В чем заключается сущность процесса дрейфа генов почему его так называют?

10 ответов на вопрос “В чем заключается сущность процесса дрейфа генов почему его так называют?”

  1. ^^Ти Кто ))я тебя и НЕ ЗВАЛ Ответить


    Содержание:
    Примеры дрейфа генов
    Примеры дрейфа генов
    Дрейф генов в эволюции
    В теоретической биологии считается, что передача и распределение генов от родителей к детям всегда будет оставаться постоянной и неизменной из поколения в поколение (закон Харди-Вайнберга). Однако на практике все происходит далеко не так как в теории. Порой случается так, что по причине неких случайных (а то и закономерных) событий частота распределения генов из поколения в поколения может нарушаться, даже отклоняться, это явление и называется дрейфом генов.

    Примеры дрейфа генов

    Возьмем такой пример: есть группа растения в некой изолированной горной долине. Популяция растений составляет 100 экземпляров и только 2% из них обладают особенным вариантом гена, скажем отвечающего за окраску цветов. Иными словами обладателями уникального гена являются только два растения. И если в результате какого-нибудь случайного происшествия, допустим урагана, наводнения или сошествия лавины эти два растения погибнут, то и особенный ген (говоря академическим языком алель) будет утрачен из популяции. Вследствие этого изменятся и будущие поколения этих растений, в целом произойдет дрейф генов в популяции или как еще это называют ученые «эффект бутылочного горлышка».

    Причины дрейфа генов

    Обычно причинами могут быть различные катастрофические природные последствия, стихийные бедствия, бури, ураганы, извержения вулканов, приведшие к массовой гибели живых существ, но в последнее время частой причиной подобного явления становится разрушительная деятельность человека. Например, причиной дрейфа генов у слонов Африки стал их массовый отстрел в XX веке, и белыми охотниками (ради забавы) и браконьерами (стоимость слоновой кости всегда была высокой на черном рынке).

    Дрейф генов в эволюции

    Если же смотреть на дрейф генов с точки зрения теории эволюции, то можно заявить, что результатом эволюции и является дрейф генов, так как в ее процессе некоторые гены все равно будут утрачены. Более того, согласно мнению некоторых ученых, через дрейф генов прошел даже человек. Если это так, то это произошло примерно 100 000 лет назад, и именно «эффект бутылочного горлышка» то есть дрейф генов объясняет генетическую схожесть современных людей между собой. Для сравнения, у горилл, живущих в африканских джунглях генетическое разнообразие в разы богаче, нежели у всех людей, живущих на Земле.

  2. Чаво Надо Ответить

    Генетико-автоматические процессы, или дрейф генов, приводят к сглаживанию изменчивости внутри группы и появлению случайных, не связанных с отбором различий между изолятами. Именно это выявили наблюдения за особенностями фенотипов малочисленных групп населения в условиях, например, географической изоляции. Так, среди жителей Памира резус-отрицательные индивидуумы встречаются в 2—3 раза реже, чем в Европе. В большинстве кишлаков такие люди составляют 3—5% популяции. В некоторых изолированных селениях, однако, их насчитывается до 15%, т.е. примерно как в европейской популяции.
    В крови человека имеются гаптоглобины, которые связывают свободный гемоглобин после разрушения эритроцитов, чем предотвращают его выведение из организма. Синтез гаптоглобина Нр1-1 контролируется геном Нр1. Частота этого гена у представителей двух соседних племен на Севере Южной Америки составляет 0,205 и 0,895, отличаясь более чем в 4 раза.
    Примером действия дрейфа генов в человеческих популяциях служит эффект родоначальника. Он возникает, когда несколько семей порывают с родительской популяцией и создают новую на другой территории. Такая популяция обычно поддерживает высокий уровень брачной изоляции. Это способствует случайному закреплению в ее генофонде одних аллелей и утрате других. В результате частота очень редкогоаллеля может стать значительной.
    Так, члены секты амишей в округе Ланкастер штата Пенсильвания, насчитывающей к середине девятнадцатого века примерно 8000 человек, почти все произошли от трех супружеских пар, иммигрировавших в Америку в 1770 г. В этом изоляте обнаружено 55 случаев особой формы карликовости с многопалостью, которая наследуется по аутосомно-рецессивному типу. Эта аномалия не зарегистирирована среди амишей штатов Огайо и Индиана. В мировой медицинской литературе описано едва ли 50 таких случаев. Очевидно, среди членов первых трех семей, основавших популяцию, находился носитель соответствующего рецессивного мутантного аллеля — «родоначальник» соответствующего фенотипа.
    В XVIII в. из Германии в США иммигрировало 27 семей, основавших в штате Пенсильвания секту дункеров. За 200-летний период существования в условиях сильной брачной изоляции генофонд популяции дункеров изменился в сравнении с генофондом населения Рейнской области Германии, из которой они произошли. При этом степень различий во времени увеличивалась. У лиц в возрасте 55 лет и выше частоты аллелей системы групп крови MN ближе к цифрам, типичным для населения Рейнской области, чем у лиц в возрасте 28—55 лет. В возрастной группе 3—27 лет сдвиг достигает еще больших значений (табл. 1).
    Рост среди дункеров лиц с группой крови М и снижение — с группой крови N нельзя объяснить действием отбора, так как направление изменений не совпадает с таковым в целом для населения штата Пенсильвания. В пользу дрейфа генов говорит также то, что в генофонде американских дункеров увеличилась концентрация аллелей, контролирующих развитие заведомо биологически нейтральных признаков, например оволосения средней фаланги пальцев, способности отставлять большой палец кисти (рис. 4).
    Таблица 1. Прогрессивное изменение концентрации аллелей системы групп крови MN в популяции дункеров
    Возраст членов изолята, лет
    Концентрация аллеляLM
    LN
    Более 55 От 28 до 55 От 3 до 27
    0,55 0,66 0,735
    0,45 0,34 0,265
    На протяжении большей части истории человечества дрейф генов оказывал влияние на генофонды популяций людей. Так, многие особенности узкоместных типов в пределах арктической, байкальской, центрально-азиатской, уральской групп населения Сибири являются, по-видимому, результатом генетико-автоматических процессов в условиях изоляции малочисленных коллективов. Эти процессы, однако, не имели решающего значения в эволюции человека.

    Рис. 4. Распространение нейтральных признаков в изолятедункеров штата Пенсильвания: а—рост волос на средней фаланге пальцев кисти, б—способность отставлять большой палец кисти
    Последствия дрейфа генов, представляющие интерес для медицины, заключаются в неравномерном распределении по группам населения Земного шара некоторых наследственных заболеваний. Так, изоляцией и дрейфом генов объясняется, по-видимому, относительно высокая частота церебромакулярной дегенерации1 в Квебеке и Ньюфаундленде, детского цестиноза во Франции, алкаптонурии в Чехии, одного из типов порфирии среди европеоидного населения в Южной Америке, адреногенитального синдрома у эскимосов. Эти же факторы могли быть причиной низкой частоты фенилкетонурии у финнов и евреев-ашкенази.
    Изменение генетического состава популяции вследствие генетико-автоматических процессов приводит к гомозиготизации индивидуумов. При этом чаще фенотипические последствия оказываются неблагоприятными. Гомозиготизация – это перевод гетерозигот в гомозиготы при близкородствснном скрещивании. Ч. Дарвин описывает явление, которое вполне можно объяснить дрейфом генов. «Кролики, одичавшие на острове Порто-Санто, близ о. Мадейры», заслуживают более полного описания*. Вместе с тем следует помнить, что возможно образование и благоприятных комбинаций аллелей. В качестве примера рассмотрим родословные Тутанхамона (рис.5) и Клеопатры VII (рис. 6), в которых близкородственные браки были правилом на протяжении многих поколений.
    Тутанхамон умер в возрасте 18 лет. Анализ его изображения в детском возрасте и подписи к этому изображению позволяют предположить, что он страдал генетическим заболеванием — целиакией, которая проявляется в изменении слизистой оболочки кишечника, исключающем всасывание клейковины.
    ________________________________________________________
    1церебромакулярная дегенерация, болезнь Тея – Сакса. Относится к группе наследственных липидных болезней мозга . На основании возраста начала болезни, клинических проявлений, картины глазного дна и данных биохимического исследования выделяют 5 форм амавротическойидиотии: врожденную, раннюю детскую, позднюю детскую, ювенильную и позднюю. Некоторые из этих форм отличаются и по характеру наследования.Характерный признак заболевания – диффузная дегенерация ганглиозных клеток во всех отделах нервной системы. Процесс распада ганглиозных клеток и превращения многих из них в зернистую массу – шафферовская дегенерация – является патогномоничным признаком амавротическойидиотии. Отмечаются также распад миелиновых волокон, особенно в зрительных и пирамидных путях, дегенеративные изменения глии.Врожденная форма – редкое заболевание. У ребенка уже при рождении отмечается микро- или гидроцефалия, параличи, судороги. Быстро наступает смерть. В мозговой ткани увеличено содержание ганглиозида Gm3.
    Тутанхамон родился от брака Аменофиса III и Синтамоне, которая была дочерью Аменофиса III. Таким образом, мать фараона была его сводной сестрой. В могильном склепе Тутанхамона обнаружены мумии двух, по всей видимости мертворожденных, детей от брака с Анкесенамон, его племянницей.
    Первая жена фараона была или его сестрой, или дочерью. Брат Тутанхамона Аменофис IV предположительно страдал болезнью Фрелиха и умер в 25—26 лет. Его дети от браков с Нефертити и Анкесенамон (его дочерью) были бесплодны. С другой стороны, известная своим умом и красотой Клеопатра VII была рождена в браке сына Птоломея Х и его родной сестры, которому предшествовали кровнородственные браки на протяжении по крайней мере шести поколений.
    ________________________________________________________________
    *Это интересно
    В 1418 или 1419 г. у ГонзалесаЗарко на корабле случайно оказалась беременная крольчиха, которая родила во время путешествия. Все детеныши были выпущены на остров. Кролики уменьшились почти на три дюйма в длину и почти вдвое в весе тела. По окраске кролик с Порто-Санто значительно отличается от обыкновенного. Они необычайно дики и проворны. По своим привычкам они более ночные животные. Производят от 4 до 6 детенышей в помете. Не удалось спарить с самками других пород”. Примером воздействия дрейфа генов могут быть кошки о. Вознесения. Более 100 лет назад на острове появились крысы. Они расплодились в таком количестве, что английский комендант решил избавиться от них с помощью кошек. По его просьбе привезли кошек. Но они сбежали в отдаленные уголки острова и стали уничтожать не крыс, а домашнюю птицу и диких цесарок.
    Другой комендант, чтобы избавиться от кошек, завез собак. Собаки не прижились — они ранили лапы об острые кромки шлака. Кошки со временем стали свирепыми и кровожадными. За столетие они отрастили себе почти собачьи клыки и стали сторожить дома островитян, ходить по пятам за хозяином и бросаться на посторонних.

    Рис. 5. Родословная фараона XVIII династии Тутанхамона

    Рис. 6. Родословная Клеопатры VII
    Заключение и выводы:
    Традиционно волны численности (жизни, популяционные) — присущие всем видам периодические и апериодические изменения численности особей в результате влияния абиотических и биотических факторов, воздействующих на популяцию, считаются “поставщиком” элементарного эволюционного материала.
    Наилучшим доказательством значения дрейфа генов в микроэволюции
    служит характер случайной локальной дифференциации в серии перманентноили периодически изолированных маленьких колоний. Дифференциация подобного типа многократно обнаруживалась в различных группах животных ирастений, популяции которых представляют собой систему колоний. Этадифференциация, если и не доказывает, то по крайней мере сильно склоняет кмнению о том, что дрейф генов играет важную роль в популяционных системах такого типа.
    Использованная литература:
    1. Гинтер Е.К Медицинская генетика: Учебник. – М.: Медицина, 2003. – 448 с.: ил
    2. Грин Н., Стаут У., Тейлор Д «Биология» в 3 томах Москва «Мир» 2000г
    3. Гуттман Б., Гриффитс Э., Сузуки Д., Кулис Т. Генетика. М.: ФАИР – ПРЕСС, 2004., 448 с
    4. Жимулев И.Ф Генетика. Издательство Сибирского университета., 2007. – 480 с.:ил.
    5. Курчанов, Н.А. Генетика человека с основами общей генетики. / Н.А. Курчанов. – СПб.: СпецЛит, 2006. – 174 с.
    6. Мамонтов С.Г. Биология – М., 2004
    7. Шевченко В.А., Топорнина Н.А., Стволинская Н.С. Генетика человека: Учеб.для студ. Высш. учеб. заведений. – М.: ВЛАДОС, 2002. – 240 с.9.
    8. Ярыгин В.Н, В.И. Васильева, И.Н. Волков, В.В. Синелыцикова Биология. В 2 кн.: Учеб.для медиц. спец. Вузов М.: Высш. шк., 2003.— 432с.: ил.

  3. *..._ЛаПуЛя__Йа_...* Ответить

    Смотреть что такое “ДРЕЙФ ГЕНОВ” в других словарях:

    Дрейф генов — или генетико автоматические процессы  явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами. Один из механизмов дрейфа генов заключается в следующем. В процессе… … Википедия
    ДРЕЙФ ГЕНОВ — см. Генетический дрейф. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь
    дрейф генов — Изменение частот генов в небольшой популяции по принципу случайной выборки [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN genetic drift … Справочник технического переводчика
    дрейф генов — дрейф генов. См. генетико автоматический процесс. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.
    дрейф генов — genu dreifas statusas T sritis augalininkyste apibreztis Atsitiktinis populiacijos genetines sandaros pakitimas. atitikmenys: angl. genetic drift rus. генетический дрейф; дрейф генов … Zemes ukio augalu selekcijos ir seklininkystes terminu zodynas
    дрейф генов — см. Генетический дрейф … Большой медицинский словарь
    Дрейф генов —         процессы, определяющие изменение частоты генов, или частоты мутантных форм в Популяциях. Термин предложен американским генетиком С. Райтом (1931). То же, что Генетико автоматические процессы … Большая советская энциклопедия
    Дрейф генов — случайные (стохастические) изменения частот генов в ряду поколений, происходящие в малых популяциях в результате ошибки выборки гамет при скрещивании … Физическая Антропология. Иллюстрированный толковый словарь.
    Дрейф генов — – генетико автоматические процессы явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами … Словарь по психогенетике
    Дрейф — означает медленное постоянное перемещение чего либо. В частности: Дрейф судна: Смещение (снос) судна с линии курса под влиянием ветра. Дрейф характеризуется углом между линией пути и линией истинного курса, для измерения этой величины применяется … Википедия

  4. Adoragelv Ответить

    Закон Харди—Вайнберга утверждает, что в теоретической идеальной популяции распределение генов будет оставаться постоянным из поколения в поколение. Так, в популяции растений количество «внуков» с генами высокорослости будет ровно таким же, сколько было родителей с этим геном. Но в реальных популяциях дело обстоит иначе. Из-за случайных событий частота распределения генов из поколения в поколение несколько варьирует — это явление называется дрейфом генов.
    Приведем простой пример. Представьте себе группу растений, населяющих изолированную горную долину. Популяция состоит из 100 взрослых растений, и лишь 2% растений в популяции содержат особенный вариант гена (например, затрагивающий окраску цветка), т. е. в рассматриваемой нами популяции этот ген имеется лишь у двух растений. Вполне возможно, что небольшое происшествие (например, наводнение или падение дерева) приведет к гибели обоих растений, и тогда этот особенный вариант гена (или, пользуясь научной терминологией, этот аллель) попросту исчезнет из популяции. А значит, будущие поколения будут уже не такими, как рассматриваемое нами.
    Существуют и другие примеры дрейфа генов. Рассмотрим крупную размножающуюся популяцию со строго определенным распределением аллелей. Представим, что по той или иной причине часть этой популяции отделяется и начинает формировать собственное сообщество. Распределение генов в субпопуляции может быть нехарактерным для более широкой группы, но с этого момента и впредь в субпопуляции будет наблюдаться именно такое, нехарактерное для нее распределение. Это явление называется эффектом основателя.
    Дрейф генов сходного типа можно наблюдать и на примере явления с запоминающимся названием эффект бутылочного горлышка. Если по какой-либо причине численность популяции резко уменьшится — под воздействием сил, не связанных с естественным отбором (например, в случае необычной засухи или непродолжительного увеличения численности хищников), быстро появившихся и затем исчезнувших, — то результатом будет случайное устранение большого числа индивидуумов. Как и в случае эффекта основателя, к тому времени, когда популяция вновь будет переживать расцвет, в ней будут гены, характерные для случайно выживших индивидуумов, а вовсе не для исходной популяции.
    В конце XIX века в результате охотничьего промысла были почти полностью истреблены северные морские слоны. Сегодня в популяции этих животных (восстановившей свою численность) наблюдается неожиданно маленькое количество генетических вариантов. Антропологи полагают, что первые современные люди пережили эффект бутылочного горлышка около 100 000 лет назад, и объясняют этим генетическое сходство людей между собой. Даже у представителей кланов гориллы, обитающих в одном африканском лесу, больше генетических вариантов, чем у всех человеческих существ на планете.

  5. Akinolar Ответить

    Случайный дрейф генов изучался с помощью математических моделей. Используя этот принцип, Райт вывел теорию. Он считал, что решающее значение дрейфа генов при постоянных условиях отмечается в небольших группах. Они становятся гомозиготными, и изменчивость уменьшается. Райт также полагал, что вследствие изменений в группах способны сформироваться негативные наследственные признаки. В результате этого вся популяция может погибнуть, не внеся вклад в развитие вида. Вместе с этим большую роль во многих группах играет отбор. В этой связи генетическая изменчивость внутри популяции вновь будет несущественной. Постепенно группа хорошо приспособится к окружающим условиям. Однако последующие эволюционные изменения будут зависеть от возникновения благоприятных мутаций. Эти процессы проходят достаточно медленно. В этой связи и эволюция больших популяций не отличается высокой скоростью. В группах промежуточной величины отмечается повышенная изменчивость. При этом образование новых выгодных генов происходит случайно, что, в свою очередь, ускоряет эволюцию.

    Выводы Райта

    Когда из популяции теряется один аллель, появиться он может вследствие определенной мутации. Но если вид разделяется на несколько групп, в одной из которых отсутствует один элемент, в другой – другой, то ген может мигрировать оттуда, где он есть, туда, где его нет. Таким образом сохранится изменчивость. Учитывая это, Райт сделал вывод, что быстрее развитие будет происходить у тех видов, которые разделены на многочисленные различные по величине популяции. При этом между ними возможна и некоторая миграция. Райт был согласен с тем, что естественный отбор играет весьма существенную роль. Однако вместе с этим результатом эволюции является дрейф генов. Он определяет продолжительные изменения внутри вида. Кроме этого, Райт полагал, что множество отличительных признаков, возникших посредством дрейфа, были безразличны, а в ряде случаев даже вредны для жизнеспособности организмов.

  6. Kagagar Ответить


    Дрейф генов — генетико-автоматические процессы, изменение частоты генов в популяции в ряду поколений под действием случайных факторов, приводящее, как пра­вило, к снижению наследственной изменчивости популя­ций.  Наиболее отчетливо проявляется при резком сокращении численности популяции в результате стихий­ных бедствий (лесной пожар, наводнение и др.), массового распространения вредителей. Характерная особенность ди­намики генотипической структуры популяций под дейст­вием дрейфа генов состоит в усилении процесса гомозиготности особей, которая нарастает с уменьшением численности популяций. Это нарастание обусловлено тем, что в популяциях ограниченного размера увеличивается частота близкородственных скрещиваний, и в результате заметных случайных колебаний частот отдельных генов происходит закрепление одних аллелей при одновремен­ной утрате других. Некоторые выщепившиеся гомозигот­ные формы в новых условиях среды могут оказаться приспособительно ценными. Они будут подхвачены отбо­ром и смогут получить широкое распространение при последующем увеличении численности популяций. Коле­бание численности организмов получило название популяционных волн.
    Популяционные волны — одна из частых причин дрейфа генов. Особенно сильно колебания численности выражены у насекомых, хищников, растительноядных животных. Численность популяций зависит от деятельности человека

  7. Adrieth Ответить

    Если, например, частота аллеля изменилась от 0,5 до 0,6, то вероятность того, что этот аллель появится в следующем поколении, равна 0,6. Таким образом, изменение частот аллелей как ба накапливаются в ряду поколений. Однако, поскольку случайные изменения частот аллелей происходят в любых направлениях, тенденция к повышению и снижению частоты аллеля всегда может измениться на обратную, пока частота аллеля не достигла нуля или единицы. Если частота аллеля в одном поколении увеличилась, в следующем поколении она с равной вероятностью может увеличиться еще более, либо уменьшиться. Если же аллель утрачивается или “фиксируется” (т.е. значение его частоты достигает 0 или 1), то процесс прекращается. Частота аллеля уже не может более изменяться до тех пор, пока в результате мутации не появится новый аллель. Однако для того, чтобы фиксация произошла, потребуется достаточно много времени, так как среднее число поколений, необходимых для фиксации аллеля, примерно в 4 раза больше, чем число родителей в каждом поколении. Фиксация определенного аллеля и элиминация всех альтернативных аллелей в процессе эволюции будет наблюдаться в том случае, если на частоты аллелей в данном локусе не оказывают влияния другие процессы: мутация, миграция или отбор. Эти три процесса представляют собой детерминистические процессы эволюционных изменений. Пусть х обозначает скорость изменения частоты аллелей за одно поколение в результате мутаций (n), миграции (m) или отбора (s), при этом дрейф генов будет основным фактором, определяющим изменения частот аллелей только в том случае, когда 4Nx< < 1, где знак << означает значительно меньше. Если же 4Nx » 1 или больше единицы, изменение частоты генов будет определяться главным образом детерминистическим процессом. Предельный случай дрейфа генов представляет процесс возникновения новой популяции, состоящей всего из нескольких особей; такой процесс был назван Эрнестом Майром эффектом основателя.
    В. Маккьюсик описал эффект основателя у секты менонитов (штат Пенсильвания, США). В середине 60-х этот популяционный изолят насчитывал 8000 человек, и почти все они произошли от трех супружеских пар, прибывших в Америку в 1770 г. Для них была характерна необычно высокая частота гена, вызывающую особую форму карликовости с полидактилией (наличием лишних пальцев). Это настолько редкая патология, что к моменту выхода книги Маккьюсика во всей медицинской литературе было описано не более 50 подобных случаев; в изоляте же меннонитов было обнаружено 55 случаев данной аномалии. Очевидно, случайно сложилось так, что один из носителей этого редкого гена и стал “основателем” повышенной его частоты у меннонитов. Но в тех их группах, которые живут в других районах США и ведут свое начало от других предков, эта аномалия не обнаружена. Таким образом, вследствие ошибок выборки частоты генов в различных локусах у немногих особей, основывающих новую популяцию, могут сильно отличаться от частот генов в популяции, из которой они происходят, что может наложить сильный отпечаток на эволюцию таких вновь основываемых изолированных популяций.
    Случайные изменения частот аллелей, подобные тем, которые обусловлены эффектом основателя, возникают и в том случае, если популяция в процессе эволюции проходит через “бутылочное горлышко”. Когда климатические или какие-то другие условия существования популяции становятся неблагоприятными, ее численность резко сокращается и возникает опасность полного ее вымирания. В дальнейшем такие популяции могут восстановить свою численность, однако вследствие дрейфа генов в них значительно изменяются частоты аллелей в то время, когда популяция проходит через “бутылочное горлышко”, и эти изменения сохраняются на протяжении последующих поколений. В условиях существования первобытного общества многие племена неоднократно оказывались на грани полного вымирания. Некоторые из них несомненно вымирали, но большинство, пройдя стадию упадка, вероятно, восстанавливали свою численность иногда с помощью мигрантов из других племен, или благодаря увеличению рождаемости. Различия между популяциями человека в частотах аллелей, определяющих группы крови системы ABO, могли возникнуть, по крайней мере отчасти, в результате эффектов основателя и “бутылочного горлышка”.

  8. Chillkiller Ответить

    Мутации и комбинативная изменчивость, периодические колебания численности организмов, изоляция изменяют генофонды популяций случайным образом. Их совместное действие с естественным отбором в процессе видообразования придает биологической изменчивости в целом приспособительный характер. Выполнению отбором упорядочивающей роли препятствуют изменения частот аллелей, зависящие от случайных причин. Таковыми в данном случае являются причины, обусловливающие преимущественное размножение генотипов вне связи с их приспособительной ценностью. Так как динамика частот аллелей в генофондах последовательных поколений носит статистический характер (см. закон Харди — Вайнберга), размах случайных колебаний этого показателя возрастает по мере снижения численности особей в популяции.
    Расчеты показывают, что при воспроизведении 5000 потомков родительской популяции с частотой некоего аллеля р = 0,50 колебания концентрации этого аллеля в 99,994% вариантов дочерних популяций в силу случайных причин (в отсутствие отбора по этому аллелю) не выйдут за пределы 0,48—0,52. Если же родительская популяция мала и воспроизводит 50 потомков, то размах случайных колебаний концентрации наблюдаемого аллеля в том же проценте вариантов дочерних популяций составит 0,30—0,70. Случайные, но не обусловленные действием естественного отбора колебания частот аллелей называют генетико-автоматическими процессами или дрейфом генов.
    При значительном размахе колебаний в последовательных поколениях создаются условия для потери популяцией некоторых аллелей и закрепления других. В результате происходят гомозиготизация особей и затухание изменчивости. Предположим, что популяция состоит из четырех особей и имеет аллель с частотой р = 0,125. Это означает, что указанный аллель присутствует в генофонде данной популяции в единственном экземпляре у одной из особей, гетерозиготной по соответствующему локусу. Любое случайное стечение обстоятельств, исключающее такую особь из размножения (лесной пожар, выстрел охотника и т.п.), приведет к утрате аллеля. Генофонд дочерней популяции будет его лишен. Вероятность утраты составит 1/2 в случае одного, 1/4 — двух, 1/8 — трех потомков у данной особи. В популяции из 4000 организмов при р = 0,125 минимум 500 особей имеют соответствующий аллель, причем в гомозиготном состоянии. Вероятность исключения всех этих особей из размножения в силу случайных обстоятельств ничтожно мала. Это гарантирует переход аллеля в генофонд следующего поколения и его сохранение.

  9. Perilune Ответить

    Дрейф генов способен и зменять генетическую структуру популяций. Подсчитано, что в результате дрейфа генов облик популяций может измениться на протяжении 50 поколений, т. е. около 1250 лет. Поэтому предполагают, что дрейф генов в качестве фактора расогенеза действовал очень медленно.[ …]
    Дрейф генов — изменения в частотах генов у организмов малых популяций в результате случайных скрещиваний.[ …]
    Дрейф генов процесс случайного ненаправленного изменения частоты генов (аллелей) в популяции.[ …]
    Дрейф генов. В прошлом дрейф генов был связан с резкими колебаниями численности локальных популяций, истребляемых войнами и эпидемиями. Выжившие основатели новой популяции передавали ей черты своей генетической индивидуальности. Утраченная часть генетического разнообразия восстанавливалась за счет повторных мутаций и потока генов, но определенные отличия могли сохраняться длительное время. Сегодня рост численности и более подвижный образ жизни предохраняют генофонд от дрейфа генов, разве что за исключением малочисленных популяций на океанических островах, в горных районах или тропических лесах.[ …]
    Дрейф генов, или генетико-автоматический процесс, является следствием популяционных волн и, как отмечено выше, заключается в том, что в малых популяциях имеет место либо потеря какого-то аллеля, либо резкое повышение его концентрации. Примером дрейфа генов является утрата многих аллелей у баптистов, переселившихся около 250 лет назад из Германии в США. Но дрейф генов также не определяет направления эволюции.[ …]
    Генный дрейф — изменение генетических особенностей популяции, вызванное случайным распределением генов. Проявляется в изолированных популяциях или при резких изменениях численности.[ …]
    Случайный дрейф и миграции генов среди животных обычное явление, приводящее к образованию экотипов, которые, развиваясь изолированно, могут образовать в результате эволюции новую расу или даже новую видовую популяцию. Что же касается человека, то в настоящее время, в условиях развитости транспорта, миграции в город из сел (урбанизация) и, вообще, подвижности населения, географические расстояния уже не играют роли. В этих условиях генный дрейф теряет значение как фактор популяционной динамики, в то время как еще в конце XIX в. можно было говорить о существовании неких групп населения, которые называли «изолятами».[ …]
    В малых популяциях взаимодействие случайного дрейфа генов с отбором может приводить к результатам, которых нельзя ожидать, если принимать во внимание только давления отбора. Райт и Керр (1954) выращивали много мелких популяций Drosophila melanogaster, содержавших вначале равные количества аллелей bar и аллелей дикого типа, до тех пор пока они не стали мономорфными по тому или другому аллелю. Хотя отбор всегда бывает направлен против аллеля bar и в больших популяциях он в конце концов всегда элиминируется, он закрепился в небольшой части экспериментальных популяций. Это служит экспериментальным доказательством того, что направление отбора может иногда нарушаться дрейфом генов.[ …]
    Факторами расогенеза являются естественный отбор, дрейф генов, изоляция и смешение популяции, причем наибольшее значение имел естественный отбор, который выполнял формообразущую роль на ранних стадиях формирования рас.[ …]
    Большинство долговременных сдвигов состояния здоровья эко-генного происхождения имеет генетическую природу. Из-за быстрого роста городского населения в нем существенно замаскирован один из важных факторов популяционной динамики — генный дрейф. В городах из-за скученности населения возрастает интенсивность отбора аллелей, а большой объем городской популяции приводит к интенсивному мутационному давлению. Это проявляется в различной приспособленности фенотипов гормональных статусов и групп крови в отношении репродуктивной способности, дифференциальной заболеваемости и уровня патологии у новорожденных.[ …]
    Допущение какой-либо значимости таких процессов, как мутации или дрейф генов в данной конкретной ситуации, видимо, можно исключить, поскольку в этом случае необходимо признать высокую степень изоляции рассматриваемых групп. Кроме того, сам характер наблюдаемых различий, заключающийся прежде всего в различиях по сбалансированности, обуславливает наибольшую целесообразность толкований с позиций действия естественного отбора. Миграции же, напротив, вполне допустимы, они могут рассматриваться как фактор формирования единообразия аллельных и генотипических частот обеих групп [2]. Причем, в случае однозначной векторизованности миграционного процесса,. а по-видимому, именно такого рода миграцию особей на нерест в реку мы наблюдаем в нашем случае, для -совокупности »«мигрантов будет характерно нестабильное распределение частот.[ …]
    Сохраняемые популяции должны быть генетически устойчивыми. Утеря генов чаще всего происходит в малочисленных популяциях. Поэтому при комплектации коллекции надо знать и учитывать породное разнообразие и критическую численность рыб различных видов. С помощью коллекционных хозяйств возможно вести оценку генетической ценности породы и популяции, генетического дрейфа, инбредной депрессии, миграции генов, влияния естественного отбора, заболеваний и гибели рыб.[ …]
    Вместе с тем продолжается действие и естественных факторов изменения генофонда – мутации, дрейф генов и естественный отбор. Загрязнение среды влияет на каждый из них. Хотя эти факторы действуют совместно, в аналитических целях имеет смысл рассмотреть их по отдельности.[ …]
    Элементарными факторами эволюции служат естественный отбор, мутационный процесс, популяционные волны, изоляция, дрейф генов, миграция, с действия которых начинается эволюция в популяциях. Естественный отбор является важнейшим направляющим фактором эволюции, поскольку его основная функция заключается в устранении из популяций организмов с неудачными комбинациями генов и сохранение генотипов, которые не нарушают процесса приспособительного формообразования. Действие естественного отбора проявляется в пределах популяции, но объектами приложения естественного отбора являются отдельные мутантные особи, которые являются элементарным материалом, на котором работает естественный отбор.[ …]
    Из многих генетических открытий очень большое значение для анализа и совершенствования методов разведения имеет открытие (Дубинин, Ромашев, Райт) процессов генетического дрейфа генов. Утеря генов усиливается при скрещивании и тесном инбридинге. Применив основные положения теории дрейфа генов к выявлению эффективной структуры породы, С. Райт пришел к выводу, что породу следует строить как интегрированную .систему разводимых «в себе» экологических популяций (породных типов).[ …]
    Позднее Н. П. Дубинин и Д. Н. Ромашов (1932) показали, что когда популяции малы, в них происходят явления, получившие название генетико-автоматических процессов (по Н. П. Дубинину, 1931) или дрейфа генов (по С. Райту, 1932). В результате генетико-автоматических процессов изменяются частоты встречаемости генов, устраняются гетерозиготы и появляются гомозиготы. Изолированная популяция становится доминантной гомозиготной или рецессивной гомозиготной. Если дрейфует мутантный летальный ген, это ведет к вымиранию организмов. Таким образом, структура популяции зависит не только от появления новых мутаций, но и от простого изменения частоты встречаемости данного гена. Эти и другие генетические исследования связали эволюционную теорию с генетикой.[ …]
    При одинаковой способности альтернативных аллелей придавать организмам одинаковую приспособленность к условиям среды, изменение частот встречаемости этих аллелей в поколениях организмов может происходить лишь в результате дрейфа генов. Следовательно, скорость замены аллелей в популяциях и скорость происходящих отсюда замен аминокислот в белках будет постоянной.[ …]
    Рост численности населения, «демографический взрыв». Ресурсный кризис: земельные ресурсы (почва, минеральные ресурсы), энергетические ресурсы. Возрастание агрессивности среды: загрязнение вод и атмосферного воздуха, рост патогенности микроорганизмов. Изменение генофонда: факторы мутагенеза, дрейф генов, естественный отбор.[ …]
    М. Ф. Иванов считал первый метод (то есть работу с большим числом животных) более эффективным. Сам же по ряду причин при выведении украинской степной породы свиней успешно провел работу по второму методу с. небольшим числом исходных предков с применением инбридинга. Если рассматривать схему работы М. Ф. Иванова с точки зрения общей теории «дрейфа» генов, селекционируемая им группа свиней должна была неизбежно погибнуть. Зоотехникам известно, что заложенная американскими учеными аналогичная работа в 140 ?повторениях при применении тесного, инбридинга закончилась неудачей. М.Ф. Иванов успешно завершил свою работу, создав несколько ценных пород животных.[ …]
    Отсутствие нарушений структурных и функциональных свойств по отношению к населению территории означает сохранение нормального существования человеческой популяции, т. е. поддержание в ряде поколений без существенных отклонений и негативных трендов присущих населению региона половозрастной структуры, рождаемости, смертности, фоновой заболеваемости и фонового дрейфа генов. Это требование предполагает поддержание необходимых качеств среды обитания человека — прежде всего нормативных состава и чистоты пищи, воды и воздуха, а также условий комфорта, определяемых в основном затратами энергии.[ …]
    Созданная в процессе становления вида Homo sapiens генетическая программа определяет его как биологический вид. Она записана в молекулах ДНК, достаточно консервативна и представляет собой самый драгоценный из природных ресурсов. Но тем не менее от поколения к поколению ДНК человека вовлекаются в разнообразные генетические процессы, — фактически в такие же, в какие вовлекаются ДНК всех остальных животных: 1) мутационный процесс, непосредственно изменяющий структуру ДНК; 2) миграция генов — отток или приток генов из других популяций; 3) дрейф генов — случайные колебания частот генов; 4) естественный отбор — направленно изменяющий частоты генетических признаков.[ …]
    Видимо, давно уже подобный подход следовало распространить на оценку отдаленных последствий воздействия мутагенных и тератогенных факторов загрязнения среды в больших городах. Тем более, что Чернобыль, по существу, разрушил грань между радиационными и нерадиационными экологическими эффектами (имеется в виду не только сама авария, но и научный анализ ее последствий). Возражение в том смысле, что при радиации приходится иметь дело с «непорошвыми биологическими эффектами», а химические воздействия имеют принципиально пороговый характер, справедливо лишь для отдельных агентов. Вряд ли можно доказать мутагенную пороговость для того колоссального набора вредных веществ, который обрушивается на организм человека в промышленном городе. Имеются прямые указания на заметный генный дрейф у человека под влиянием промышленных загрязнений среды. Регламентация техногенных потоков на основе учета отдаленных генетических последствий имеет большое принципиальное значение.[ …]
    Четкий пример группового отбора описан Левонтичом (1962), который провел машинное моделирование судьбы трех стерильных ?-аллелей в популяциях домовых мышей. Каждый из этих аллелей в гомозиготном состоянии обусловливает мужскую стерильность, однако среди самцов, гетерозиготных по тому или иному аллелю, соответствующий аллель содержится в сперме 85—99% самцов, а не 50%, как следовало ожидать. Точная частота передачи зависит от конкретного аллеля. В больших популяциях частота аллеля должна стабилизироваться на уровне, при котором скорость выпадения в гомозиготность уравновешивается его замещением при аберрантном коэффициенте расщепления у гетерозиготных самцов. Этот уровень q=2m—1, где т — коэффициент передачи. Для аллеля tw2 с /и=0,86 и теоретическим ?7 = 0,70 в одной популяции было получено ?7 = 0,37. Левонтин нашел, что при машинном моделировании можно получить приближение для наблюдавшейся частоты гена, если принять такую структуру популяции, при которой размножение происходит в небольших семейных группах, состоящих из двух самцов и шести самок. В 70% семей i-аллель закрепляется либо у всех особей, либо хотя бы у самцов и вызывает вымирание семьи. Однако в 30% семей i-аллель утрачивается в результате дрейфа генов, и все популяции стабилизируются после 24 поколений. Таким образом, ?-аллель был бы элиминирован, если бы миграции не заносили его вновь в некоторые свободные от этих аллелей популяции; реальная частота любого аллеля в популяции зависит от вероятности вымирания несущих его групп и от частоты его заноса при миграции в свободные от этого аллеля семейные группы.[ …]
    Не приходится сомневаться в том, что выявленные различия в электрофоретической подвижности отдельных вариантов ферментов определяются изменениями первичной структуры белка, которая находится под жестким генетическим контролем. Появление новых вариантов ферментов и их закрепление в геноме путем отбора полезных возможно лишь при длительных (в течение жизни многих поколений) изменениях температурного или любого другого фактора. Эти измененные условия должны стать “фактом” генетической информации, т. е. привести к изменению последовательности оснований в ДНК, а затем уже в результате транскрипции и трансляции материализоваться продуцированием нового фермента, более адаптированного к изменившимся условиям. Вполне понятно, что приобретение новой генетической информации, детерминирующей новые адаптивные фенотипические признаки, в том числе и появление новых вариантов ферментов (изо- и алло-), — это процесс длительной эволюционной адаптации организма к постоянно колеблющимся факторам внешней среды. Исходя из этих теоретических предпосылок можно было предвидеть адаптивную природу эволюционных преобразований белков, в том числе и адаптивное значение появления новых вариантов того или иного фермента у отдельных видов и их популяций. Между тем в конце 60-х начале 70-х годов адаптивная природа биохимического полиморфизма ферментов была подвергнута критике сторонниками “нейтралистской” гипотезы эволюции [455-457]. По их мнению, эволюция белков совершается путем случайной замены одних аллелей другими вследствие взаимодействия мутационного процесса и дрейфа генов. Роль отбора либо вообще отрицается, либо признается его второстепенное значение. Эта точка зрения встретила обоснованную критику [69—74, 227, 228, 566]. Многочисленные данные по биохимическому полиморфизму ферментов, полученные при обследовании природных популяций, а также ряд экспериментальных данных о роли изоферментов в акклимации и адаптации рыб к температурному фактору не подтверждают основное допущение “нейтралистской” гипотезы о случайной фиксации аллелей и, следовательно, нейтральном характере полиморфизма ферментов.[ …]

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *