственно синтез белка, т. е, трансляция, идет с участием иРНК), но понятие “реакция матричного синтеза” шире, чем “синтез белка”, потому что по такому типу также протекает репликация ДНК, транскрипция и некоторые другие процессы (например, синтез ДНК на РНК как на матрице).

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *