Какое огнетушащее вещество используют в установках газового пожаротушения?

12 ответов на вопрос “Какое огнетушащее вещество используют в установках газового пожаротушения?”

  1. Renashi Ответить


    Главная > Статьи > Пожаротушение
    Начальник проектного отдела ООО «Технос-М+» Синельников С.А.
    В последнее время в системах противопожарной безопасности небольших объектов подлежащих защите системами автоматического пожаротушения всё большее распространение получают автоматические установки газового пожаротушения.
    Их преимущество заключается в относительно безопасных для человека огнетушащих составах, полном отсутствии ущерба защищаемому объекту при срабатывании системы, многократном использовании оборудования и тушении очага возгорания в труднодоступных местах.
    При проектировании установок наиболее часто возникают вопросы по выбору огнетушащих газов и гидравлическом расчёте установки.
    В данной статье мы попытаемся раскрыть некоторые аспекты проблемы выбора огнетушащего газа. Все наиболее часто применяемые в современных установках газового пожаротушения газовые огнетушащие составы можно условно разделить на три основные группы. Это вещества хладонового ряда, диоксид углерода, широко известный, как углекислота (СО2) и инертные газы и их смеси.
    В соответствии с НПБ 88-2001* все эти газовые огнетушащие вещества применяются в установках пожаротушения для тушения пожаров класса А, В, С по ГОСТ 27331 и электрооборудования с напряжением не выше указанного в технической документации на применяемые ГОТВ.
    Газовые ОТВ применяются преимущественно для объёмного пожаротушения в начальной стадии пожара по ГОСТ 12.1.004-91. Также ГОТВ используются для флегматизации взрывоопасной среды в нефте-химической, химической и др. отраслях.
    ГОТВ не электропроводны, легко испаряются, не оставляют следов на оборудовании защищаемого объекта, кроме того, важным достоинством ГОТВ является их пригодность для тушения дорогостоящих электрических установок, находящихся под напряжением.
    Запрещается применение ГОТВ для тушения:
    а)волокнистых, сыпучих и пористых материалов, способных к самовозгоранию с последующим тлением слоя внутри объема вещества (древесные опилки, ветошь в тюках, хлопок, травяная мука и т.п.
    );б) химических веществ и их смесей, полимерных материалов, склонных к тлению и горению без доступа воздуха (нитроцеллюлоза, порох и др.);в) химически активных металлов (натрия, калия, магния, титана, циркония, урана, плутония и т. д.
    );г) химикатов, способных подвергаться аутермическому распаду (органических перекисей и гидразина);д) гидридов металлов;е) пирофорных материалов (белого фосфора, металлоорганических соединений);
    ж) окислителей (оксидов азота, фтора)
    Запрещается тушение пожаров класса С, если при этом возможно выделение или поступление в защищаемый объем горючих газов с последующим образованием взрывоопасной атмосферы.
    В случае применения ГОТВ для противопожарной защиты электроустановок следует учитывать диэлектрические свойства газов: диэлектрическая проницаемость, электропроводность, электрическая прочность.
    Как правило, предельное напряжение, при котором можно осуществлять тушение без отключения электроустановок всеми ГОТВ, составляет не более 1 кВ. Для тушения электроустановок с напряжением до 10 кВ можно использовать только СО2 высшего сорта по ГОСТ 8050.
    В зависимости от механизма тушения газовые огнетушащие составы подразделяются на две квалификационные группировки:- инертные разбавители, снижающие содержание кислорода в зоне горения и образующие в ней инертную среду (инертные газы – двуокись углерода, азот, гелий и аргон (виды 211451, 211412, 027141, 211481);
    — ингибиторы, тормозящие процесс горения (галоидоуглеводороды и их смеси с инертными газами – хладоны)
    В зависимости от агрегатного состояния газовые огнетушащие составы в условиях хранения подразделяются на две классификационные группировки: газообразные и жидкие (жидкости и/или сжиженные газы и растворы газов в жидкостях).
    Основными критериями для выбора газового огнетушащего вещества являются:
    — Безопасность людей;- Технико-экономические показатели;- Сохранение оборудования и материалов;- Ограничение по применению;- Воздействие на окружающую среду;
    — Возможность удаления ГОТВ после применения.
    Предпочтительно применять газы, которые:
    — обладают приемлемой токсичностью в используемых огнетушащих концентрациях (пригодны для дыхания и позволяют эвакуировать персонал даже при подаче газа);- термически стойки (образуют минимальное количество продуктов терморазложения, которые являются коррозионноактивными, раздражающими слизистую оболочку и ядовитыми при вдыхании);- наиболее эффективны при пожаротушении (защищают максимальный объем при подаче из модуля, который наполнен газом до максимального значения);- экономичны (обеспечивают минимальные удельные финансовые затраты);- экологичны (не оказывают разрушающего действия на озоновый слой Земли и не способствуют созданию парникового эффекта);
    — обеспечивают универсальные методы наполнения модулей, хранения и транспортировки и перезаправки.
    Наиболее эффективными при тушении пожара являются химические газы-хладоны. Физико-химический процесс их действия основан на двух факторах: химическом ингибировании процесса реакции окисления и снижении концентрации окислителя (кислорода) в зоне окисления.
    Несомненными преимуществами обладает Хладон 125. По данным НПБ 88-2001* нормативная огнетушащая концентрация Хладона 125 для пожаров класса А2 составляет 9,8 % об. Такая концентрация Хладона 125 может быть повышена до 11,5 % об.
    , при этом, атмосфера пригодна для дыхания в течении 5 минут.
    Если ранжировать ГОТВ по токсичности при массивной утечке, то наименее опасны сжатые газы, так как диоксид углерода обеспечивает защиту человека от гипоксии.
    Используемые в системах хладоны (по НПБ 88-2001*) малотоксичны и не проявляют выраженной картины интоксикации.
    По токсикокинетике хладоны анологичны инертным газам. Лишь при длительном ингаляционном воздействии низких концентраций хладоны могут оказывать неблагоприятное влияние на сердечно-сосудистую, центральную нервную системы, лёгкие.
    При ингаляционном воздействии высоких концентраций хладонов развивается кислородное голодание.
    Ниже приведена таблица с временными значениями безопасного пребывания человека в среде наиболее часто употребляемых в нашей стране марок хладонов при различной концентрации.
    Использование хладонов при тушении пожаров практически безопасно, так как огнетушащие концентрации по хладонам на порядок меньше смертельных концентраций при длительности воздействия до 4 часов.
    Термическому разложению подвергается примерно 5% массы хладона, поданного на тушение пожара, поэтому токсичность среды, образующейся при тушении пожара хладонами, будет намного ниже токсичности продуктов пиролиза и разложения.
    Хладон 125 относится к озонобезопасным. Кроме того, обладает максимальной термической стабильностью по сравнению с другими хладонами, температура терморазложения его молекул составляет более 900°С.
    Высокая термическая стабильность Хладона 125 позволяет применять его для тушения пожаров тлеющих материалов, т.к. при температуре тления (обычно около 450°С) терморазложение практически не происходит.
    Хладон 227еа не менее безопасен, чем хладон 125. Но их экономические показатели в составе установки пожаротушения уступает хладону 125, а эффективность (защищаемый объем из аналогичного модуля отличается незначительно). Уступает он хладону 125 и по термической стабильности.

  2. VideoAnswer Ответить

  3. VideoAnswer Ответить

  4. VideoAnswer Ответить

  5. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *