В чем смысл световой фазы фотосинтеза темновой фазы?

7 ответов на вопрос “В чем смысл световой фазы фотосинтеза темновой фазы?”

  1. trrrr34 Ответить


    Начало

    Поиск по сайту

    ТОПы

    Учебные заведения

    Предметы

    Проверочные работы

    Обновления

    Новости

    Переменка
    Отправить отзыв

  2. MAY82 Ответить

    Фотосистема 1 отдает электрон на акцептор ферредоксин. Отсюда он поступает в последний компонент цепи НАДФ-редуктазу. Здесь образуется в световую фазу фотосинтеза вещество НАДФН. Недостачу электронов фотосистема 1  восполняет за счет электронов, приходящих от фотосистемы 2.

    Особое значение в электрон-транспортной цепи имеет комплекс цитохромов b6-f. Электроны, проходя через этот комплекс, многократно взаимодействуют с акцептором пластохиноном. При этом комплекс цитохромов увеличивает количество, не только электронов, но также и протонов, что повышает эффективность световой стадии.

    Продукты световой стадии

    При прохождении этапа световой фазы фотосинтеза образуются следующие продукты, необходимые для синтеза органики в дальнейших темновых реакциях: АТФ и НАДФН. АТФ – источник биохимической энергии. Эта молекула синтезируется из АДФ при поглощении энергии движущегося протона.
    Формулу синтеза АТФ во время световой фазы фотосинтеза можно представить в следующем формуле:
    АДФ + ортофосфорная кислота + энергия → АТФ + Н2О
    Синтезированный АТФ может участвовать во всех химических реакциях, для прохождения которых необходима энергия. При взаимодействии с водой происходит обратная реакция с выделением энергии.
    АТФ вновь расщепляется на АДФ и ортофосфорную кислоту:
    АТФ + H2O → АДФ + ортофосфорная кислота + энергия
    Для образования органических веществ при фотосинтезе такая энергетическая составляющая крайне необходима, так как синтез органики требует поглощения большого количества энергии. НАДФН – восстановленный фермент, который является источником водорода. Он используется в химических процессах темновой фазы, где отдает водород и превращается в фермент НАДФ.

  3. valeronm Ответить

    Значение фотосинтеза для жизни на Земле

    И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.
    Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.
    Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.
    Подробнее о «великой кислородной революции» можно прочитать в учебнике «Биология 10-11 классы» под редакцией А.А. Каменского на портале LECTA.
    К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

    Определение и формула фотосинтеза

    Определение и формула фотосинтеза
    Слово фотосинтез состоит из двух частей: фото — «свет» и синтез — «соединение», «создание». Если подходить к определению упрощенно, то фотосинтез — это превращение энергии света в энергию сложных химических связей органических веществ при участии фотосинтетических пигментов. У зеленых растений фотосинтез происходит в хлоропластах.
    Схема фотосинтеза, на первый взгляд, проста:
    Вода + квант света + углекислый газ → кислород + углевод
    или (на языке формул):
    6СО2 + 6Н2О → С6Н12О6 + 6О2
    Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

    Фазы фотосинтеза

    К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.
    Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:
    две мембраны;
    стопки гранов;
    диски тилакоидов;
    строма — внутреннее вещество хлоропласта;
    люмен — внутреннее вещество тилакоида.
    Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.
    Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

    Световая фаза фотосинтеза

    Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.
    Н2О → Н+ + ОН-
    Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.
    Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.
    Гидроксильные ионы идут на производство кислорода:
    4ОН → О2 + 2Н2О
    Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.
    Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.
    На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.
    Повторим ключевые процессы световой фазы фотосинтеза:
    Фотон попадает на хлорофилл с выделением электронов.
    Фотолиз воды.
    Выделение кислорода.
    Накопление НАДФН+.
    Накопление АТФ.
    У некоторых растений фотосинтез идет по упрощенному варианту, который называется «циклическое фосфорилирование» и разбирается этот процесс в учебнике «Биология 10-11 классы» под редакцией А. А. Каменского на портале LECTA.

  4. ficus201860 Ответить

    Основные процессы в световой фазе фотосинтеза происходят в мембранах тилакоидов. В ней участвуют хлорофилл, белки-переносчики электронов, АТФ-синтетаза (фермент, ускоряющий реацию) и солнечный свет.
    Далее механизм реакции можно описать так: когда солнечный свет попадает на зеленые листья растений, в их структуре возбуждаются электроны хлорофилла (заряд отрицательный), которые перейдя в активное состояние, покидают молекулу пигмента и оказываются на внешней стороне тилакоида, мембрана которого заряжена также отрицательно. В то же время молекулы хлорофилла окисляются и уже окисленные они восстанавливаются, отбирая таким образом электроны у воды, которая находится в структуре листа.
    Этот процесс приводит к тому, что молекулы воды распадаются, а созданные в результате фотолиза воды ионы, отдают свои электроны и превращаются в такие радикалы ОН, которые способны проводить дальнейшие реакции. Далее эти реакционноспособные радикалы ОН объединяются, создавая полноценные молекулы воды и кислород. При этом свободный кислород выходит во внешнюю среду.
    В результате всех этих реакций и превращений, мембрана тилакоида листа с одной стороны заряжается положительно (за счет иона Н+), а с другой — отрицательно (за счет электронов). Когда разность между этими зарядами в двух сторонах мембраны достигает больше 200 мВ, протоны проходят через специальные каналы фермента АТФ-синтетазы и за счет этого происходит превращение АДФ до АТФ (в результате процесса фосфорилизации). А атомный водород, который освобождается из воды, восстанавливает специфический переносчик НАДФ+ до НАДФ·Н2. Как видим, в результате световой фазы фотосинтеза происходит три основных процесса:
    синтез АТФ;
    создание НАДФ·Н2;
    образование свободного кислорода.
    Последний освобождается в атмосферу, а НАДФ·Н2 и АТФ берут участие в темной фазе фотосинтеза.

    Темная фаза фотосинтеза

    Темная и световая фазы фотосинтеза характеризуются большими затратами энергии со стороны растения, однако темная фаза протекает быстрее и требует меньше энергии. Для реакций темной фазы не нужен солнечный свет, поэтому они могут происходить и днем и ночью.
    Все основные процессы этой фазы протекают в строме хлоропласта растения и являют собой своеобразную цепочку последовательных превращений углекислого газа из атмосферы. Первая реакция в такой цепи – фиксация углекислого газа. Чтобы она проходила более плавно и быстрее, природой был предусмотрен фермент РиБФ-карбоксилаза, который катализирует фиксацию СО2.
    Далее происходит целый цикл реакций, завершением которого является преобразование фосфоглицериновой кислоты в глюкозу (природный сахар). Все эти реакции используют энергию АТФ и НАДФ•Н2, которые были созданы в световой фазе фотосинтеза. Помимо глюкозы в результате фотосинтеза образуются также и другие вещества. Среди них разные аминокислоты, жирные кислоты, глицерин, а также нуклеотиды.

    Фазы фотосинтеза: таблица сравнений

    Критерии сравнения
      Световая фаза
    Темная фаза  
    Солнечный свет
    Обязателен
    Необязателен
    Место протекание реакций
    Граны хлоропласта
    Строма хлоропласта
    Зависимость от источника энергии
    Зависит от солнечного света
    Зависит от АТФ и НАДФ•Н2, образованных в световой фазе и от количества СО2 из атмосферы
    Исходные вещества
    Хлорофилл, белки-переносчики электронов, АТФ-синтетаза
    Углекислый газ
    Суть фазы и что образуется
    Выделяется свободный О2, образуется АТФ и НАДФ•Н2
    Образование природного сахара (глюкозы) и поглощение СО2 из атмосферы

    Фотосинтез — видео

  5. pavlik Ответить

    Темновая  фаза фотосинтеза разделяется на несколько этапов в зависимости от пути прохождения, присущих разным видам растений. Результатом темновой фазы фотосинтеза независимо от ее пути прохождения всегда является органическое соединение — глюкоза. Ниже представлена общая схема фотосинтеза: световая и темновая фаза.

    Где протекают реакции темновой стадии фотосинтеза

    Реакции темновой фазы фотосинтеза происходят, протекают в специальных клеточных структурах растения — в стромах хлоропластов. Хлоропласт – зеленая пластида, содержащая хлорофилл и отвечающая за химические реакции, проходящие во время всех стадий фотосинтеза. Хлоропласт имеет достаточно сложную структуру.
    Основными его частями являются:
    Тилакоиды – специальные структуры для преобразования световой энергии в химическую;
    Граны – стопки тилакоидов;
    Строма – плотная жидкость внутри хлоропласта между тилакоидами;
    Мембраны.

    Вся 1 световая стадия фотосинтеза проходит в гранах тилакоидов. Внутри них имеется хлорофилл – зеленый пигмент, способный поглощать световую энергию.
    2 темновая стадия фотосинтеза проходит в строме хлоропласта. В состав стромы входят необходимые ферменты, которые обеспечивают прохождение химических реакций синтеза углеводов.

    Цикл Кальвина

    Самым распространенным видом фотосинтеза является С3 фотосинтез, который называется циклом Кальвина. Процессы, проходящие в цикле Кальвина, характерны для большинства видов растений нашей планеты. С3— фотосинтез делится на 3 фазы:
    Карбоксилирование;
    Восстановление;
    Регенерация или превращение углеродных соединений.
    В фазе карбоксилирования углекислый газ, поглощаемый растением из воздуха, связывается с ферментом (рибулозобисфосфат), образуя фосфоглицериновую кислоту (3-ФГК). Это 3-углеродное соединение дало название данному виду фотосинтеза – С3.

  6. asi1 Ответить

    СВЕТОВÁЯ ФÁЗА ФОТОСИ́НТЕЗА [ligh phase of photosynthesis]. Часть процессов фотосинтеза, непосредственно зависящая от энергии света. С. ф. ф. начинается с поглощения кванта света молекулой одного из светособирающих пигментов. Далее энергия возбужденной светом молекулы передается на хлорофилл реакционного центра, где преобразуется в энергию движущихся электронов. Сопряжение транспорта электронов с переносом ионов водорода внутрь тилакоида создает предпосылки для последующего синтеза АТФ. Именно фотосинтетическое фосфорилирование, осуществляемое на мембранах тилакоидов хлоропластов является центральной частью С. ф. ф. Во время С. ф. ф. с необходимостью происходят и др. важнейшие события, напр. фотолиз воды. Основными же продуктами этого этапа являются НАДФН и АТФ. С. ф. ф. противопоставляется темновая фаза фотосинтеза.
    ТЕМНОВÁЯ ФÁЗА ФОТОСИ́НТЕЗА [dark phase of photosynthesis]. Ферментативные реакции, связанные с усвоением углерода углекислого газа растением. Т. ф. ф. не нуждается непосредственно в световой энергии, если в хлоропластах имеются в достаточном кол-ве продукты световой фазы фотосинтеза  АТФ и НАДФН. Ядром Т. ф. ф. является цикл Кальвина. Т. ф. ф. противопоставляется световая фаза фотосинтеза.
    ЦИКЛ КÁЛЬВИНА, восстанови́тельный пентозофосфáтный путь [Calvin cycle, reducing pentose phosphate pathway]. Процесс фиксации углерода СО2 и превращения его в углеводы. Состоит из трех этапов: карбоксилирования, восстановления и регенерации. При помощи рибулозодифосфаткарбоксилазы СО2 присоединяется к рибулозодифосфату с последующим получением трехуглеродной фосфоглицериновой кислоты, которая затем восстанавливается до фосфотриоз, часть из которых идет на образование глюкозы, а часть на образование снова рибулозодифосфата. Ц. к. имеет место у всех растений, в том числе и у тех, которые в качестве первичного акцептора СО2 используют фосфоенолпируват. Ц. к. также обеспечивает усвоение СО2 и при хемосинтезе.

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *