Какие перспективы в развитии народного хозяйства открывает использование?

18 ответов на вопрос “Какие перспективы в развитии народного хозяйства открывает использование?”

  1. BlackStar Ответить

    Трансгенные животные, экспериментально полученные животные, содержащие во всех клетках своего организма дополнительную интегрированную с хромосомами и экспрессирующуюся чужеродную ДНК (трансген), которая передается по наследству по законам Менделя. Изредка трансген может реплицироваться и передаваться по наследству как экстрахромосомный автономно реплицирующийся фрагмент ДНК. Технология создания трансгенных животных является одной из наиболее бурно развивающихся биотехнологий в последние 10 лет. Трансгенные животные широко используются как для решения большого числа теоретических задач, так и в практических целях для биомедицины и сельского хозяйства. Некоторые научные проблемы не могли бы быть решены без создания трансгенных животных. На модели трансгенных лабораторных животных проводятся широкие исследования по изучению функции различных генов, регуляции их экспрессии, фенотипическому проявлению генов, инсерционному мутагенезу и др. Трансгенные животные важны для различных биомедицинских исследований. Существует множество трансгенных животных, моделирующих различные заболевания человека (рак, атеросклероз, ожирение и др.). Так, получение трансгенных свиней с измененной экспрессией генов, определяющих отторжение органов, позволит использовать этих животных для ксенотрансплантации (пересадки органов свиньи человеку).

  2. Felace Ответить

    Клонирование представляется перспективным методом в животноводстве. Например, при разведении крупного рогатого скота используется следующий приём. На ранней стадии развития, когда клетки эмбриона ещё не специализированы, зародыш разделяют на несколько частей. Из каждого фрагмента, помещённого в приёмную (суррогатную) мать, может развиться полноценный телёнок. Таким способом можно создать множество идентичных копий одного животного, обладающего ценными качествами.
    Для специальных целей можно также клонировать отдельные клетки, создавая культуры тканей, которые в подходящих средах способны расти бесконечно долго. Клонированные клетки служат заменой лабораторным животным, так как на них можно изучать воздействие на живые организмы различных химических веществ, например лекарственных препаратов.
    При клонировании растений используется уникальная особенность растительных клеток. В начале 60-х гг. XX в. впервые было показано, что клетки растений, даже после достижения зрелости и специализации, в подходящих условиях способны давать начало целому растению (рис. 110). Поэтому современные методы клеточной инженерии позволяют осуществлять селекцию растений на клеточном уровне, т. е. отбирать не взрослые растения, обладающие теми или иными свойствами, а клетки, из которых потом выращивают полноценные растения.

    Рис. 109. Клонирование овцы Долли
    Этические аспекты развития биотехнологии. Использование современных биотехнологий ставит перед человечеством много серьёзных вопросов. Не может ли ген, встроенный в трансгенные растения томата, при съедании плодов мигрировать и встраиваться в геном, например, бактерий, живущих в кишечнике человека? Не может ли трансгенное культурное растение, устойчивое к гербицидам, болезням, засухе и другим стрессовым факторам, при перекрёстном опылении с родственными дикими растениями передать эти же свойства сорнякам? Не получатся ли при этом «суперсорняки», которые очень быстро заселят сельскохозяйственные земли? Не попадут ли случайно мальки гигантского лосося в открытое море и не нарушит ли это баланс в природной популяции? Способен ли организм трансгенных животных выдержать ту нагрузку, которая возникает в связи с функционированием чужеродных генов? И имеет ли право человек переделывать живые организмы ради собственного блага?
    Эти и многие другие вопросы, связанные с созданием генетически модифицированных организмов, широко обсуждаются специалистами и общественностью всего мира. Созданные во всех странах специальные контролирующие органы и комиссии утверждают, что, несмотря на существующие опасения, вредного воздействия ГМО на природу зафиксировано не было.

    Рис. 110. Этапы клонирования растений (на примере моркови)
    В 1996 г. Совет Европы принял Конвенцию о правах человека при использовании геномных технологий в медицине. Основное внимание в документе уделено этике применения таких технологий. Утверждается, что ни одна личность не может быть подвергнута дискриминации на основе информации об особенностях её генома.
    Введение в клетки человека чужеродного генетического материала может иметь отрицательные последствия. Неконтролируемое встраивание чужой ДНК в те или иные участки генома может привести к нарушению работы генов. Риск использования генотерапии при работе с половыми клетками гораздо выше, чем при использовании соматических клеток. При внесении генетических конструкций в половые клетки может возникнуть нежелательное изменение генома будущих поколений. Поэтому в международных документах ЮНЕСКО, Совета Европы, Всемирной организации здравоохранения (ВОЗ) подчёркивается, что всякое изменение генома человека может производиться лишь на соматических клетках.
    Но, пожалуй, наиболее серьёзные вопросы возникают в связи с теоретически возможным клонированием человека. Исследования в области человеческого клонирования сегодня запрещены во всех странах в первую очередь по этическим соображениям. Становление человека как личности базируется не только на наследственности. Оно определяется семейной, социальной и культурной средой, поэтому при любом клонировании воссоздать личность невозможно, как невозможно воспроизвести все те условия воспитания и обучения, которые сформировали личность его прототипа (донора ядра). Все крупные религиозные конфессии мира осуждают любое вмешательство в процесс воспроизводства человека, настаивая на том, что зачатие и рождение должны происходить естественным путём.
    Эксперименты по клонированию животных поставили перед научной общественностью ряд серьёзных вопросов, от решения которых зависит дальнейшее развитие этой области науки. Овечка Долли не была единственным клоном, полученным шотландскими учёными. Клонов было несколько десятков, а в живых осталась только Долли. В последние годы совершенствование техники клонирования позволило увеличить процент выживших клонов, но их смертность всё ещё очень высока. Однако существует проблема, ещё более серьёзная с научной точки зрения. Несмотря на победное рождение Долли, остался неясным её реальный биологический возраст, связанные с ним проблемы со здоровьем и относительно ранняя смерть. По мнению учёных, использование ядра клетки немолодой шестилетней овцы-донора сказалось на судьбе и здоровье Долли.
    Необходимо существенно повысить жизнеспособность клонированных организмов, выяснить, влияет ли использование конкретных методик на продолжительность жизни, здоровье и плодовитость животных. Очень важно свести к минимуму риск дефектного развития реконструированной яйцеклетки.
    Активное внедрение биотехнологий в медицину и генетику человека привело к появлению специальной науки – биоэтики. Биоэтика – наука об этичном отношении ко всему живому, в том числе и к человеку. Нормы этики выдвигаются сейчас на первый план. Те нравственные заповеди, которыми человечество пользуется века, к сожалению, не предусматривают новых возможностей, привносимых в жизнь современной наукой. Поэтому людям необходимо обсуждать и принимать новые законы, учитывающие новые реальности жизни.
    Вопросы для повторения и задания
    1. Что такое биотехнология?

  3. Плюшевый Ответить

    Трансгенные животные, экспериментально полученные животные, содержащие во всех клетках своего организма дополнительную интегрированную с хромосомами и экспрессирующуюся чужеродную ДНК (трансген), которая передается по наследству по законам Менделя. Изредка трансген может реплицироваться и передаваться по наследству как экстрахромосомный автономно реплицирующийся фрагмент ДНК. Технология создания трансгенных животных является одной из наиболее бурно развивающихся биотехнологий в последние 10 лет. Трансгенные животные широко используются как для решения большого числа теоретических задач, так и в практических целях для биомедицины и сельского хозяйства. Некоторые научные проблемы не могли бы быть решены без создания трансгенных животных. На модели трансгенных лабораторных животных проводятся широкие исследования по изучению функции различных генов, регуляции их экспрессии, фенотипическому проявлению генов, инсерционному мутагенезу и др. Трансгенные животные важны для различных биомедицинских исследований. Существует множество трансгенных животных, моделирующих различные заболевания человека (рак, атеросклероз, ожирение и др.). Так, получение трансгенных свиней с измененной экспрессией генов, определяющих отторжение органов, позволит использовать этих животных для ксенотрансплантации (пересадки органов свиньи человеку).

  4. Dolune Ответить

    Трансгенные животные, экспериментально полученные животные, содержащие во всех клетках своего организма дополнительную интегрированную с хромосомами и экспрессирующуюся чужеродную ДНК (трансген), которая передается по наследству по законам Менделя. Изредка трансген может реплицироваться и передаваться по наследству как экстрахромосомный автономно реплицирующийся фрагмент ДНК. Технология создания трансгенных животных является одной из наиболее бурно развивающихся биотехнологий в последние 10 лет. Трансгенные животные широко используются как для решения большого числа теоретических задач, так и в практических целях для биомедицины и сельского хозяйства. Некоторые научные проблемы не могли бы быть решены без создания трансгенных животных. На модели трансгенных лабораторных животных проводятся широкие исследования по изучению функции различных генов, регуляции их экспрессии, фенотипическому проявлению генов, инсерционному мутагенезу и др. Трансгенные животные важны для различных биомедицинских исследований. Существует множество трансгенных животных, моделирующих различные заболевания человека (рак, атеросклероз, ожирение и др.). Так, получение трансгенных свиней с измененной экспрессией генов, определяющих отторжение органов, позволит использовать этих животных для ксенотрансплантации (пересадки органов свиньи человеку).

  5. Одолжите денег Ответить

    Аналогичным способом в настоящее время получают гормон роста. Человеческий ген, встроенный в геном бактерий, обеспечивает синтез гормона, инъекции которого используются при лечении карликовости и восстанавливают рост больных детей почти до нормального уровня.
    Так же, как у бактерий, с помощью методов генной инженерии можно изменять и наследственный материал эукариотических организмов. Такие генетически перестроенные организмы называют трансгенными или генетически модифицированными организмами (ГМО).
    В природе существует бактерия, которая выделяет токсин, убивающий многих вредных насекомых. Ген, отвечающий за синтез этого токсина, был выделен из генома бактерии и встроен в геном культурных растений. К настоящему времени уже созданы устойчивые к вредителям сорта кукурузы, риса, картофеля и других сельскохозяйственных растений. Выращивание таких трансгенных растений, которые не требуют использования пестицидов, имеет огромные преимущества, потому что, во-первых, пестициды убивают не только вредных, но и полезных насекомых, а во-вторых, многие пестициды накапливаются в окружающей среде и оказывают мутагенное влияние на живые организмы.
    Один из первых успешных экспериментов по созданию генетически модифицированных животных был произведен на мышах, в геном которых был встроен ген гормона роста крыс. В результате трансгенные мыши росли гораздо быстрее и в итоге были в два раза больше обычных мышей. Если этот опыт имел исключительно теоретическое значение, то эксперименты в Канаде имели уже явное практическое применение. Канадские ученые ввели в наследственный материал лосося ген другой рыбы, который активировал ген гормона роста. Это привело к тому, что лосось рос в 10 раз быстрее и набирал вес, в несколько раз превышающий норму.
    Клонирование. Создание многочисленных генетических копий одного индивидуума с помощью бесполого размножения называют клонированием. У ряда организмов этот процесс может происходить естественным путем, вспомните вегетативное размножение у растений и фрагментацию у некоторых животных (§ 3.5). Если у морской звезды случайно оторвется кусочек луча, из него образуется новый полноценный организм. У позвоночных животных этот процесс естественным путем не происходит.
    Впервые успешный эксперимент по клонированию животных был осуществлен исследователем Гёрдоном в конце 60-х гг. XX в. в Оксфордском университете. Ученый пересадил ядро, взятое из клетки эпителия кишки лягушки-альбиноса, в неоплодотворенную яйцеклетку обычной лягушки, чье ядро перед этим было разрушено. Из такой яйцеклетки ученому удалось вырастить головастика, превратившегося затем в лягушку, которая была точной копией лягушки-альбиноса. Таким образом, впервые было показано, что информации, содержащейся в ядре любой клетки, достаточно для развития полноценного организма.
    В дальнейшем исследования, проведенные в Шотландии в 1996 г., привели к успешному клонированию овцы Долли из клетки эпителия молочной железы матери.
    Клонирование представляется перспективным методом в животноводстве. Например, при разведении крупного рогатого скота используется следующий прием. На ранней стадии развития, когда клетки эмбриона еще не специализированы, зародыш разделяют на несколько частей. Из каждого фрагмента, помещенного в приемную (суррогатную) мать, может развиться полноценный теленок. Таким способом можно создать множество идентичных копий одного животного, обладающего ценными качествами.
    Для специальных целей можно также клонировать отдельные клетки, создавая культуры тканей, которые в подходящих средах способны расти бесконечно долго. Клонированные клетки служат заменой лабораторным животным, так как на них можно изучать воздействие на живые организмы различных химических веществ, например лекарственных препаратов.
    При клонировании растений используется уникальная особенность растительных клеток. В начале 60-х гг. XX в. впервые было показано, что клетки растений, даже после достижения зрелости и специализации, в подходящих условиях способны давать начало целому растению. Поэтому современные методы клеточной инженерии позволяют осуществлять селекцию растений на клеточном уровне, т. е. отбирать не взрослые растения, обладающие теми или иными свойствами, а клетки, из которых потом выращивают полноценные растения.
    Этические аспекты развития биотехнологии. Использование современных биотехнологий ставит перед человечеством много серьезных вопросов. Не может ли ген, встроенный в трансгенные растения томата, при съедании плодов мигрировать и встраиваться в геном, например, бактерий, живущих в кишечнике человека? Не может ли трансгенное культурное растение, устойчивое к гербицидам, болезням, засухе и другим стрессовым факторам, при перекрестном опылении с родственными дикими растениями передать эти же свойства сорнякам? Не получатся ли при этом «суперсорняки», которые очень быстро заселят сельскохозяйственные земли? Не попадут ли случайно мальки гигантского лосося в открытое море, и не нарушит ли это баланс в природной популяции? Способен ли организм трансгенных животных выдержать ту нагрузку, которая возникает в связи с функционированием чужеродных генов? И имеет ли право человек переделывать живые организмы ради собственного блага?
    Эти и многие другие вопросы, связанные с созданием генетически модифицированных организмов, широко обсуждаются специалистами и общественностью всего мира. Созданные во всех странах специальные контролирующие органы и комиссии утверждают, что, несмотря на существующие опасения, вредного воздействия ГМО на природу зафиксировано не было.
    В 1996 г. Совет Европы принял Конвенцию о правах человека при использовании геномных технологий в медицине. Центральное внимание в документе уделено этике применения таких технологий. Утверждается, что ни одна личность не может быть подвергнута дискриминации на основе информации об особенностях ее генома.
    Введение в клетки человека чужеродного генетического материала может иметь отрицательные последствия. Неконтролируемое встраивание чужой ДНК в те или иные участки генома может привести к нарушению работы генов. Риск использования генотерапии при работе с половыми клетками гораздо выше, чем при использовании соматических клеток. При внесении генетических конструкций в половые клетки может возникнуть нежелательное изменение генома будущих поколений. Поэтому в международных документах ЮНЕСКО, Совета Европы, Всемирной организации здравоохранения (ВОЗ) подчеркивается, что всякое изменение генома человека может производиться лишь на соматических клетках.
    Но, пожалуй, наиболее серьезные вопросы возникают в связи с теоретически возможным клонированием человека. Исследования в области человеческого клонирования сегодня запрещены во всех странах в первую очередь по этическим соображениям. Становление человека как личности базируется не только на наследственности. Оно определяется семейной, социальной и культурной средой, поэтому при любом клонировании воссоздать личность невозможно, как невозможно воспроизвести все те условия воспитания и обучения, которые сформировали личность его прототипа (донора ядра). Все крупные религиозные конфессии мира осуждают любое вмешательство в процесс воспроизводства человека, настаивая на том, что зачатие и рождение должно происходить естественным путем.
    Эксперименты по клонированию животных поставили перед научной общественностью ряд серьезных вопросов, от решения которых зависит дальнейшее развитие этой области науки. Овечка Долли не была единственным клоном, полученным шотландскими учеными. Клонов было несколько десятков, а в живых осталась только Долли. В последние годы совершенствование техники клонирования позволило увеличить процент выживших клонов, но их смертность все еще очень высока. Однако существует проблема еще более серьезная с научной точки зрения. Несмотря на победное рождение Долли, остался неясным ее реальный биологический возраст, связанные с ним проблемы со здоровьем и относительно ранняя смерть. По мнению ученых, использование ядра клетки немолодой шестилетней овцы-донора сказалось на судьбе и здоровье Долли.
    Необходимо существенно повысить жизнеспособность клонированных организмов, выяснить, влияет ли использование конкретных методик на продолжительность жизни, здоровье и плодовитость животных. Очень важно свести к минимуму риск дефектного развития реконструированной яйцеклетки.
    Активное внедрение биотехнологий в медицину и генетику человека привело к появлению специальной науки — биоэтики. Биоэтика наука об этичном отношении ко всему живому, в том числе и к человеку. Нормы этики выдвигаются сейчас на первый план. Те нравственные заповеди, которыми человечество пользуется века, к сожалению, не предусматривают новых возможностей, привносимых в жизнь современной наукой. Поэтому людям необходимо обсуждать и принимать новые законы, учитывающие новые реальности жизни.

  6. Gazel Ответить

    Трансгенные животные, экспериментально полученные животные, содержащие во всех клетках своего организма дополнительную интегрированную с хромосомами и экспрессирующуюся чужеродную ДНК (трансген), которая передается по наследству по законам Менделя. Изредка трансген может реплицироваться и передаваться по наследству как экстрахромосомный автономно реплицирующийся фрагмент ДНК. Технология создания трансгенных животных является одной из наиболее бурно развивающихся биотехнологий в последние 10 лет. Трансгенные животные широко используются как для решения большого числа теоретических задач, так и в практических целях для биомедицины и сельского хозяйства. Некоторые научные проблемы не могли бы быть решены без создания трансгенных животных. На модели трансгенных лабораторных животных проводятся широкие исследования по изучению функции различных генов, регуляции их экспрессии, фенотипическому проявлению генов, инсерционному мутагенезу и др. Трансгенные животные важны для различных биомедицинских исследований. Существует множество трансгенных животных, моделирующих различные заболевания человека (рак, атеросклероз, ожирение и др.). Так, получение трансгенных свиней с измененной экспрессией генов, определяющих отторжение органов, позволит использовать этих животных для ксенотрансплантации (пересадки органов свиньи человеку).

  7. Morim Ответить

    Глубоко в древности биотехнология развивалась эмпирическим путем: выпечка хлеба, изготовление вина, сыроварение, силосование кормов для скота – все это различные микробиологические процессы, за которыми веками велись многовековые наблюдения.
    Настоящая же генная инженерия, биотехнология, как современный вид науки, начала развиваться только лишь в середине прошлого столетия.

    Основные этапы и периоды развития биотехнологии

    История развития биотехнологии условно делится на три последовательных этапа. Первый – это развитие биотехнологии в разрезе исторического аспекта. При раскопках древних поселений в Месопотамии, в Египте, а также Греции были обнаружены остатки больших и малых пекарен и пивоварен. Известно, что уже шумеры умели делать пиво, причем ассортимент его был довольно широк (около двадцати различных сортов). На территории Древней Греции и Римской империи было активно развито виноделие и производство сыра. Изготовляли и льняное волокно, этот процесс происходит с участием микроскопических грибов и бактерий.
    В конце девятнадцатого века развитие биотехнологии вступило во второй этап, она начала развиваться, как наука. Появились первые ученые генетики, микробиологи и вирусологи. В начале прошлого века были созданы первичные установки по производству метана. Отходы сельскохозяйственного производства превращались в биологический газ и органическое удобрение. В середине двадцатого века начали производить антибиотики, как следствие, появились предприятия, которые с помощью микроорганизмов не только аминокислоты и витамины, но и органические кислоты, а также ферменты.
    В конце двадцатого века развилась генная и клеточная инженерия, что ознаменовало третий этап развития биотехнологии. Фактическим «днем рождения» этого вида современной науки считают 1972-ой год, время создания первой гибридной ДНК, в которую встроили чужеродные гены.
    Итак, биотехнология, как постоянно и динамично развивающаяся наука, охватывает несколько больших периодов. Первый их них – конец 19-го и начало двадцатого века. Это было время первых великих свершений, таких, как открытие структуры белков или применение вирусов при изучении генетики клеточных организмов. Во втором периоде биотехнология сформировалась, как научно-техническая отрасль, уже производящая препараты. Наконец, в третьем периоде начала развиваться генная и клеточная инженерия.

    Основные направления развития биотехнологии

    Основа биотехнологии – это генетическая (клеточная) инженерия и биохимия. Развитие клеточной инженерии считается на данный момент одним из самых перспективных направлений.
    Ученые проводят культивирование клеток микроорганизмов, растений и животных, осуществляются такие манипуляции, как слияние клеток либо пересадка органоидов.
    Основными направлениями развития биотехнологии считаются:
    создание новых видов продуктов питания и животных кормов, производство их;
    выведение новых штаммов полезных микроорганизмов;
    создание новых пород животных;
    выведение новых сортов растений;
    создание и применение препаратов по защите растений от болезней и вредителей;
    применение новых биотехнологических методов по защите окружающей среды.
    Кроме этого, активно развивается направление биологически активных соединений с помощью микроорганизмов и культивируемых эукариотических клеток. Сюда входят ферменты, витамины, а также гормоны и антибиотики.

    Значение биохимии для биотехнологии

    Биотехнология как наука на современном этапе является синтезом разделов биохимии в соединении с генной инженерией. Например, на данный момент ведутся активные исследования в области экологической биотехнологии, но самая большая роль биохимии в развитии биотехнологий – создание новых методов производства продуктов питания. Дело в том, что почти любая технология по производству пищевых продуктов основана на биохимических процессах.
    Поэтому изучение процесса обмена веществ в живой клетке – актуальный вопрос для развития биотехнологии. Это имеет большое значение не только для животноводства и растениеводства или переработки промышленным способом сельскохозяйственного сырья, но и для медицины, а также экологии.

    Состояние и перспективы развития биотехнологии в современном мире

    Современная биотехнология привлекает внимание инвесторов не только в нашей стране, но и во всем мире. Эксперты и аналитики прогнозируют, что биотехнологии станут самым динамично развивающимся и самым прибыльным бизнесом нынешнего, XXI века.
    Быстрыми темпами развиваются такие отрасли, как современные биологические методы защиты культурных растений, биоэнергетика и биодеградируемые полимеры, а также природоохранные биотехнологии. Ведутся научные работы по созданию новых биополимеров, в будущем они могут заменить ныне популярные ныне пластмассы. Биополимеры имеют большое преимущество в сравнении с пластмассами, так как они нетоксичны и могут разлагаться после их применения, не загрязняя при этом окружающее пространство. Конструирование необходимых генов даст возможность управлять жизнедеятельностью не только растений, но и животных, создавать новые организмы с иными свойствами.

    Чем объясняется бурное развитие биотехнологии

    Современные биотехнологии сыграют большую роль в качественном улучшении жизни человека, развитию экономического роста стран. Посредством биотехнологий получают новые средства для диагностики, вакцины, продукты питания, лекарства. Биотехнология помогает в увеличении урожайности всех злаковых культур, что более чем актуально, принимая во внимание рост численности населения нашей планеты.
    В некоторых странах, где значительные объемы биомассы не используются полностью, биотехнология в обозримом будущем превратит их в ценные продукты или в биологические виды топлива. Биотехнология все больше перестает быть прикладной наукой, она активно входит в обычную жизнь людей, помогая решать насущные проблемы современного человечества.

    Развитие биотехнологий в России

    Когда говорят о развитии биотехнологий в России, приходится учитывать длительный период упадка и деградации научных учреждений. Сейчас, после нескольких лет интенсивного роста, российские биотехнологии представлены на мировом рынке в количестве 0,1%, а в 1885 году СССР имел долю 5% на рынке продукции, относимой к биотехнологиям. Это медицинские препараты, ферменты, гормональные препараты, чистые линии микроорганизмов, используемых в научных исследованиях, сельскохозяйственном производстве и очистке окружающей среды от вредных отходов.
    Интересна судьба самого громкого и скандального проекта, ставшего достоянием гласности в конце восьмидесятых. Это БВК, белково-витаминные концентраты, получаемые из парафинов нефти при использовании специально выведенных бактериальных культур. В прессе был поднят шум, тему обсуждали эмоционально, общественность требовала закрытия «вредного проекта». Однако работа была уже сделана – бактерии, питающиеся нефтепродуктами, существовали.
    Для них нашлась полезная функция: очистка воды и земли от разлившейся нефти. Сейчас вода в морских и речных портах содержит значительно меньше нефтепродуктов, чем в 70-80 годы, благодаря их биологическому разложению. При помощи прожорливых бактерий очищают территорию на предприятиях от мазута и других нефтепродуктов. Трудно переоценить пользу от этих микроорганизмов – ведь нефтяная пленка в двадцатом веке грозила погубить моря и океаны!
    Производство белковой продукции из нефти не было поставлено на поток, но польза от данной биотехнологии несомненна!
    В 2012 году российское правительство значительно увеличило государственное финансирование научных исследований в этой отрасли. Интересно, что ряд проектов осуществляется на общественные пожертвования. К таким проектам относится исследование микрофлоры кишечника и на основе результатов – научно разработанные рекомендации по питанию, физическим нагрузкам, образу жизни. Эта тема популярна в России и в мире.

    Этические аспекты развития биотехнологии

    Перспективы развития биотехнологий поражают воображение, а в ряде случаев вызывают страх и у людей. По поводу тех или иных исследований периодически разгораются дискуссии, и противники генной инженерии, клонирования организмов или исследования человеческого генома неоднократно требовали запретить все работы в этом направлении. Примером общественных протестов служит упоминавшаяся технология БВК.
    Много страстей кипело вокруг генной инженерии. Люди опасались появления уродливых, непредсказуемых, всемогущих существ, созданных путем комбинации генов от несовместимых в природе видов. Фантастические произведения и фильмы способствовали распространению страхов. Были и научно обоснованные возражения: генетически модифицированные организмы не изучены, употребление кукурузы и сои с модифицированными генами может вызвать болезни. В результате в Европе и России запрещено выращивание и использование ГМО.

    Развитие биотехнологии и генной инженерии в современной науке

    Биотехнологии и генная инженерия, более чем все остальные, связана с фундаментальными научными исследованиями. Создание организмов с «заданными параметрами», лечение генетически обусловленных болезней, производство белковой массы вне организма, внедрение в организм «биологических чипов», влияющих на жизнедеятельность – все эти направления нуждаются в дорогостоящих исследованиях, сложном оборудовании и высококвалифицированных специалистов.
    На стыке двадцатого и двадцать первого века был задуман и осуществлен грандиозный проект – прочитан геном человека. Это был большой труд, в котором участвовало много лабораторий в разных странах мира. Одним из продуктов этих исследований стало появление технологии идентификации личности по ДНК, получение информации о родстве (установление отцовства). Но от прочтения генома ученые ожидали большего. Информация, зашифрованная в ДНК, огромна и ее изучение, расшифровка еще сложнее, чем процедура исследований.

    Вклад биотехнологии в развитие медицины

    Одним из «подарков дьявола» считалась возможность определения по ДНК генетически запрограммированных болезней. С одной стороны, это возможность предупредить человека об опасностях, но такая информация сама по себе травматична, и способна провоцировать болезни. Однако «предопределенность» болезней оказалась отнюдь не абсолютной. У вполне здоровых пожилых людей при исследовании обнаруживаются гены болезней, от которых они должны давно умереть. Хотя наследственность никто не отменял, как и генетическую предрасположенность к тем или иным заболеваниям.
    Сейчас идет речь не о том, чтобы просто получать информацию о будущих болезнях, но о том, что есть возможность исправлять дефектные участки ДНК. И это было бы прекрасно – ведь накопление генетических ошибок в человеческом сообществе способствует деградации вида гомо сапиенс.

    Проблемы биотехнологии

    Сейчас возникают споры о генной медицине, о клонировании организмов, об этических вопросах исследования стволовых клеток. На повестке дня – «биопринтер», при помощи которого признается возможным выращивание органов для трансплантации. На исследования в этом направлении направляются огромные средства, прежде всего в США. Одновременно возникают опасения: вдруг возникнет тенденция выращивания клонов в качестве «идеальных доноров»?
    Впрочем, на пути многих амбициозных и не слишком щепетильных в нравственном отношении проектов возникают препятствия, положенные самой природой. Фантастические успехи от применения стволовых клеток для лечения и омоложения – и их перерождение в злокачественные опухоли; рождение клонированных животных – и их ранняя смерть, слабое здоровье. Живая материя по-прежнему непостижима, несмотря на успехи в ее познании, и пределы человеческого вмешательства в ее основы – ограничены.

    Развитие биотехнологии до 2020

    Перспективы биотехнологии на ближайшее будущее можно разделить на рекламные и научно обоснованные. К широко разрекламированным проектам относятся, например, «таблетки молодости» – их обещают выпустить на рынок как раз к 2020 году. Однако скептики говорят, что таких сенсаций было много, начиная со времен алхимии…
    Более реалистично выглядит 3D принтер, наносящий клеточные культуры на матрицу с питательным раствором, и формирующий искусственные органы. Еще один медицинский проект – лечение тяжелых ожогов путем нанесения на пораженный участок стволовых клеток, которые в считанные дни образуют новую кожу.
    Генетический ремонт – направление, которое развивается и будет развиваться, и в него инвестируются большие деньги.

    Компании, занимающиеся биотехнологиями

    Лидерами в области биотехнологий являются фармацевтические фирмы США, Китая, Индии, Европы.
    Биотехнологии условно подразделяют на группы:
    красная биотехнология – связанная с медициной и «лечением» генетического кода, на рынке биотехнологий ей принадлежит доля более 70%;
    зеленая – генная инженерия, работающая для сельского хозяйства;
    белая – производство биотооплива;
    серая – защита экологии, борьба с отходами;
    синяя – использование биологических ресурсов океана.
    Лидеры «красной биотехнологии» – американские фирмы Genentech, Novartis, Merck&Co, Pfizer, Johnson & Johnson, Sanofi.
    В области разработки и производства ГМО лидирует транснациональная компания Monsanto Company.
    Белая, серая, синяя биотехнологии существенно отстают от лидеров. Их полезная деятельность дает не слишком быстрый экономический эффект, поэтому в списках лидеров они не значатся.
    Читайте другие наши статьи:
    Нефтепереработка и нефтехимия в России
    Нефтехимия
    Учебные заведения нефтехимии

  8. Nalmebor Ответить

    Биотехнология, как наука, зарекомендовала себя в конце ХХ века, а именно в начале 70-х годов. Все началось с генетической инженерия, когда ученые смогли перенести генетический материал из одного организма к другому без осуществления половых процессов. Для этого была использовано рекомбинантная ДНК или рДНК. Такой метод применяется для изменения или улучшения определенного организма.
    Чтобы создать молекулу рДНК нужно:
    извлечь молекулу ДНК из клетки животного или растения;
    обработать изолированную клетку и плазмиду, а затем смешать их;
    затем, измененная плазмида переносится в бактерию, а та в свою очередь приумножает копии информации, что были внесены в нее.
    Медицинские биотехнологии подразделяются на 2 большие группы:
    Диагностические, которые, в свою очередь, бывают: химическими (определение диагностических веществ и параметров обмена); физическими (определение физических полей организма);
    Лечебные.
    К медицинской биотехнологии относят такие производственные процессы, в ходе которых создаются биообъекты или вещества медицинского назначения. Это ферменты, витамины, антибиотики, отдельные микробные полисахариды, которые могут применяться как самостоятельные средства или как вспомогательные вещества при создании различных лекарственных форм, аминокислоты.
    Так, методы биотехнологий применяются:
    для производства человеческого инсулина путем использования генно-модифицированных бактерий;
    для создания эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге.
    Медицинская генетика в будущем сможет не только предотвращать появление на свет неполноценных детей путем диагностирования генетических заболеваний, но и проводить пересадку генов для решения существующей проблемы.
    Биотехнология в будущем даст человечеству огромные возможности не только в медицине, но и в других направлениях современных наук.

    Биотехнологии в современной науке

    Биотехнологии в современной науке несет огромную пользу. За счет открытия генной инженерии стало возможным выведения новых сортов растений и пород животных, которые принесут пользу сельскому хозяйству.
    Изучения биотехнологии связано не только лишь с науками биологического направления. В микроэлектронике разработаны ион-селективные транзисторы на основе полевого эффекта (HpaI). Биотехнология необходима для повышения нефтеотдачи нефтяных пластов. Наиболее развитым направлением является использование биотехнологии в экологии для очистки промышленных и бытовых сточных вод. В развитие биотехнологии внесли свой вклад многие другие дисциплины, именно поэтому биотехнологии стоит отнести к комплексной науке.
    Еще одной причиной активного изучения и усовершенствования знаний в биотехнологии стал вопрос в недостатке (или будущем дефиците) социально-экономических потребностей.
    В мире существуют такие проблемы, как:
    нехватка пресной или очищенной воды (в некоторых странах);
    загрязнение окружающей среды различными химическими веществами;
    дефицит энергетического ресурса;
    необходимость усовершенствования и получения совершенно новые экологически чистых материалов и продуктов;
    повышение уровня медицины.
    Ученые уверенны, что решить эти и многие другие проблемы возможно при помощи биотехнологии.

    Основные типовые технологические приемы современной биотехнологии

    Биотехнологию можно выделить не только как науку, но еще и как сферу практической деятельности человека, которая отвечает за производство разного вида продукции при участии живых организмов или их клеток.
    Теоретической основой для биотехнологии в свое время стала такая наука, как генетика, это случилось в ХХ веке. А вот практически биотехнология основывалась на микробиологической промышленности. Микробиологическая промышленность в свою очередь получила сильный толчок в развитии после открытия и активного производства антибиотиков.
    Объектами, с которыми работает биотехнология, являются вирусы, бактерии, различные представители флоры и фауны, грибы, а также органоиды и изолированные клетки.

    Наглядная биотехнология. Генная и клеточная инженерия

    Генетическая и клеточная инженерия в сочетании с биохимией – это основные сферы современной биотехнологии.
    Клеточная инженерия – выращивание в специальных условиях клеток различных живых организмов (растений, животных, бактерий), разного рода исследования над ними (комбинация, извлечение или пересадка).
    Самой успешной считается клеточная инженерия растений. При помощи клеточной инженерии растений стало возможным ускорение селекционных процессов, что позволяет выводить новые сорта сельхоз культур. Теперь выведение нового сорта сократилось от 11 лет до 3-4.
    Генетическая (или генная) инженерия – отдел молекулярной биологии, в котором занимаются изучением и выделением генов из клеток живых организмов, после чего над ними проводятся манипуляции для достижения определенной цели. Главными инструментами, которые используются в генной инженерии, являются ферменты и векторы.

    Биотехнологии клонирования

    Клонирование – это процесс получения клонов (то есть потомков полностью идентичных прототипу). Первый опыт клонирования был проведен на растениях, которые клонировались вегетативным путем. Каждое отдельное растение, которое получилось вследствие клонирования, называлось клоном.
    В процессе развития генетики это термин начали применять не только к растениям, но и к генетическому выведению бактерий.
    Уже в конце ХХ века ученые начали активное обсуждение клонирования человека. Таким образом, термин «клон» стал употребляться в СМИ, а позже и в литературе и искусстве.
    Что касается бактерий, то у них клонирование – это практически единственный способ размножения. Именно «клонирование бактерий» употребляется в том случаи, когда процесс искусственный и им управляет человек. Этот термин не касается естественного размножения микроорганизмов.

    Генетическая инженерия

    Генная инженерия – это искусственные изменения в генотипе микроорганизма, вызванное вмешательством человека, для получения культур с необходимыми качествами.
    Генная инженерия занимается исследованиями и изучением не только микроорганизмов, но и человека, активно изучает заболевания, связанные с иммунной системой и онкологией.

    Клеточная биотехнология растений

    Клеточная биотехнология основывается на применении клеток, тканей и протопластов. Чтобы успешно управлять клетками, необходимо отделить их от растения и создать им все необходимые условия для успешного существования и размножения вне организма растения. Такой метод выращивания и размножения клеток носит название «культуры изолированных тканей» и получил особое значение из-за возможности применения в биотехнологии.

    Биотехнологии в современном мире и жизни человека

    Потенциал, который открывает биотехнология для человека, велик не только в фундаментальной науке, но и в других сферах деятельности и областях знаний. При использовании биотехнологических методов стало возможно массовое производство всех необходимых белков.
    Значительно проще стали процессы получения продуктов ферментации. В будущем биотехнологии позволят улучшать животных и растений. Учеными рассматриваются варианты борьбы с наследственными болезнями при помощи генной инженерии.
    Генная инженерия, как основное направление в биотехнологии, значительно ускоряет решение проблемы продовольственного, аграрного, энергетического и экологического кризисов.
    Самое большее влияние биотехнология оказывает на медицину и фармацевтику. Прогнозируется, что в будущем станет возможным диагностика и лечение тех заболеваний, которые имеют статус «неизлечимых».

    Этические аспекты некоторых достижений в биотехнологии

    После того, как стало известно, что некоторые научные лаборатории не только проводили опыты на человеческих эмбрионах, но и пытались произвести клонирование людей – пошла волна бурного обсуждения этого вопроса не только среди ученых, но и среди обычных людей.
    В биотехнологии можно выделить две этические проблемы, связанные с клонированием человека:
    терапевтическое клонирование (культивация человеческих эмбрионов для применения их клеток с целью лечения);
    репродуктивное клонирование (создание человеческих клонов).

    Современные достижения и проблемы биотехнологии

    При помощи биотехнологии было и будет получено огромное количество продуктов для здравоохранения, сельского хозяйства продовольственной и химической промышленности. Стоит упомянуть, что многие из продуктов никаким другим способом не могли быть получены.
    Что касается проблем, так основным образом – это этические аспекты, связанные с тем, что общество отрицает и считает негативным клонирование человека или человеческого эмбриона.

    Современное состояние и перспективы биотехнологии

    В биотехнологии активно начала развиваться отрасль микробного синтеза ценных для человечества веществ. Это может повлечь за собой смену распределения роли продовольственной базы, основанной на растениях и животных, в сторону микробного синтеза.
    Получение экологически чистой энергии при помощи биотехнологий – еще одно важное и перспективное направление в науке.

    Компании, разрабатывающие новые биотехнологии

    Журнал «Forbes» представил список самых инновационных компаний мира по разработке биотехнологий, в него вошли такие компании, как: «Genentech», «Novartis International AG», «Merck & Co», «Pfizer», «Sanofi», «Perrigo». Все эти компании напрямую связаны с фармацевтикой и развиваются именно в этом направлении.
    Многие из компаний успешно принимают активное участие в развитии российского рынка биотехнологий:
    «Novartis International AG» – компания занимается выведением вакцин и производством препаратов в сфере онкологии, одно из предприятий работает в СПб.
    «Pfizer» – производит безрецептурные препараты в разных отраслях медицины. Pfizer уже несколько лет реализует в России программу «Больше, чем образование» по соглашениям с МГУ им. М.В. Ломоносова и Санкт-Петербургской государственной химико-фармацевтической академией.
    «Sanofi» – компания занимается производством препаратов для лечения сахарного диабета и склероза. В России успешно работает уникальное предприятие компании – завод полного цикла по производству инсулинов «Санофи-Авентис Восток».
    В России особая роль отводится Кластеру биомедицинских технологий Инновационного центра «Сколково», ОАО «РВК» и ОАО «Роснано». Фармацевтическими и медицинскими биотехнологиями занимаются компании ОАО «Акрихин», ООО «Герофарм», НПФ «Литех». Центр высоких технологий «Химрар» объединяет высокотехнологичные организации, ведущие разработки и производство инновационных 14 компаний, которые занимаются разработкой лекарственных препаратов на основе новейших «постгеномных» технологий.
    Помимо этого, существуют и молодые стартапы, разрабатывающие новые биотехнологии:
    «3Д Биопринтинг Солюшенс» на основе трёхмерной биопечати создает органы из стволовых клеток пациента;
    «БиоМикроГели» предлагает разработки по очистке воды и почвы с помощью микрогелей.
    биомедицинский холдинг «Атлас» проводит анализ микробиоты организма в рамках проекта «OhmyGut».
    Читайте другие наши статьи:
    Химические лаборатории
    Лабораторные методы исследования
    Лабораторные материалы

  9. vulnerating Ответить

    Вопрос 1. Что такое биотехнология?
    Биотехнология — это использование ор­ганизмов, биологических систем или биологи­ческих процессов в промышленном производ­стве. К отраслям биотехнологии относятся генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных расте­ний и животных, использование микроорга­низмов в хлебопечении, виноделии, производ­стве лекарств и др.
    Вопрос 2. Какие проблемы решает генная ин­женерия? С какими трудностями связаны исследования в этой области?
    Методы генной инженерии позволяют ввес­ти в генотип одних организмов (например,бактерий) гены других организмов (напри­мер, человека). Генная инженерия позволила решить проблемы промышленного синтеза микроорганизмами различных человеческих гормонов, например инсулина и гормона рос­та. Путем создания генетически модифициро­ванных растений она обеспечила появление сортов, устойчивых к холодам, заболеваниям и вредителям. Основной трудностью для ген­ной инженерии является наблюдение и конт­роль за деятельностью привнесенной извне ДНК. Важно знать, способны ли трансгенные организмы выдерживать «нагрузку» чужерод­ных генов. Существует также опасность само­произвольного переноса (миграции) чужерод­ных генов в другие организмы, в результате чего они могут приобрести нежелательные для человека и природы свойства. Не на последнем месте стоит и этическая проблема: а имеем ли мы право переделывать живые организмы ра­ди собственного блага?
    Вопрос 3. Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?
    Существует несколько причин повышения интереса к селекции микроорганизмов:
    легкость селекции (по сравнению с рас­тениями и животными), которая обусловлена большой скоростью размножения и простотой культивирования бактерий;
    огромный биохимический потенциал (разнообразие осуществляемых бактериями реакций — от синтеза антибиотиков и витами нов до выделения из руд редких химических элементов);
    простота генно-инженерных манипу­ляций; важно также то, что встроенный в ДНК бактерии ген автоматически начинает рабо­тать, поскольку (в отличие от эукариотических организмов) все гены прокариотов активны.В результате на сегодняшний день сущест­вует огромное число примеров использования новых штаммов бактерий на практике: произ­водство продуктов питания, гормонов человека, переработка отходов, очистка сточных вод и др.
    Вопрос 4. Приведите примеры промышленно­го получения и использования продуктов жизнеде­ятельности микроорганизмов.
    С давних времен кисломолочные бактерии обеспечивают приготовление простокваши и сыра; бактерии, для которых характерно спиртовое брожение, — синтез этилового спир­та; дрожжи используют в хлебопечении и ви­ноделии.
    С 1982 г. в промышленных масштабах по­лучают инсулин, синтезируемый кишечной палочкой. Это стало возможным после того, как при помощи методов генной инженерии ген инсулина человека был встроен в ДНК бак­терии. В настоящее время налажен синтез трансгенного гормона роста, который исполь­зуется для лечения карликовости у детей.
    Микроорганизмы участвуют также в биотех­нологических процессах по очистке сточных мод, переработке отходов, удалению нефтяных разливов в водоемах, получению топлива.

  10. Malanrad Ответить

    Вопрос 1. Что такое биотехнология?
    Биотехнология — это использование организмов, биологических систем или биологических процессов в промышленном производстве. К отраслям биотехнологии относятся генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных растений и животных, использование микроорганизмов в хлебопечении, виноделии, производстве лекарств и др.
    Вопрос 2. Какие проблемы решает генная инженерия? С какими трудностями связаны исследования в этой области?
    Методы генной инженерии позволяют ввести в генотип одних организмов (например, бактерий) гены других организмов (например, человека). Генная инженерия позволила решить проблемы промышленного синтеза микроорганизмами различных человеческих гормонов, например инсулина и гормона роста. Путем создания генетически модифицированных растений она обеспечила появление сортов, устойчивых к холодам, заболеваниям и вредителям. Основной трудностью для генной инженерии является наблюдение и контроль за деятельностью привнесенной извне ДНК. Важно знать, способны ли трансгенные организмы выдерживать «нагрузку» чужеродных генов. Существует также опасность самопроизвольного переноса (миграции) чужеродных генов в другие организмы, в результате чего они могут приобрести нежелательные для человека и природы свойства. Не на последнем месте стоит и этическая проблема: а имеем ли мы право переделывать живые организмы ради собственного блага?
    Вопрос 3. Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?
    Существует несколько причин повышения интереса к селекции микроорганизмов:
    1). легкость селекции (по сравнению с растениями и животными), которая обусловлена большой скоростью размножения и простотой культивирования бактерий;
    2). огромный биохимический потенциал (разнообразие осуществляемых бактериями реакций — от синтеза антибиотиков и витаминов до выделения из руд редких химических элементов);
    3). простота генно-инженерных манипуляций; важно также то, что встроенный в ДНК бактерии ген автоматически начинает работать, поскольку (в отличие от эукариотических организмов) все гены прокариотов активны.
    4). В результате на сегодняшний день существует огромное число примеров использования новых штаммов бактерий на практике: производство продуктов питания, гормонов человека, переработка отходов, очистка сточных вод и др.
    Вопрос 4. Приведите примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов.
    С давних времен кисломолочные бактерии обеспечивают приготовление простокваши и сыра; бактерии, для которых характерно спиртовое брожение, — синтез этилового спирта; дрожжи используют в хлебопечении и виноделии. С 1982 г. в промышленных масштабах получают инсулин, синтезируемый кишечной палочкой. Это стало возможным после того, как при помощи методов генной инженерии ген инсулина человека был встроен в ДНК бактерии. В настоящее время налажен синтез трансгенного гормона роста, который используется для лечения карликовости у детей, интерферон – препарат, повышающий иммунную систему человека.
    Микроорганизмы участвуют также в биотехнологических процессах по очистке сточных вод, переработке отходов, удалению нефтяных разливов в водоемах, получению лекарственных препаратов, пищевых добавок, средств защиты растений, получению топлива.
    Вопрос 5. Какие организмы называют трансгенными?
    Трансгенными (генетически модифицированными) называют организмы, содержащие искусственные дополнения в геноме. Примером (помимо упомянутой выше кишечной палочки) могут служить растения, в ДНК которых встроен фрагмент бактериальной хромосомы, ответственный за синтез токсина, отпугивающего вредных насекомых. В результате получены сорта кукурузы, риса, картофеля, устойчивые к вредителям и не требующие использования пестицидов. Интересен пример лосося, ДНК которого дополнили геном, активирующим выработку гормона роста. В результате лосось рос в несколько раз быстрее, и вес рыб оказался гораздо больше нормы.
    Вопрос 6. В чем преимущество клонирования по сравнению с традиционными методами селекции?
    Клонирование направлено на получение точных копий организма с уже известными характеристиками. Оно позволяет добиваться лучших результатов в более короткие сроки, чем традиционные методы селекции. Клонирование дает возможность работать с отдельными клетками или небольшими зародышами. Например, при разведении крупного рогатого скота зародыш теленка на стадии недифференцированных клеток разделяют на фрагменты и помещают их в суррогатных матерей. В результате развиваются несколько идентичных телят с необходимыми признаками и свойствами.
    При необходимости можно использовать и клонирование растений. В этом случае селекция происходит в клеточной культуре (на искусственно культивируемых изолированных клетках). И лишь затем из клеток, обладающих необходимыми свойствами, выращивают полноценные растения.
    Наиболее известный пример клонирования — пересадка ядра соматической клетки в развивающуюся яйцеклетку. Эта технология в будущем позволит создать генетического двойника любого организма (или, что более актуально, его тканей и органов).

  11. Ballalore Ответить

    Вспомните!
    Что такое биотехнология?
    Какое значение для промышленности и сельского хозяйства имеет селекция микроорганизмов?
    Биотехнология – это использование организмов, биологических систем или биологических процессов в промышленном производстве. Термин «биотехнология» получил широкое распространение с середины 70-х гг. XX в., хотя ещё с незапамятных времён человечество использовало микроорганизмы в хлебопечении и виноделии, при производстве пива и в сыроварении. Любое производство, в основе которого лежит биологический процесс, можно рассматривать как биотехнологию. Генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных растений и животных – это различные аспекты современной биотехнологии.
    Биотехнология позволяет не только получать важные для человека продукты, например антибиотики и гормон роста, этиловый спирт и кефир, но и создавать организмы с заранее заданными свойствами гораздо быстрее, чем с помощью традиционных методов селекции. Существуют биотехнологические процессы по очистке сточных вод, переработке отходов, удалению нефтяных разливов в водоёмах, получению топлива. Эти технологии основаны на особенностях жизнедеятельности некоторых микроорганизмов.
    Появляющиеся современные биотехнологии изменяют наше общество, открывают новые возможности, но одновременно создают определённые социальные и этические проблемы.
    Генная инженерия. Удобными объектами биотехнологии являются микроорганизмы, имеющие сравнительно просто организованный геном, короткий жизненный цикл и обладающие большим разнообразием физиологических и биохимических свойств.
    Одной из причин сахарного диабета является недостаток в организме инсулина – гормона поджелудочной железы. Инъекции инсулина, выделенного из поджелудочных желез свиней и крупного рогатого скота, спасают миллионы жизней, однако у некоторых пациентов приводят к развитию аллергических реакций. Оптимальным решением было бы использование человеческого инсулина. Методами генной инженерии ген инсулина человека был встроен в ДНК кишечной палочки. Бактерия начала активно синтезировать инсулин. В 1982 г. инсулин человека стал первым фармацевтическим препаратом, полученным с помощью методов генной инженерии.

    Рис. 107. Страны, выращивающие трансгенные растения. Практически всю площадь посевов трансгенных культур занимают генетически модифицированные сорта четырёх растений: сои (62 %), кукурузы (24 %), хлопчатника (9 %) и рапса (4 %). Уже созданы сорта трансгенного картофеля, помидоров, риса, табака, свёклы и других культур
    Аналогичным способом в настоящее время получают гормон роста. Человеческий ген, встроенный в геном бактерий, обеспечивает синтез гормона, инъекции которого используются при лечении карликовости и восстанавливают рост больных детей почти до нормального уровня.
    Так же как у бактерий, с помощью методов генной инженерии можно изменять и наследственный материал эукариотических организмов. Такие генетически перестроенные организмы называют трансгенными или генетически модифицированными организмами (ГМО).
    В природе существует бактерия, которая выделяет токсин, убивающий многих вредных насекомых. Ген, отвечающий за синтез этого токсина, был выделен из генома бактерии и встроен в геном культурных растений. К настоящему времени уже созданы устойчивые к вредителям сорта кукурузы, риса, картофеля и других сельскохозяйственных растений. Выращивание таких трансгенных растений, которые не требуют использования пестицидов, имеет огромные преимущества, потому что, во-первых, пестициды убивают не только вредных, но и полезных насекомых, а во-вторых, многие пестициды накапливаются в окружающей среде и оказывают мутагенное влияние на живые организмы (рис. 107).
    Один из первых успешных экспериментов по созданию генетически модифицированных животных был произведён на мышах, в геном которых был встроен ген гормона роста крыс. В результате трансгенные мыши росли гораздо быстрее и в итоге были в два раза больше обычных мышей. Если этот опыт имел исключительно теоретическое значение, то эксперименты в Канаде имели уже явное практическое применение. Канадские учёные ввели в наследственный материал лосося ген другой рыбы, который активировал ген гормона роста. Это привело к тому, что лосось рос в 10 раз быстрее и набирал вес, в несколько раз превышающий норму.
    Клонирование. Создание многочисленных генетических копий одного индивидуума с помощью бесполого размножения называют клонированием . У ряда организмов этот процесс может происходить естественным путём, вспомните вегетативное размножение у растений и фрагментацию у некоторых животных (§ 19). Если у морской звезды случайно оторвётся кусочек луча, из него образуется новый полноценный организм (рис. 108). У позвоночных животных этот процесс естественным путём не происходит.
    Впервые успешный эксперимент по клонированию животных был осуществлён исследователем Гёрдоном в конце 60-х гг. XX в. в Оксфордском университете. Учёный пересадил ядро, взятое из клетки эпителия кишки лягушки-альбиноса, в неоплодотворённую яйцеклетку обычной лягушки, чьё ядро перед этим было разрушено. Из такой яйцеклетки учёному удалось вырастить головастика, превратившегося затем в лягушку, которая была точной копией лягушки-альбиноса. Таким образом, впервые было показано, что информации, содержащейся в ядре любой клетки, достаточно для развития полноценного организма.

    Рис. 108. Регенерация морской звезды из одного луча
    В дальнейшем исследования, проведённые в Шотландии в 1996 г., привели к успешному клонированию овцы Долли из клетки эпителия молочной железы матери (рис. 109).
    Клонирование представляется перспективным методом в животноводстве. Например, при разведении крупного рогатого скота используется следующий приём. На ранней стадии развития, когда клетки эмбриона ещё не специализированы, зародыш разделяют на несколько частей. Из каждого фрагмента, помещённого в приёмную (суррогатную) мать, может развиться полноценный телёнок. Таким способом можно создать множество идентичных копий одного животного, обладающего ценными качествами.
    Для специальных целей можно также клонировать отдельные клетки, создавая культуры тканей, которые в подходящих средах способны расти бесконечно долго. Клонированные клетки служат заменой лабораторным животным, так как на них можно изучать воздействие на живые организмы различных химических веществ, например лекарственных препаратов.
    При клонировании растений используется уникальная особенность растительных клеток. В начале 60-х гг. XX в. впервые было показано, что клетки растений, даже после достижения зрелости и специализации, в подходящих условиях способны давать начало целому растению (рис. 110). Поэтому современные методы клеточной инженерии позволяют осуществлять селекцию растений на клеточном уровне, т. е. отбирать не взрослые растения, обладающие теми или иными свойствами, а клетки, из которых потом выращивают полноценные растения.

    Рис. 109. Клонирование овцы Долли
    Этические аспекты развития биотехнологии. Использование современных биотехнологий ставит перед человечеством много серьёзных вопросов. Не может ли ген, встроенный в трансгенные растения томата, при съедании плодов мигрировать и встраиваться в геном, например, бактерий, живущих в кишечнике человека? Не может ли трансгенное культурное растение, устойчивое к гербицидам, болезням, засухе и другим стрессовым факторам, при перекрёстном опылении с родственными дикими растениями передать эти же свойства сорнякам? Не получатся ли при этом «суперсорняки», которые очень быстро заселят сельскохозяйственные земли? Не попадут ли случайно мальки гигантского лосося в открытое море и не нарушит ли это баланс в природной популяции? Способен ли организм трансгенных животных выдержать ту нагрузку, которая возникает в связи с функционированием чужеродных генов? И имеет ли право человек переделывать живые организмы ради собственного блага?
    Эти и многие другие вопросы, связанные с созданием генетически модифицированных организмов, широко обсуждаются специалистами и общественностью всего мира. Созданные во всех странах специальные контролирующие органы и комиссии утверждают, что, несмотря на существующие опасения, вредного воздействия ГМО на природу зафиксировано не было.

    Рис. 110. Этапы клонирования растений (на примере моркови)
    В 1996 г. Совет Европы принял Конвенцию о правах человека при использовании геномных технологий в медицине. Основное внимание в документе уделено этике применения таких технологий. Утверждается, что ни одна личность не может быть подвергнута дискриминации на основе информации об особенностях её генома.
    Введение в клетки человека чужеродного генетического материала может иметь отрицательные последствия. Неконтролируемое встраивание чужой ДНК в те или иные участки генома может привести к нарушению работы генов. Риск использования генотерапии при работе с половыми клетками гораздо выше, чем при использовании соматических клеток. При внесении генетических конструкций в половые клетки может возникнуть нежелательное изменение генома будущих поколений. Поэтому в международных документах ЮНЕСКО, Совета Европы, Всемирной организации здравоохранения (ВОЗ) подчёркивается, что всякое изменение генома человека может производиться лишь на соматических клетках.
    Но, пожалуй, наиболее серьёзные вопросы возникают в связи с теоретически возможным клонированием человека. Исследования в области человеческого клонирования сегодня запрещены во всех странах в первую очередь по этическим соображениям. Становление человека как личности базируется не только на наследственности. Оно определяется семейной, социальной и культурной средой, поэтому при любом клонировании воссоздать личность невозможно, как невозможно воспроизвести все те условия воспитания и обучения, которые сформировали личность его прототипа (донора ядра). Все крупные религиозные конфессии мира осуждают любое вмешательство в процесс воспроизводства человека, настаивая на том, что зачатие и рождение должны происходить естественным путём.
    Эксперименты по клонированию животных поставили перед научной общественностью ряд серьёзных вопросов, от решения которых зависит дальнейшее развитие этой области науки. Овечка Долли не была единственным клоном, полученным шотландскими учёными. Клонов было несколько десятков, а в живых осталась только Долли. В последние годы совершенствование техники клонирования позволило увеличить процент выживших клонов, но их смертность всё ещё очень высока. Однако существует проблема, ещё более серьёзная с научной точки зрения. Несмотря на победное рождение Долли, остался неясным её реальный биологический возраст, связанные с ним проблемы со здоровьем и относительно ранняя смерть. По мнению учёных, использование ядра клетки немолодой шестилетней овцы-донора сказалось на судьбе и здоровье Долли.
    Необходимо существенно повысить жизнеспособность клонированных организмов, выяснить, влияет ли использование конкретных методик на продолжительность жизни, здоровье и плодовитость животных. Очень важно свести к минимуму риск дефектного развития реконструированной яйцеклетки.
    Активное внедрение биотехнологий в медицину и генетику человека привело к появлению специальной науки – биоэтики. Биоэтика – наука об этичном отношении ко всему живому, в том числе и к человеку. Нормы этики выдвигаются сейчас на первый план. Те нравственные заповеди, которыми человечество пользуется века, к сожалению, не предусматривают новых возможностей, привносимых в жизнь современной наукой. Поэтому людям необходимо обсуждать и принимать новые законы, учитывающие новые реальности жизни.
    Вопросы для повторения и задания
    1. Что такое биотехнология?
    2. Какие проблемы решает генная инженерия? С какими трудностями связаны исследования в этой области?
    3. Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?
    4. Приведите примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов.
    5. Какие организмы называют трансгенными?
    6. В чём преимущество клонирования по сравнению с традиционными методами селекции?
    ⇐ Предыдущая46474849505152535455Следующая ⇒
    Date: 2015-12-11; view: 1450; Нарушение авторских прав

  12. Modiwyn Ответить

    Содержание
    Введение
    Методы биотехнологии, и ее перспективы
    Биотехнология сельскохозяйственных растений. Перспективы
    Повышение урожайности
    Естественная защита растений
    Устойчивость к гербицидам
    Устойчивость к неблагоприятным факторам среды
    Вывод
    Список использованной литературы
    Введение
    Биотехнология – это наука о методах и технологиях производства различных ценных веществ и продуктов с использованием природных биологических объектов (микроорганизмов, растительных и животных клеток), частей клеток (клеточных мембран, рибосом, митохондрий, хлоропластов) и процессов.
    Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, такой биотехнологический процесс, как брожение с участием микроорганизмов, был известен и широко применялся еще в древнем Вавилоне, о чем свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках Вавилона.
    Наукой биотехнология стала благодаря исследованиям и работам французского ученого, основоположника современной микробиологии и иммунологии Луи Пастера (1822-1895).
    В ХХ веке происходило бурное развитие молекулярной биологии и генетики с применением достижений химии и физики. Важнейшим направлением исследований явилась разработка методов культивирования клеток растений и животных. И если еще совсем недавно для промышленных
    целей выращивали только бактерии и грибы, то сейчас появилась возможность не только выращивать любые клетки для производства биомассы, но и управлять их развитием, особенно у растений. Таким образом, новые научно-технологические подходы воплотились в разработку биотехнологических методов, позволяющих манипулировать непосредственно генами, создавать новые продукты, организмы и изменять свойства уже существующих. Главная цель применения этих методов – более полное использование потенциала живых организмов в интересах хозяйственной деятельности человека. В 70-е годы появились и активно развивались такие важнейшие области биотехнологии, как генетическая (или генная) и клеточная инженерия, положившие начало «новой» биотехнологии, в отличие от «старой» биотехнологии, основанной на традиционных микробиологических процессах. Так, обычное производство спирта в процессе брожения – это “старая” биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта, – “новая” биотехнология.
    Методы биотехнологии, ее перспективы
    Генная и клеточная инженерия – являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии. Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.
    Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. В результате применения генно-инженерных методов можно получать рекомбинантные (модифицированные) молекулы РНК и ДНК, для чего производится выделение отдельных генов (кодирующих нужный продукт), из клеток какого-либо организма. После проведения определенных манипуляций с этими генами осуществляется их введение в другие организмы (бактерии, дрожжи и млекопитающие), которые, получив новый ген (гены), будут способны синтезировать конечные продукты с измененными, в нужном человеку направлении, свойствами. Иными словами, генная инженерия позволяет получать заданные (желаемые) качества изменяемых или генетически модифицированных организмов или так называемых «трансгенных» растений и животных.
    Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.
    Люди всегда задумывались над тем, как можно научиться управлять природой, и искали способы получения, например, растений с улучшенными качествами: с высокой урожайностью, более крупными и вкусными плодами или с повышенной холодостойкостью. С давних времен основным методом, который использовался в этих целях, была селекция. Она широко применяется до настоящего времени и направлена на создание новых и улучшение уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для человека признаками и свойствами.
    Селекция строится на отборе растений (животных) с выраженными благоприятными признаками и дальнейшем скрещивании таких организмов, в то время как генная инженерия позволяет непосредственно вмешиваться в генетический аппарат клетки. Важно отметить, что в ходе традиционной селекции получить гибриды с искомой комбинацией полезных признаков весьма сложно, поскольку к потомству передаются очень большие фрагменты геномов каждого из родителей, в то время как генно-инженерные методы позволяют работать чаще всего с одним или несколькими генами, причем их модификации не затрагивают работу других генов. В результате, не теряя других полезных свойств растения, удается добавить еще один или несколько полезных признаков, что весьма ценно для создания новых сортов
    и новых форм растений. Стало возможным изменять у растений, например, устойчивость к климату и стрессам, или их чувствительность к насекомым или болезням, распространённым в определённых регионах, к засухе и т.д. Учёные надеются даже получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, таких как кукуруза, соя, картофель, томаты, горох и др.
    Исторически, выделяют «три волны» в создании генно-модифицированных растений:
    Первая волна – конец 1980-х годов – создание растений с новыми свойствами устойчивости к вирусам, паразитам или гербицидам. В растениях «первой волны» дополнительно вводили всего один ген и заставляли его «работать», то есть синтезировать один дополнительный белок. «Полезные» гены «брали» либо у вирусов растений (для формирования устойчивости к данному вирусу), либо у почвенных бактерий (для формирования устойчивости к насекомым, гербицидам).
    Вторая волна – начало 2000-х годов – создание растений с новыми потребительскими свойствами: масличные культуры с повышенным содержанием и измененным составом масел, фрукты и овощи с большим содержанием витаминов, более питательные зерновые и т.д.
    В наши дни ученые создают растения «третьей волны», которые в ближайшие 10 лет появятся на рынке: растения-вакцины, растения-биореакторы для производства промышленных продуктов (компонентов для различных видов пластика, красителей, технических масел и т.д.), растения – фабрики лекарств и т.д.
    Генно-инженерные работы в животноводстве имеют другую задачу. Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определённым целевым геном. Например, ген какого-нибудь ценного гормона животного (например, гормона роста) искусственно внедряется в бактерию, которая начинает продуцировать его в больших количествах. Еще один пример: трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующий рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, а сам способ значительно дешевле традиционного.
    В конце 90-х годов XX в. учёные США вплотную подошли к получению сельскохозяйственных животных методом клонирования клеток эмбрионов, хотя это направление нуждается еще в дальнейших серьезных исследованиях. А вот в ксенотрансплантации – пересадке органов от одного вида живых организмов другому, – достигнуты несомненные результаты. Наибольшие успехи получены при использовании свиней, имеющих в генотипе перенесенные гены человека, в качестве доноров различных органов. В этом случае наблюдается минимальный риск отторжения органа.
    Учёные также предполагают, что перенос генов поможет снизить аллергию человека к коровьему молоку. Целенаправленные изменения в ДНК коров должны привести также к уменьшению содержания в молоке насыщенных жирных кислот и холестерина, что сделает его еще более полезным для здоровья. Потенциальная опасность применения генетически модифицированных организмов выражается в двух аспектах: безопасность продовольствия для здоровья людей и экологические последствия. Поэтому важнейшим этапом при создании генно-модифицированного продукта должна быть его всесторонняя экспертиза во избежание опасности того, что продукт содержит протеины, вызывающие аллергию, токсичные вещества или какие-то новые опасные компоненты.
    Биотехнология сельскохозяйственных растений. Перспективы
    Начиная с каменного века люди отбирали растения с удовлетворяющими их характеристиками и сохраняли их семена на следующий год. Отбирая лучшие семена, первые агрономы осуществили первичное генетическое модифицирование растений и таким образом одомашнили их задолго до того, как были открыты основные генетические закономерности. Сотни лет фермеры и селекционеры растений пользовались перекрестным скрещиванием, гибридизацией и другими подходами к модификации генома, приводящими к увеличению урожайности, улучшению качества продукции и повышению устойчивости растений к насекомым-вредителям, болезнетворным микроорганизмам и неблагоприятным условиям среды.
    По мере углубления знаний о генетике растений человек начал осуществлять целенаправленное перекрестное скрещивание (кроссбридинг) обладающих желаемыми характеристиками или не имеющих нежелательных признаков сортов растений и межвидовую гибридизацию с целью получения новых сортов, сохранивших лучшие качества обеих родительских линий. В настоящее время практически любая сельскохозяйственная культура является результатом кроссбридинга, гибридизации или применения обоих подходов. К сожалению, эти методы нередко дороги, требуют больших затрат времени, неэффективны и имеют существенные практические ограничения. Например, для создания с помощью традиционного кроссбридинга сорта кукурузы, устойчивого к определенным насекомым, потребовался бы не один десяток лет, причем без гарантированного результата.

  13. Смеяка-Задирака Ответить

    Найдены пути использования белка микроорганизмов для кормления сельскохозяйственных животных. Выделены микробные препараты, усиливающие поступление в почву азота из воздуха. Открытие новых методов получения наследственно измененных форм полезных микроорганизмов позволило шире применять микроорганизмы в сельскохозяйственном и промышленном производстве, а также в медицине. Особенно перспективно развитие генной, или генетической, инженерии. Ее достижения обеспечили развитие биотехнологии, появление высокопродуктивных микроорганизмов, синтезирующих белки, ферменты, витамины, антибиотики, ростовые вещества и другие, необходимые для животноводства и растениеводства продукты. В существующих кормовых рационах далеко не всегда достаточно белка, необходимых аминокислот и витаминов. Поэтому необходимо вводить эти вещества в корм в виде тех или иных препаратов, в частности полученных с помощью микроорганизмов. Внимание ученых привлекает вопрос получения кормового белка путем микробного синтеза.
    Производство нитрагина и ризоторфина. Эти бактерии в симбиозе с бобовыми культурами способны фиксировать свободный азот атмосферы, превращая его в соединения, легкоусвояемые растением. Микроорганизмы в почве образуют сложный биоценоз, в котором находятся между собой в сложных отношениях.

  14. Forcebringer Ответить

    Важное значение в медицине играет вакцинация против гриппа, гепатитов, кори, острых респираторных болезней. Актуальным является вопрос изготовления вакцин. Вакцинация – один из основных способов борьбы с инфекционными заболеваниями. Путем поголовной вакцинации ликвидирована натуральная оспа, резко ограничено распространение бешенства, сибирской язвы, полиомиелита, желтой лихорадки и др.
    Современные биотехнологические процессы предусматривают выпуск рекомбинантных вакцин и вакцин антигенов. Вакцины обоих типов основаны на генноинженерном подходе.
    Для получения рекомбинантных вакцин обычно используют хорошо известный геном вируса коровьей оспы (осповакцины). В его ДНК встраивают чужеродные гены, кодирующие иммунногенные белки различных возбудителей (гриппа, гепатита, молярийного плазмодия и др.). Для получения рекомбинантных ДНК используют специальные векторы на основе плазмид с хорошо изученной последовательностью и рестрикционной картой. Появилась возможность создания поливалентных вакцинных препаратов на основе объединения участков ДНК различных патогенов под эгидой ДНК вируса осповакцины.
    Современная биотехнология применяется в получении ферментов медицинского назначения. Их используют для растворения тромбов, лечения наследственных заболеваний. Яркий пример спасения жизни больных с тромбозом конечностей, легких, сосудов сердца при помощи тромболитических ферментов (стрептокиназы и урокиназы).
    Энергетика.В связи с тем, что запасы ископаемого топлива ограничены, а его потребление растет из года в год, возможен энергетический кризис во многих странах мира. Поэтому обсуждаются перспективы использования ядерной энергии.
    Около 99,4 % в год доступной неядерной энергии человечество получает от Солнца. Часть ее аккумулируется в биомассе, хотя и с малой эффективностью (порядка 1-2 %).
    По этой причине биомасса представляет собой постоянно возобновляемый источник энергии. Ее можно сжигать или довольно простыми способами превращать при помощи микроорганизмов в жидкое или газообразное топливо (метан, этиловый спирт, водород). Со временем биомасса будет все больше использоваться при производстве сырья для химической промышленности. В последнее время пробудился интерес к разработке биотопливных элементов, с помощью которых можно с высокой эффективностью получать из ряда видов топлива и биомассы электрическую энергию. Поскольку солнечный свет является мощным источником энергии, а количество имеющейся биомассы ограничено, некоторые биотехнологи, работающие над проблемами энергии, заняты разработкой двух проблем, решение которых позволило бы повысить эффективность использования солнечной энергии.
    Во-первых, пытаются найти фактические способы повышения эффективности конверсии солнечного света в биомассу, например, путем выращивания водорослей при высокой концентрации СО2 и ограниченной освещенности в биореакторах со строго контролируемыми условиями роста.
    Во-вторых – изучается возможность получения водорода путем расщепления воды при участии фотосистемы фотосинтезирующих организмов, то есть путем биофотолиза.Технически проще всего получать водород, используя сине-зеленные водоросли или процессы ферментации (брожения).
    Биотехнология стала играть все возрастающую роль при добыче нефти. Предполагается, например, вводить подходящие микроорганизмы непосредственно в нефтяной пласт, чтобы ускорить отток нефти из пористых пород и для добычи остаточной нефти.
    Окружающая среда.По мере того, как увеличивается население Земли и развивается промышленность, все более серьезной становится проблема охраны окружающей среды. В решении такого рода задач биотехнология играет все возрастающую роль, в частности, в том, что касается разработки новых или усовершенствования существующих способов переработки отходов. Новейшие процессы переработки отходов основываются на использовании микроорганизмов, обладающих новыми, неизвестными ранее или искусственно созданными катаболическими способностями.
    Окружающая среда является как бы общим знаменателем для всех видов деятельности. Например, расширение использования биотехнологии в химической промышленности должно привести к созданию новых ее отраслей, лучше совместимых с окружающей средой. Такие же надежды возлагаются и на биоинженерию.
    Сельское хозяйство.Применение биотехнологии в сельском хозяйстве весьма многообразно. Продукция сельского хозяйства может использоваться в промышленности, например для производства этилового спирта из излишков сахарной свеклы или тростника. Такой подход получил дальнейшее развитие: для выработки спирта сельскохозяйственные культуры начали выращивать специально.
    Большая часть продукции современного сельского хозяйства служит сырьем для развития пищевой промышленности. В качестве сырья могут быть использованы и отходы сельского хозяйства.
    С помощью биотехнологии разрабатываются новые способы улучшения сельскохозяйственных культур как по урожайности, так и по качеству. Можно будет использовать полученные с ее помощью заменители дорогостоящих химических удобрений или пестицидов, или же добавки к ним. Так, потребности в азоте, возможно, удастся удовлетворить путем внедрения биологической фиксации азота, основанной на симбиозе, а в фосфоре – путем вмешательства в процессы, происходящие в микоризах. Задачей отдаленного будущего является передача способности к фиксации азота непосредственно отдельным сельскохозяйственным культурам путем введения в них гена нитрогеназы; в результате такие растения приобретут способность к синтезу фермента, катализирующего реакцию фиксации азота. Это позволит сэкономить энергию, затрачиваемую сегодня при химическом синтезе аммиака.
    По общему мнению, наибольший вклад биотехнологии в сельское хозяйство следует ожидать за счет улучшения свойств самих растений путем использования методов рекомбинативных ДНК и протопластов растений.
    Химические соединения.Применение биологических систем для производства химических соединений в принципе дает ряд преимуществ, однако сегодня лишь малое их число получают с помощью биотехнологических процессов. К ним относится сравнительно дешевые, но широко используемые в больших количествах как топливо этиловый спирт и метан, а также ряд ценных и довольно дорогих веществ, применяющихся в медицине и для пищевых целей (лимонная кислота, аминокислоты, стероиды и антибиотики).
    Производство химических веществ на основе биокатализа имеет следующие преимущества: специфичность, легкость контроля, работа при низких температурах, совместимость с окружающей средой и простота. Так, химическое производство органических соединений базируется, в основном, на нефти, а большинство продуктов переработки нефти получают путем частичного окисления сырья. Достичь специфического контролируемого и частичного окисления при помощи существующих катализаторов довольно сложно, а микроорганизмы осуществляют эти типы реакций без труда.
    Существуют три главных способа синтеза химических соединений на основе биокатализа:
    1. Путем использования культур клеток растений или животных, образующих дорогостоящие вещества.
    2. Путем использования микроорганизмов, при необходимости измененных методами генетической инженерии, для биосинтеза или модификации химических веществ;
    3. Путем использования измененных методами генетической инженерии микроорганизмов в качестве “устройств” для экспрессии генов растений и животных, что позволяет синтезировать в больших количествах особые, присущие только высшим организмам химические соединения.
    Материаловедение.Биотехнология может оказать влияние на получение и использование различных материалов по меньшей мере тремя способами. Во-первых, она будет способствовать развитию добычи промышленного сырья, например нефти и других полезных ископаемых. Во-вторых, более широко могут использоваться продукты микробного происхождения, например для производства разлагаемых с помощью микроорганизмов пластмасс, эмульгаторов и загущающих веществ. В-третьих, будут усовершенствованы способы защиты различных веществ от разрушения их микроорганизмами.
    Наиболее многообещающим сырьем для производства биопластмасс является одно из резервных веществ клеток, полигидроксибутират (ПГБ). В настоящее время в промышленности ведутся активные исследования, как самого этого вещества, так и способов его получения.
    Весьма актуальной и сложной с технической точки зрения является проблема биоповреждений. Биоповреждения являются неизбежным следствием важнейшей роли микроорганизмов в круговороте элементов в биосфере. Проявления биоповреждений весьма многообразны: от порчи пищевых продуктов до загрязнения смазочных масел и топливных систем, разрушения бетона и развития электрохимических процессов коррозии под влиянием микроорганизмов. Биотехнология поможет создать новые методы борьбы с биоповреждениями благодаря более глубокому пониманию лежащих в их основе процессов. На этой базе могут быть созданы новые биотехнологические процессы. Примером такого рода служит использование ферментов в пищевой промышленности.

  15. аApostaL Ответить

    Применение методов генетической инженерии в животноводстве и растениеводстве открывает перспективу изменения ряда свойств организма: повышение продуктивности, резистентности к заболеваниям, увеличение скорости роста, улучшение качества продукции и др. Животных и растения, которые несут в своем геноме рекомбинантный (чужерод­ный) ген, принято называть трансгенными, а ген, интегрированный в геном реципиента, – трансгеном. Продукт этого гена (белок) является трансгенным. Благодаря переносу генов у трансгенных организмов возникают новые качества, а дальнейшая селекция позволяет закрепить их в потомстве и создавать трансгенные линии.
    Введение чужеродной ДНК животным можно осуществить разными методами:
    1) с помощью ретровирусных векторов, инфицирующих клетки эмбриона на ранних стадиях развития перед имплантацией эмбриона в самку-реципиента;
    2) микроинъекцией в увеличенное ядро спермия (мужской пронуклеус) оплодотворенной яйцеклетки;
    3) введением генетически модифицированных эмбриональных стволовых клеток в предимплантированный эмбрион на ранних стадиях развития.
    У родившихся потомков исследуют экспрессию трансгена на уровне транс­крипции и трансляции. Трансгенное потомство получают путем использования традиционных методов разведения животных.
    Эксперименты по генетической модификации многоклеточных организмов путем введения в них трансгенов требуют много времени. Тем не менее трансгеноз стал мощным инструментом для исследования молекулярных основ экспрессии генов млекопитающих и их развития, для создания модельных систем, позволяющих изучать болезни человека, а также для генетической модификации
    клеток молочных желез животных с целью получения с молоком важных для медицины белков. Был даже предложен новый термин «фарминг», относящийся к процессу получения из молока трансгенных домашних (“pharm”) животных аутентичных белков человека или фармацевтических препаратов. Использование молока целесообразно потому, что оно образуется в организме животного в большом количестве и его можно надаивать по мере надобности без вреда для животного. Вырабатываемый молочной железой и секретируемый в молоко новый белок не должен при этом оказывать никаких побочных эффектов на нормальные физиологические процессы, протекающие в организме трансгенного животного, и подвергаться посттрансляционным изменениям, которые по крайней мере близки к таковым в клетках человека. Кроме того, его выделение из молока, которое содержит и другие белки, не должно составлять большого труда.
    Молочная железа – великолепный продуцент чужеродных белков, которые можно получать из молока и использовать в фармацевтической и пищевой промышленности. Из молока трансгенных животных извлекают следующие рекомбинантные белки: человеческий белок С (антитромбин), антигемофильный фактор IX, ?-1-антитрипсин, тканевой плазменный активатор, лактоферин, сывороточный альбумин, интерлейкин-2, урокиназу и химозин. В большинстве проектов, за исключением ?-1-антитрипсина и химозина, эти исследования пока еще на стадии разработки и ведутся в основном на трансгенных мышах, поэтому оценивать их с точки зрения коммерческого интереса еще рано.

Добавить комментарий для аApostaL Отменить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *