Какие вещества участвуют в переваривании питательных веществ?

10 ответов на вопрос “Какие вещества участвуют в переваривании питательных веществ?”

  1. CrazyMegaAether™ ® Ответить

    Предыдущая: Питание – составная часть обмена веществ (поступление веществ из среды в организм)
    Пищеварение является этапом метаболизма питательных веществ, в ходе которого происходит гидролиз пищевых компонентов ферментами пищеварительного
    тракта. Характер гидролиза питательных веществ определяется составом ферментов пищеварительных соков и специфичностью действия этих ферментов. Большинство
    пищеварительных ферментов обладает относительной субстратной специфичностью, что облегчает гидролиз разнообразных питательных веществ большой молекулярной
    массы до мономеров и более простых соединений. Распаду в пищеварительном тракте подвергаются углеводы, липиды, белки и некоторые простетические группы
    сложных белков. Остальные компоненты пищи (витамины, минеральные вещества и вода) всасываются в неизменном виде.
    Переваривание происходит в трех отделах пищеварительного тракта: ротовой полости, желудке и тонком кишечнике, куда выделяются секреты желез, содержащие
    соответствующие гидролитические ферменты. В полость пищеварительного тракта ежесуточно поступает около 8,5 л пищеварительных соков, в которых содержится
    до 10 г различных ферментов.
    В зависимости от расположения ферментов пищеварение может быть трех видов: полостное (гидролиз ферментами, находящимися в свободном виде),
    мембранное, или пристеночное (гидролиз ферментами, находящимися в составе мембран) и внутриклеточное (гидролиз ферментами, находящимися в органоидах
    клетки). Для пищеварительного тракта характерны первые два вида. Мембранное пищеварение происходит в ворсинках кишечника. Особенность его состоит в том,
    что гидролиз небольших молекул (например, дипептидов, дисахаридов) происходит на поверхности клеточной мембраны кишечного эпителия и одновременно
    сочетается с транспортом продуктов гидролиза внутрь клетки. Внутриклеточный гидролиз осуществляется преимущественно ферментами лизосом, являющихся
    своеобразным пищеварительным аппаратом клеток.
    Ферменты пищеварительного тракта можно разделить на четыре группы:
    ферменты, участвующие в переваривании углеводов (амилолитические или глюканолитические ферменты);
    ферменты, участвующие в переваривании белков и пептидов (протеолитические ферменты);
    ферменты, участвующие в переваривании нуклеиновых кислот (нуклеазы, или нуклеинолитические ферменты) и гидролизе нуклеотидов;
    ферменты, участвующие в переваривании липидов (липолитические ферменты).

    Переваривание питательных веществ

    Переваривание углеводов

    Переваривание углеводов начинается в ротовой полости главным образом с помощью α-амилазы слюны. Некоторые исследователи считают, что в слюне
    имеется и другой фермент – мальтаза. α-Амилаза состоит из одной полипептидной цепи, стабилизируется кальцием, имеет оптимум рН 7,1 и активируется
    ионами хлора. Фермент относится к эндоамилазам, действует на внутренние α-1,4-гликозидные связи крахмала и гликогена пищи и не способен
    гидролизовать α-1,6-гликозидные связи этих полисахаридов. α-Амилаза гидролизует весьма беспорядочно α-1,4-гликозидные связи полисахаридов
    в отличие от β- и γ-амилаз. β-Амилаза последовательно отщепляет от конца полисахарида дисахарид мальтозу, а γ-амилаза – концевой
    моносахарид глюкозу. Поэтому обе эти амилазы являются экзоамилазами. γ-Амилаза присутствует в ткани печени и участвует в расщеплении гликогена
    (β-амилазы в организме человека нет; она находится в бактериях).
    После действия α-амилaзы слюны полисахариды расщепляются на α-лимитдекстрин (разветвленный полисахарид меньшей молекулярной массы, чем
    крахмал и гликоген), мальтозу и небольшое количество глюкозы (возможно в результате присутствия мальтазы). Поскольку время нахождения пищи в ротовой
    полости невелико, доля расщепленных полисахаридов относительно мала, хотя содержание фермента в слюне очень велико. Дисахариды пищи, главными из которых
    являются сахароза, лактоза (особенно у детей, питающихся молоком и молочными продуктами), трегалоза (дисахарид грибов), не расщепляются в полости рта.
    В желудке α-амилаза инактивируется кислым содержимым желудка, и переваривание углеводов прекращается. В кишечнике происходит полный гидролиз
    полисахаридов, включая и образовавшийся в полости рта α-лимитдекстрин, и всех дисахаридов до моносахаридов. Действию ферментов благоприятствует
    нейтрализация поступающей в кишечник кислой пищи гидрокарбонатами, растворенными в щелочном содержимом сока поджелудочной железы и желчи.
    Гидролиз углеводов в кишечнике осуществляется ферментами поджелудочной железы и кишечника. К первым относятся панкреатическая α-амилаза и
    олиго-1,6-глюкозидаза. Остальные ферменты – олигосахаридазы и дисахаридазы – образуются преимущественно в слизистой кишечника. Панкреатическая
    α-амилаза сходна по действию с α-амилазой слюны. Она буквально в течение 4-5 мин гидролизует поступающий крахмал и гликоген до
    α-лимитдекстринов и мальтозы. Гидролиз α-лимитдекстрина происходит с помощью олиго-1,6-глюкозидазы, которая специфически разрывает
    α-1,6-гликозидные связи в точках “ветвления” полисахарида. При этом образуется мальтоза:

    Дисахариды гидролизуются не в полости, а в стенке кишечника, поэтому образующиеся моносахариды сразу всасываются. Существуют α-специфичные
    и β-специфичные олигосахаридазы, которые расщепляют дисахариды до моносахаридов. К α-олигосахаридазам относятся мальтаза, изомальтаза,
    сахараза, α,α-трегалаза. Сахараза образует чаще всего комплекс с изомальтазой. Такой ферментативный сахаразо-изомальтазный комплекс
    (сахарозо-α-глюкогидролаза) расщепляет сахарозу на глюкозу и фруктозу, а изомальтозу – на две молекулы глюкозы.
    Мальтаза гидролизует мальтозу (иногда мальтаза образует комплекс с сахaразой):

    α, α-трегалаза расщепляет трегалозу:

    Среди β-олигосахаридаз наибольшее значение имеет специфичная β-галактозидаза, или лактаза, осуществляющая гидролиз лактозы:

    Конечными продуктами переваривания углеводов являются моносахариды, преимущественно глюкоза, фруктоза, галактоза. Доля остальных моносахаридов,
    поступающих с пищей, относительно невелика. Далее в тонком кишечнике происходит всасывание моносахаридов.

    Переваривание липидов

    Переваривание липидов происходит в тех отделах пищеварительного тракта, где имеются следующие обязательные условия:
    наличие липолитических ферментов, гидролизующих липиды;
    условия для эмульгирования липидов;
    оптимальный pH среды для действия липолитических ферментов (среда должна быть нейтральной или слабощелочной).
    Все эти условия создаются в кишечнике взрослого человека. У ребенка, особенно новорожденного, близкие условия создаются для переваривания
    триацилглицеринов молока желудочной липазой. pH среды желудочного содержимого ребенка около 5,0 (слабокислая среда), жир молока находится в виде
    эмульсии, поэтому возможно некоторое расщепление жира липазой.
    У взрослого человека сильнокислая среда инактивирует желудочную липазу.
    В кишечнике нейтрализуется поступающая из желудка пища, а жир подвергается эмульгированию. Эмульгирование липидов происходит под действием желчных
    кислот, поступающих в кишечник в составе желчи. В желчи находятся преимущественно следующие желчные кислоты – холевая, хенодезоксихолевая и их конъюгаты
    с глицином и таурином – гликохолевая и таурохенодезоксихолевая.
    Желчные кислоты выполняют следующие биологические функции:
    эмульгирующую;
    функцию активатора липолитических ферментов;
    транспортную, так как, образуя с высшими жирными кислотами транспортный комплекс, помогают их всасыванию в кишечнике.
    Все желчные кислоты являются амфифильными соединениями, поэтому обладают свойствами эмульгаторов. Располагаясь на поверхности раздела двух фаз
    жир-вода, желчные кислоты препятствуют их расслоению. Перистальтика кишечника помогает дроблению крупных капель жира, а желчные кислоты сохраняют их
    во взвешенном состоянии, мешая слиянию мелких жировых капель. Дополнительными эмульгаторами являются свободные жирные кислоты и моноацилглицерины,
    образующиеся в ходе переваривания липидов, пищевые фосфолипиды и продукты их частичного переваривания (фосфатидилхолин).
    Гидролиз триацилглицеринов, составляющих основную массу липидов пищи, происходит под действием панкреатической липазы. Липаза поступает в
    неактивном виде. Она активируется в кишечнике специальным кофактором – колипазой и желчными кислотами. Активная липаза действует на триацилглицерины
    жировой капли. Сам фермент растворен в водной части, а расщепляет субстрат, находящийся в липидной фазе. У липазы есть специальный гидрофобный участок
    (головка), с которым контактирует триацилглицерин. Гидролиз жира идет на самой поверхности раздела. Продуктами гидролиза являются чаще всего
    2-моноацилглицерин и свободные жирные кислоты:

    Карбоксиэстеразы кишечника и сока поджелудочной железы расщепляют 2-моноацилглицерин на свободную жирную кислоту и глицерин. Помогают гидролизу
    триацилглицеринов ионы кальция, которые образуют комплексы со свободными жирными кислотами.
    Гидролиз фосфолипидов осуществляется группой липолитических ферментов, называемых фосфолипазами. Существует несколько типов фосфолипаз,
    обозначаемых как А1, А2, С и D. Они гидролизуют разные связи в молекуле фосфолипида (показано на примере фосфатидилхолина):

    В кишечнике имеются фосфолипазы А2, С и, возможно, D и лизофосфолипаза, участвующие в расщеплении фосфолипидов пищи. В поджелудочной
    железе образуются преимущественно фосфолипаза А2 и в небольших количествах фосфолипаза С и лизофосфолипаза. В стенке кишечника также
    присутствуют фосфолипазы А2 и С. Кроме того, в кишечнике обнаружена лизофосфолипаза, которая отщепляет жирную кислоту не от целой молекулы
    фосфолипида, а от лизофосфатидов:

    Активирование профосфолипазы А2 происходит в кишечном соке, где под действием трипсина отщепляется от профермента гексапептид. Кроме того,
    для работы фосфолипазы А2, как, впрочем, и для других фосфолипаз, требуются желчные кислоты и ионы кальция. Желчные кислоты помогают сближению
    субстрата с активным центром фермента, ионы кальция удаляют из зоны действия фермента свободные жирные кислоты (как и в случае с липазой) и препятствуют
    инактивации фосфолипазы.
    Продуктом действия фосфолипазы А2, являющейся основной пищеварительной фосфолипазой, являются чрезвычайно токсичные лизофосфатиды, которые
    тут же гидролизуются лизофосфолипазой.
    Фосфолипазы С и D завершают процесс гидролиза фосфоглицеридов. Конечными продуктами их гидролиза являются глицерин, жирные кислоты, неорганический
    фосфат и один из остаточных спиртов (холин, этаноламин, инозит, серии).
    Гидролиз других пищевых фосфолипидов – сфингофосфатидов, а также гликолипидов менее изучен. Однако в стенке кишечника обнаружены ферменты
    сфингомиелиназа и церамидаза. Первый из них гидролизует связь, образованную фосфорной кислотой и сфингозином в сфингомиелинах, а второй – N-ацильную
    связь в молекуле церамида. Это ведет к освобождению сфингозина, жирной кислоты и фосфохолина.
    Гидролиз стеридов. Поступающие с пищей эфиры холестерина, которыми богаты некоторые продукты (желток яиц, сливочное масло, икра и т. д.),
    расщепляются в эмульсионной капле кишечного содержимого с помощью панкреатической холестеролэстеразы. Активируется фермент также желчными кислотами.
    После действия фермента образуются свободный холестерин и жирные кислоты. Продукты гидролиза всех пищевых липидов всасываются в кишечнике.

    Переваривание белков

    Протеолитические ферменты, участвующие в переваривании белков и пептидов, синтезируются и выделяются в полость пищеварительного тракта в виде
    проферментов, или зимогенов. Зимогены неактивны и не могут переваривать собственные белки клеток. Активируются протеолитические ферменты в просвете
    кишечника, где действуют на пищевые белки.
    В желудочном соке человека имеются два протеолитических фермента – пепсин и гастриксин, которые очень близки по строению, что указывает на образование
    их из общего предшественника.
    Пепсин образуется в виде профермента – пепсиногена – в главных клетках слизистой желудка. Выделено несколько близких по строению пепсиногенов, из
    которых образуется несколько разновидностей пепсина: пепсин I, II (IIa, IIb), III. Пепсиногены активируются с помощью соляной кислоты, выделяющейся
    обкладочными клетками желудка, и аутокаталитически, т. е. с помощью образовавшихся молекул пепсина.
    Пепсиноген имеет молекулярную массу 40 000. Его полипептидная цепь включает пепсин (мол. масса 34 000); фрагмент полипептидной цепи, являющийся
    ингибитором пепсина (мол. масса 3100), и остаточный (структурный) полипептид. Ингибитор пепсина обладает резко основными свойствами, так как состоит из
    8 остатков лизина и 4 остатков аргинина. Активация заключается в отщеплении от N-конца пепсиногена 42 аминокислотных остатков; сначала отщепляется
    остаточный полипептид, а затем ингибитор пепсина.

    Пепсин относится к карбоксипротеиназам, содержащим остатки дикарбоновых аминокислот в активном центре с оптимумом pH 1,5-2,5.
    Субстратом пепсина являются белки – либо нативные, либо денатурированные. Последние легче поддаются гидролизу. Денатурацию белков пищи обеспечивает
    кулинарная обработка или действие соляной кислоты. Следует отметить следующие биологические функции соляной кислоты:
    активация пепсиногена;
    создание оптимума pH для действия пепсина и гастриксина в желудочном соке;
    денатурация пищевых белков;
    антимикробное действие.
    От денатурирующего влияния соляной кислоты и переваривающего действия пепсина собственные белки стенок желудка предохраняет слизистый секрет,
    содержащий гликопротеиды.
    Пепсин, являясь эндопептидазой, быстро расщепляет в белках внутренние пептидные связи, образованные карбоксильными группами ароматических
    аминокислот – фенилаланина, тирозина и триптофана. Медленнее гидролизует фермент пептидные связи между лейцином и дикарбоновыми аминокислотами
    типа: в полипептидной цепи.
    Гастриксин близок к пепсину по молекулярной массе (31 500). Оптимум pH у него около 3,5. Гастриксин гидролизует пептидные связи, образуемые
    дикарбоновыми аминокислотами. Соотношение пепсин/гастриксин в желудочном соке 4:1. При язвенной болезни соотношение меняется в пользу гастриксина.
    Присутствие в желудке двух протеиназ, из которых пепсин действует в сильнокислой среде, а гастриксин в среднекислой, позволяет организму легче
    приспосабливаться к особенностям питания. Например, растительно-молочное питание частично нейтрализует кислую среду желудочного сока, и pH
    благоприятствует переваривающему действию не пепсина, а гастриксина. Последний расщепляет связи в пищевом белке.
    Пепсин и гастриксин гидролизуют белки до смеси полипептидов (называемых также альбумозами и пептонами). Глубина переваривания белков в желудке
    зависит от длительности нахождения в нем пищи. Обычно это небольшой период, поэтому основная масса белков расщепляется в кишечнике.

    Протеолитические ферменты кишечника. В кишечник протеолитические ферменты поступают из поджелудочной железы в виде проферментов: трипсиногена,
    химотрипсиногена, прокарбоксипептидаз А и В, проэластазы. Активирование этих ферментов происходит путем частичного протеолиза их полипептидной цепи,
    т. е. того фрагмента, который маскирует активный центр протеиназ. Ключевым процессом активирования всех проферментов является образование трипсина
    (рис. 1).
    Трипсиноген, поступающий из поджелудочной железы, активируется с помощью энтерокиназы, или энтеропептидазы, которая вырабатывается слизистой кишечника.
    Энтеропептидаза также выделяется в виде предшественника киназогена, который активируется протеазой желчи. Активированная энтеропептидаза быстро превращает
    трипсиноген в трипсин, трипсин осуществляет медленный аутокатализ и быстро активирует все остальные неактивные предшественники протеаз панкреатического
    сока.
    Механизм активирования трипсиногена заключается в гидролизе одной пептидной связи, в результате чего освобождается N-концевой гексапептид, называемый
    ингибитором трипсина. Далее трипсин, разрывая пептидные связи в остальных проферментах, вызывает образование активных ферментов. При этом образуются три
    разновидности химотрипсина, карбоксипептидазы А и В, эластаза.
    Кишечные протеиназы гидролизуют пептидные связи пищевых белков и полипептидов, образовавшихся после действия желудочных ферментов, до свободных
    аминокислот. Трипсин, химотрипсины, эластаза, будучи эндопептидазами, способствуют разрыву внутренних пептидных связей, дробя белки и полипептиды на
    более мелкие фрагменты.
    Трипсин гидролизует пептидные связи, образованные главным образом карбоксильными группами лизина и аргинина, менее активен он
    в отношении пептидных связей, образованных изолейцином.
    Химотрипсины наиболее активны в отношении пептидных связей, в образовании которых принимает участие тирозин, фенилаланин, триптофан. По специфичности
    действия химотрипсин похож на пепсин.
    Эластаза гидролизует те пептидные связи в полипептидах, где находится пролин.
    Карбоксипептидаза А относится к цинксодержащим ферментам. Она отщепляет от полипептидов С-концевые ароматические и алифатические аминокислоты, а
    карбоксипептидаза В – только С-концевые остатки лизина и аргинина.
    Ферменты, гидролизующие пептиды, имеются также и в слизистой кишечника, и хотя они могут секретироваться в просвет, но функционируют преимущественно
    внутриклеточно. Поэтому гидролиз небольших пептидов происходит после их поступления в клетки. Среди этих ферментов лейцинаминопептидаза, которая
    активируется цинком или марганцем, а также цистеином, и высвобождает N-концевые аминокислоты, а также дипептидазы, гидролизующие дипептиды на две
    аминокислоты. Дипептидазы активируются ионами кобальта, марганца и цистеином.
    Разнообразие протеолитических ферментов приводит к полному расщеплению белков до свободных аминокислот даже в том случае, если белки предварительно
    не подвергались действию пепсина в желудке. Поэтому больные после операции частичного или полного удаления желудка сохраняют способность усваивать белки
    пищи.

    Механизм переваривания сложных белков

    Белковая часть сложных белков переваривается так же, как и простых белков. Простетические группы их гидролизуются в зависимости от строения.
    Углеводный и липидный компоненты после отщепления их от белковой части гидролизуются амилолитическими и липолитическими ферментами. Порфириновая группа
    хромопротеидов не расщепляется.
    Представляет интерес процесс расщепления нуклеопротеидов, которыми богаты некоторые продукты питания. Нуклеиновый компонент отделяется от белка в
    кислой среде желудка. В кишечнике полинуклеотиды гидролизуются с помощью нуклеаз кишечника и поджелудочной железы.
    РНК и ДНК гидролизуются под действием панкреатических ферментов – рибонуклеазы (РНКазы) и дезоксирибонуклеазы (ДНКазы). Панкреатическая РНКаза имеет
    оптимум pH около 7,5. Она расщепляет внутренние межнуклеотидные связи в РНК. При этом образуются более короткие фрагменты полинуклеотида и циклические
    2,3-нуклеотиды. Циклические фосфодиэфирные связи гидролизуются той же РНКазой или кишечной фосфодиэстеразой. Панкреатическая ДНКаза гидролизует
    межнуклеотидные связи в ДНК, поступающей с пищей.
    Продукты гидролиза полинуклеотидов – мононуклеотиды подвергаются действию ферментов кишечной стенки: нуклеотидазы и нуклеозидазы:

    Эти ферменты обладают относительной групповой специфичностью и гидролизуют как рибонуклеотиды и рибонуклеозиды, так и дезоксирибонуклеотиды и
    дезоксирибонуклеозиды. Всасываются нуклеозиды, азотистые основания, рибоза или дезоксирибоза, Н3РO4.

    Регуляция пищеварения

    Переваривание компонентов пищи регулируется системой гормоноподобных веществ, образующихся в клетках пищеварительного тракта. Характеристика их дана
    в табл. 26. Химическое строение большинства из них неизучено. Известно, что гистамин является продуктом декарбоксилирования гистидина, а гастрин,
    секретин и холецистокинин, выделенные в очищенном виде, относятся к полипептидам. Остальные регуляторы пищеварения, очевидно, тоже пептиды, но они не
    получены в чистом виде и названы по вызываемому ими эффекту.
    Выделение регуляторов происходит под действием пищи и определяется ее составом. При поступлении пищи в желудок выделяются гистамин и гастрин,
    которые обеспечивают секрецию соляной кислоты и пепсина, переваривающих белки. Переход желудочного содержимого в двенадцатиперстную кишку служит
    сигналом к выделению энтерогастрона, который, выделяясь в кровь, тормозит секрецию желудочного сока.
    Таблица 26. Регуляторы пищеварения и их характеристика
    РегуляторМесто образования
    Место действияЭффект
    ГистаминСлизистая желудкаОбкладочные и главные клетки слизистой желудкаСтимулирует выделение соляной кислоты и в меньшей степени пепсиногена в желудке
    ГастринСлизистая желудкаОбкладочные и главные клетки слизистой желудкаСтимулирует выделение соляной кислоты и пепсиногена в желудке
    ЭнтерогастронСлизистая двенадцатиперстной кишкиКлетки слизистой желудкаТормозит секрецию соляной кислоты и пепсиногена в желудке
    СекретинСлизистая тонкого кишечникаПоджелудочная железа и печеньСтимулирует выделение жидкой части панкреатического сока, богатого водой, гидрокарбонатами, но не ферментами. Кроме того, стимулирует желчеобразование в печени
    Холецистокинин-панкреозиминСлизистая кишечникаПоджелудочная железа и желчный пузырьСтимулирует выделение панкреатического сока, богатого ферментами, и сокращение желчного пузыря
    ХимоденинСлизистая кишечникаПоджелудочная железаСтимулирует секрецию белков и особенно резко химотрипсиногена поджелудочной железой. В отличие от панкреозимина не стимулирует выделение других, кроме химотрипсиногена, ферментов
    ЭнтерокрининСлизистая кишечникаСлизистая кишечникаСтимулирует секрецию желез кишечника
    ВилликининСлизистая кишечникаВорсинки слизистой кишечникаСтимулирует движение ворсинок кишечника и тем самым продвижение пищи
    Поступление пищи в кишечник способствует выделению комплекса регуляторов (секретин, холецистокинин-панкреозимин, химоденин и энтерокринин), которые
    обеспечивают быстрое выделение панкреатического и кишечного соков для переваривания пищи. Нарушение секреции регуляторов вызывает дисгармонию процессов
    переваривания пищи.

    Продолжение: Биохимия пищеварения (всасывание питательных веществ)

  2. кромпель Ответить

    Основной физический процесс во время пищеварения – измельчение пищевой массы, которое происходит как при жевании, так и в результате ритмических сокращений желудка и кишечника. Такие физические воздействия способствуют растворению пищи и тщательному перемешиванию ее частиц с пищеварительными соками, которые выделяются во рту, желудке и кишечнике. Кроме того, сокращения стенок желудочно-кишечного тракта в сочетании с периодическим открытием и закрытием кишечных клапанов обеспечивают постепенное, небольшими порциями, продвижение пищевого комка из одного отдела тракта в другой. Все движения кишечника (перистальтика) регулируются вегетативной нервной системой и главным образом ее внутрикишечным отделом, называемым иногда «кишечным мозгом».

    Химические реакции.

    Основной химической реакцией, приводящей к распаду углеводов, белков и жиров, является гидролиз, осуществляемый набором гидролитических ферментов. В процессе гидролиза питательные вещества, присоединяя фрагменты молекулы воды, расщепляются на мелкие растворимые звенья, которые могут усваиваться организмом. Благодаря действию специфических ферментов, содержащихся в пищеварительных соках, гидролиз протекает очень быстро. См. также ФЕРМЕНТЫ.

    ПРОЦЕССЫ ПИЩЕВАРЕНИЯ

    Пищеварение в полости рта.

    Попав в рот, пища в ходе пережевывания смешивается с имеющей щелочную реакцию слюной, которая и начинает процесс пищеварения; слюна обеспечивает тесный контакт пищевых частиц с содержащимся в ней ферментом птиалином, растворяет некоторые легко растворимые вещества, размягчает более плотные частицы и покрывает пищевой комок слизью, облегчающей глотание. Действие птиалина (слюнной амилазы) на крахмал, прошедший тепловую обработку, или на декстрин начинает химическую стадию пищеварения. При этом часть крахмала превращается в декстрин, а часть декстрина – в мальтозу. Количество и состав слюны, а также в какой-то мере и степень переваривания пищи на данном этапе зависят от стимуляции слюнных желез. Уже сама мысль о пище вызывает психогенное слюноотделение, а присутствие пищи во рту рефлекторно активирует секрецию слюны, а также удлиняет время ее выделения. При приеме сухой пищи выделяется изобилующая слизью (муцином) слюна, а богатая углеводами пища стимулирует секреторную активность околоушных желез, в слюне которой особенно много ферментов. Поскольку пища обычно недолго остается во рту, здесь пищеварение лишь начинается, а пищеварительный эффект слюны проявляется в основном в желудке.

    Пищеварение в желудке.

    После кратковременного пребывания во рту полужидкая пищевая масса, благодаря перистальтическим движениям пищевода, попадает в желудок. Здесь действие слюны продолжается до тех пор, пока кислота желудочного сока не пропитает пищевую массу и не разрушит амилазу слюны. При обычной смешанной пище это может занять до 30 минут. Время пропитывания пищи желудочным соком зависит от характера и размеров пищевого комка и активности желудочной секреции.
    По мере проникновения желудочного сока в пищевую массу начинается желудочная фаза пищеварения, в течение которой происходит главным образом протеолиз (расщепление белка). В ходе этого процесса фермент пепсин с помощью соляной кислоты, которая тоже присутствует в желудочном соке, превращает большое количество белков в альбумозы и пептоны. Точно так же действует фермент реннин (химозин), который содержится в желудочном соке маленьких детей; он расщепляет молочный белок казеин, вызывая створаживание молока. В желудке может начаться и частичное переваривание жира, поскольку в нормальном желудочном соке присутствует небольшое количество липазы. Липаза гидролизует нейтральные жиры с образованием глицерина и жирных кислот.
    Желудочные ферменты пепсин и реннин непрерывно секретируются многочисленными главными, или зимогенными, клетками слизистой оболочки желудка в виде предшественников – пепсиногена и прореннина. Последние превращаются в активные ферменты под действием соляной кислоты, которую выделяют обкладочные (париетальные) клетки, расположенные в области дна желудка. Их секреторную активность повышает гормон гастрин, выделяемый желудочными стенками (вероятно, при их механическом раздражении пищей или какими-то ее составными частями) и поступающий в кровь. Небольшое количество кислого секрета, т.н. «запальный сок», выделяется в результате психической стимуляции. Смесь продуктов всех клеток желудочных стенок составляет желудочный сок. Под влиянием соляной кислоты неактивные предшественники пищеварительных ферментов превращаются в активные формы.
    Совместное действие ферментов и кислоты желудочного сока растворяет большинство содержащихся в пище веществ. Это относится в первую очередь к белковым соединениям, с которыми соляная кислота легко образует растворимые соли. Соляная кислота разрушает также основную массу бактерий, попадающих в желудок с пищей, и тем самым предотвращает или тормозит процессы гниения.
    Продолжительность пребывания пищи в желудке зависит от ее состава. Твердая пища, содержащая большое количество белка, сильнее стимулирует секрецию желудочного сока и дольше остается в желудке, чем более жидкая пища, содержащая меньше белка. Жир остается в желудке относительно долго, а углеводы быстро проходят через него. На конечной стадии желудочного пищеварения кислая жидкая масса (химус) под действием перистальтических сокращений желудочно-кишечного тракта перемещается в тонкий кишечник. См. также ЖЕЛУДОК.

    Пищеварение в кишечнике.

    Поступающие в кишечник продукты желудочного пищеварения смешиваются с секретом кишечных стенок и двумя щелочными жидкостями – соком поджелудочной железы (панкреатическим соком) и желчью, которые выделяются в кишечник в области сфинктера привратника, отделяющего желудок от тонкого кишечника. Эти щелочные жидкости нейтрализуют поступившую из желудка кислую массу, приводя к окончанию желудочной фазы пищеварения. Одновременно под влиянием ферментов панкреатического и кишечного сока начинается последняя стадия процесса пищеварения. Секрет поджелудочной железы содержит высокоактивные ферменты – амилазу, протеазы (трипсин и химотрипсин) и липазу, которые расщепляют крахмал, белки и жиры, уцелевшие после слюнной и желудочной фаз пищеварения. В кишечном соке присутствуют ферменты, разрушающие промежуточные продукты расщепления белков и крахмала, а также некоторые меньшие молекулы питательных веществ.
    Панкреатическая амилаза (амилопсин) превращает сырой крахмал, не разрушенный амилазой слюны, и все остатки прошедшего тепловую обработку крахмала в декстрин, а декстрин в мальтозу. Панкреатическая липаза гидролизует нейтральные жиры с образованием глицерина и жирных кислот. Важная роль в этой реакции принадлежит щелочным секретам и присутствующим в желчи желчным солям: изменяя поверхностное натяжение и усиливая перистальтику, они эмульгируют жир (разбивают на множество микрокапель), что значительно увеличивает поверхность, на которую может действовать липаза. Панкреатические протеазы, трипсин и химотрипсин, действуют подобно пепсину, превращая все не расщепленные желудочным соком белки (обычно это 50–70% от общего количества белков пищи) в альбумозы и пептоны. Эти промежуточные продукты расщепления белков подвергаются затем действию смеси кишечных ферментов (аминопептидаз и дипептидаз) и превращаются в полипептиды, дипептиды и, наконец, в отдельные аминокислоты. (Раньше полагали, что в данном случае действует только один кишечный фермент и называли эту смесь пептидаз эрепсином.) Кишечные ферменты мальтаза, сахараза и лактаза гидролизуют соответствующие дисахариды (мальтозу, сахарозу и лактозу) до составляющих их моносахаридов.
    В кишечном соке присутствует также и ряд других ферментов, которые расщепляют поступающие в малом количестве компоненты пищи, например нуклеиновые кислоты, гексозофосфаты и лецитин. К таким ферментам относятся соответственно поли- и мононуклеотидазы, фосфатаза и лецитиназа. Непищеварительный фермент кишечного сока – энтерокиназа – является специфическим активатором трипсиногена (предшественника протеолитического фермента трипсина).
    Ферменты, содержащиеся в кишечном соке, в еще большей концентрации присутствуют на поверхности слизистой оболочки кишки. Поэтому часть реакций, которые раньше считались происходящими в просвете кишечника, на самом деле может протекать на кишечной стенке (пристеночное пищеварение). Секреция панкреатического сока и желчи (но не кишечного сока) находится под своеобразным гормональным контролем, особенность которого состоит в том, что гормонально-активные вещества секретируются в кровь не железами, а отдельными эндокринными клетками слизистой кишечника. Выделение этих гормонов происходит, по-видимому, под влиянием кислот, в частности свободных жирных кислот химуса, при его поступлении из желудка в кишечник. Полипептидный гормон секретин стимулирует выработку жидкой части панкреатического сока (а именно секрецию воды и солей, в особенности бикарбонатов); другой гормон, панкреозимин, усиливает выделение ферментов этого сока; третий, холецистокинин, вызывает обильное желчеотделение.
    В результате трех стадий пищеварения происходит гидролиз почти всех поглощенных питательных веществ с образованием более простых молекул. Наряду с витаминами, минеральными веществами и немногими не требующими переваривания питательными веществами, эти простые молекулы быстро всасываются через слизистую оболочку кишечника (см. также МЕТАБОЛИЗМ), и кровь переносит их в клетки различных тканей. В толстый кишечник попадают отходы пищеварения, которые выводятся из организма через задний проход. См. также АНАТОМИЯ ЧЕЛОВЕКА.

  3. Doshura Ответить

    Пищеварительная система человека:
    ротовая полость
    глотка
    пищевод
    желудок
    тонкий кишечник (начинается с двенадцатиперстной кишки)
    толстый кишечник (начинается со слепой кишки, заканчивается прямой кишкой)
    Переваривание питательных веществ происходит с помощью ферментов:
    амилаза (в слюне, поджелудочном и кишечном соке) переваривает крахмал до глюкозы
    липаза (в желудочном, поджелудочном и кишечном соке) переваривает жиры до глицерина и жирных кислот
    пепсин – (в желудочном соке) переваривает белки до аминокислот в кислой среде
    трипсин – (в поджелудочном и кишечном соке) переваривает белки до аминокислот в щелочной среде
    Печень
    выделяет желчь, которая не содержит ферментов, зато эмульгирует жиры (разбивает их на мелкие капельки), а так же стимулирует работу ферментов, перистальтику кишечника и подавляет гнилостные бактерии
    выполняет барьерную функцию (очищает кровь от вредных веществ, полученных в процессе пищеварения).
    В ротовой полости выделяется слюна, содержащая амилазу.
    В желудке – желудочный сок, содержащий пепсин и липазу.
    В тонкую кишку выделяются кишечный сок, поджелудочный сок (оба содержат амилазу, липазу, трипсин), а также желчь. В тонкой кишке завершается пищеварение (происходит окончательное переваривание веществ за счёт пристеночного пищеварения) и происходит всасывание продуктов пищеварения. Чтобы увеличить поверхность всасывания, тонкая кишка изнутри покрыта ворсинками. Аминокислоты и глюкоза всасываются в кровь, глицерин и жирные кислоты – в лимфу.
    В толстом кишечнике происходит всасывание воды, а также живут бактерии (например, кишечная палочка). Бактерии питаются растительной клетчаткой (целлюлозой), поставляют человеку витамины Е и К, а так же не дают размножаться в кишечнике другим, более опасным бактериям.

  4. Kenrad Ответить

    Физические процессы. Основной физический процесс во время пищеварения ? измельчение пищевой массы, которое происходит как при жевании, так и в результате ритмических сокращений желудка и кишечника. Такие физические воздействия способствуют растворению пищи и тщательному перемешиванию ее частиц с пищеварительными соками, которые выделяются во рту, желудке и кишечнике. Кроме того, сокращения стенок желудочно-кишечного тракта в сочетании с периодическим открытием и закрытием кишечных клапанов обеспечивают постепенное, небольшими порциями, продвижение пищевого комка из одного отдела тракта в другой. Все движения кишечника (перистальтика) регулируются вегетативной нервной системой и главным образом ее внутрикишечным отделом, называемым иногда «кишечным мозгом».Химические реакции. Основной химической реакцией, приводящей к распаду углеводов, белков и жиров, является гидролиз, осуществляемый набором гидролитических ферментов. В процессе гидролиза питательные вещества, присоединяя фрагменты молекулы воды, расщепляются на мелкие растворимые звенья, которые могут усваиваться организмом. Благодаря действию специфических ферментов, содержащихся в пищеварительных соках, гидролиз протекает очень быстро. См. также ФЕРМЕНТЫ.ПРОЦЕССЫ ПИЩЕВАРЕНИЯ Пищеварение в полости рта. Попав в рот, пища в ходе пережевывания смешивается с имеющей щелочную реакцию слюной, которая и начинает процесс пищеварения; слюна обеспечивает тесный контакт пищевых частиц с содержащимся в ней ферментом птиалином, растворяет некоторые легко растворимые вещества, размягчает более плотные частицы и покрывает пищевой комок слизью, облегчающей глотание. Действие птиалина (слюнной амилазы) на крахмал, прошедший тепловую обработку, или на декстрин начинает химическую стадию пищеварения. При этом часть крахмала превращается в декстрин, а часть декстрина ? в мальтозу. Количество и состав слюны, а также в какой-то мере и степень переваривания пищи на данном этапе зависят от стимуляции слюнных желез. Уже сама мысль о пище вызывает психогенное слюноотделение, а присутствие пищи во рту рефлекторно активирует секрецию слюны, а также удлиняет время ее выделения. При приеме сухой пищи выделяется изобилующая слизью (муцином) слюна, а богатая углеводами пища стимулирует секреторную активность околоушных желез, в слюне которой особенно много ферментов. Поскольку пища обычно недолго остается во рту, здесь пищеварение лишь начинается, а пищеварительный эффект слюны проявляется в основном в желудке.Пищеварение в желудке. После кратковременного пребывания во рту полужидкая пищевая масса, благодаря перистальтическим движениям пищевода, попадает в желудок. Здесь действие слюны продолжается до тех пор, пока кислота желудочного сока не пропитает пищевую массу и не разрушит амилазу слюны. При обычной смешанной пище это может занять до 30 минут. Время пропитывания пищи желудочным соком зависит от характера и размеров пищевого комка и активности желудочной секреции. По мере проникновения желудочного сока в пищевую массу начинается желудочная фаза пищеварения, в течение которой происходит главным образом протеолиз (расщепление белка). В ходе этого процесса фермент пепсин с помощью соляной кислоты, которая тоже присутствует в желудочном соке, превращает большое количество белков в альбумозы и пептоны. Точно так же действует фермент реннин (химозин), который содержится в желудочном соке маленьких детей; он расщепляет молочный белок казеин, вызывая створаживание молока. В желудке может начаться и частичное переваривание жира, поскольку в нормальном желудочном соке присутствует небольшое количество липазы. Липаза гидролизует нейтральные жиры с образованием глицерина и жирных кислот.Желудочные ферменты пепсин и реннин непрерывно секретируются многочисленными главными, или зимогенными, клетками слизистой оболочки желудка в виде предшественников ? пепсиногена и прореннина. Последние превращаются в активные ферменты под действием соляной кислоты, которую выделяют обкладочные (париетальные) клетки, расположенные в области дна желудка. Их секреторную активность повышает гормон гастрин, выделяемый желудочными стенками (вероятно, при их механическом раздражении пищей или какими-то ее составными частями) и поступающий в кровь. Небольшое количество кислого секрета, т.н. «запальный сок», выделяется в результате психической стимуляции. Смесь продуктов всех клеток желудочных стенок составляет желудочный сок. Под влиянием соляной кислоты неактивные предшественники пищеварительных ферментов превращаются в активные формы.Совместное действие ферментов и кислоты желудочного сока растворяет большинство содержащихся в пище веществ. Это относится в первую очередь к белковым соединениям, с которыми соляная кислота легко образует растворимые соли. Соляная кислота разрушает также основную массу бактерий, попадающих в желудок с пищей, и тем самым предотвращает или тормозит процессы гниения. Продолжительность пребывания пищи в желудке зависит от ее состава. Твердая пища, содержащая большое количество белка, сильнее стимулирует секрецию желудочного сока и дольше остается в желудке, чем более жидкая пища, содержащая меньше белка. Жир остается в желудке относительно долго, а углеводы быстро проходят через него. На конечной стадии желудочного пищеварения кислая жидкая масса (химус) под действием перистальтических сокращений желудочно-кишечного тракта перемещается в тонкий кишечник. См. также ЖЕЛУДОК.Пищеварение в кишечнике. Поступающие в кишечник продукты желудочного пищеварения смешиваются с секретом кишечных стенок и двумя щелочными жидкостями ? соком поджелудочной железы (панкреатическим соком) и желчью, которые выделяются в кишечник в области сфинктера привратника, отделяющего желудок от тонкого кишечника. Эти щелочные жидкости нейтрализуют поступившую из желудка кислую массу, приводя к окончанию желудочной фазы пищеварения. Одновременно под влиянием ферментов панкреатического и кишечного сока начинается последняя стадия процесса пищеварения. Секрет поджелудочной железы содержит высокоактивные ферменты ? амилазу, протеазы (трипсин и химотрипсин) и липазу, которые расщепляют крахмал, белки и жиры, уцелевшие после слюнной и желудочной фаз пищеварения. В кишечном соке присутствуют ферменты, разрушающие промежуточные продукты расщепления белков и крахмала, а также некоторые меньшие молекулы питательных веществ. Панкреатическая амилаза (амилопсин) превращает сырой крахмал, не разрушенный амилазой слюны, и все остатки прошедшего тепловую обработку крахмала в декстрин, а декстрин в мальтозу. Панкреатическая липаза гидролизует нейтральные жиры с образованием глицерина и жирных кислот. Важная роль в этой реакции принадлежит щелочным секретам и присутствующим в желчи желчным солям: изменяя поверхностное натяжение и усиливая перистальтику, они эмульгируют жир (разбивают на множество микрокапель), что значительно увеличивает поверхность, на которую может действовать липаза. Панкреатические протеазы, трипсин и химотрипсин, действуют подобно пепсину, превращая все не расщепленные желудочным соком белки (обычно это 50?70% от общего количества белков пищи) в альбумозы и пептоны. Эти промежуточные продукты расщепления белков подвергаются затем действию смеси кишечных ферментов (аминопептидаз и дипептидаз) и превращаются в полипептиды, дипептиды и, наконец, в отдельные аминокислоты. (Раньше полагали, что в данном случае действует только один кишечный фермент и называли эту смесь пептидаз эрепсином.) Кишечные ферменты мальтаза, сахараза и лактаза гидролизуют соответствующие дисахариды (мальтозу, сахарозу и лактозу) до составляющих их моносахаридов.В кишечном соке присутствует также и ряд других ферментов, которые расщепляют поступающие в малом количестве компоненты пищи, например нуклеиновые кислоты, гексозофосфаты и лецитин. К таким ферментам относятся соответственно поли- и мононуклеотидазы, фосфатаза и лецитиназа. Непищеварительный фермент кишечного сока ? энтерокиназа ? является специфическим активатором трипсиногена (предшественника протеолитического фермента трипсина).Ферменты, содержащиеся в кишечном соке, в еще большей концентрации присутствуют на поверхности слизистой оболочки кишки. Поэтому часть реакций, которые раньше считались происходящими в просвете кишечника, на самом деле может протекать на кишечной стенке (пристеночное пищеварение). Секреция панкреатического сока и желчи (но не кишечного сока) находится под своеобразным гормональным контролем, особенность которого состоит в том, что гормонально-активные вещества секретируются в кровь не железами, а отдельными эндокринными клетками слизистой кишечника. Выделение этих гормонов происходит, по-видимому, под влиянием кислот, в частности свободных жирных кислот химуса, при его поступлении из желудка в кишечник. Полипептидный гормон секретин стимулирует выработку жидкой части панкреатического сока (а именно секрецию воды и солей, в особенности бикарбонатов); другой гормон, панкреозимин, усиливает выделение ферментов этого сока; третий, холецистокинин, вызывает обильное желчеотделение.В результате трех стадий пищеварения происходит гидролиз почти всех поглощенных питательных веществ с образованием более простых молекул. Наряду с витаминами, минеральными веществами и немногими не требующими переваривания питательными веществами, эти простые молекулы быстро всасываются через слизистую оболочку кишечника (см. также МЕТАБОЛИЗМ), и кровь переносит их в клетки различных тканей. В толстый кишечник попадают отходы пищеварения, которые выводятся из организма через задний проход. См. также АНАТОМИЯ ЧЕЛОВЕКА.
    ПИЩЕВАРИТЕЛЬНЫЙ ТРАКТ ЧЕЛОВЕКА
    ЛИТЕРАТУРАГрин Н., Стаут У., Тейлор Д. Биология, т. 2, М., 1996
    Физиология человека, под ред. Шмидта Р., Тевса Г., т. 3, М., 1996

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *