В каких странах мира атомные электростанции являются основными источниками?

13 ответов на вопрос “В каких странах мира атомные электростанции являются основными источниками?”

  1. Tholen Ответить

    Три-майл-айленд, Чернобыль, Фукусима – всё это не просто топонимы, не просто названия атомных станций мира, всё это места, где случались аварии на АЭС. Аварии, которые изменяли отношения к мирному атому, уменьшали и увеличивали количество АЭС в мире, меняли условия безопасного использования ядерной энергетики, аварии которые так и не убедили человечество отказаться от использования атомной энергии в мирных целях.
    Всего в мире на 2017 год насчитывается 447 действующих ядерных реакторов различных типов, которые вырабатывают колоссальное количество энергии – 391 386 МВт. Еще 60 реакторов находятся в разной стадии строительства, что добавит 64 500 МВт. Тем не менее, количество стран обладающих таким источником света и тепла не так уж и велик, да и большинство реакторов расположено в топ-10 стран по количеству ядерных реакторов. Также предлагаем Вам рейтинг ТОП-10 атомных станций мира: количество АЭС и ядерных реакторов.

    ТОП-10 стран – мировых лидеров по производству атомной энергии. По количеству АЭС и ядерных реакторов

    1 место – США

    Атомная энергетика США включает в себя на начало 2017 года 99 действующих реакторов, в том числе крупнейшая атомная станция США – Пало-Верде.  Еще 4 американских реактора находятся в стадии строительства. Совокупная мощность действующих АЭС США составляет 99 535 МВт и покрывает 19,5% общей генерации в стране. Подробнее об атомной энергетике США.

  2. Badi Ответить

    составлял 7,3%.
    Фирмы, занятые в атомном машиностроении, не ожидают значительного увеличения притока заказов на оборудование для новых атомных электростанций (АЭС) – по крайней мере в ближайшие 10 лет.
    Нехватка средств, обусловленная чрезвычайно малым притоком заказов после аварии на Чернобыльской АЭС, заставляет сейчас производителей атомного энергетического оборудования работать в режиме строжайшей экономии и постоянного наращивания эффективности операций. Современная ситуация сильно отличается от 70-х годов, когда мощности атомной промышленности мира были полностью загружены.
    В Северной Америке и Западной Европе приток заказов на новые АЭС практически равен нулю. Такое же положение сложилось со строительством новых АЭС и в России. При этом существует значительная потребность в модернизации существующих станций, в том числе и в странах Восточной Европы.
    Только в Восточной Азии, в частности в Республике Корея, Китае и Тайване, ощущается действительная заинтересованность в строительстве новых АЭС, но разработка соответствующих проектов требует много времени и часто затягивается по причине возрастающего давления со стороны защитников окружающей среды.
    В целом зависимость энергетики ряда стран мира от атомных электростанций весьма значительна. Так, в 1995 г. доля АЭС в общей выработке электроэнергии составила (в %): в Литве – 76,4, Франции – 75,3, Бельгии – 55,8, Швеции – 51,1, Словакии – 49,1, Болгарии.– 45,6, Венгрии – 43,7, Словении, Швейцарии, Республике Корея, Испании – в среднем 34,0, Японии – 30,7, ФРГ – 29,3, Великобритании – 25,8, США – 22,0, России – 11,4. Себестоимость электроэнергии АЭС на 20% ниже, чем на ТЭС, работающих на угле, и в 2,5 раза ниже, чем работающих на мазуте, а удельные капитальные вложения вдвое выше (в США около 1000 долл. на 1 кВт). К концу XX в., по некоторым расчетам, доля электроэнергии, вырабатываемой на атомных электростанциях, составит 15%, а к 2020-2030 гг. – 30%, что потребует значительного увеличения добычи урана.
    Потребности в уране, согласно расчетам, к 2000 г. достигнут 135 тыс. т, а на весь период до 2000 г. понадобится 1,8 млн. т урана. Запасы урана разделяются на две категории в зависимости от цены на 1 кг концентрата U3O8 – до 66 долл. и от 66 до 110 долл. Для сравнения отметим, что средняя цена, которую потребители уплачивали в 1977 г., по данным долгосрочных контрактов, составляла 38-45 долл. за 1 кг, а максимальная цена в конце 1977 г. доходила до 95 долл. Общие запасы урана в развитых странах Запада и развивающихся странах превышают 4 млн. т; достоверные запасы первой категории – 1650 тыс. и второй – 540 тыс. т; предполагаемые запасы первой категории – 1510 тыс., а второй – 590 тыс. т. Наибольшими запасами обладают США, Канада, ЮАР, Австралия, Франция.
    Но этим источники получения уранового концентрата не ограничиваются. Значительные количества урана находятся в отвалах заводов по производству обогащенного урана. Современная технология позволяет довести их до 0,1%, а в перспективе, возможно, снизить почти до нуля (с применением лазерной технологии). Можно считать, что до конца первых десятилетий текущего века запасов урана хватит, особенно если учесть возможность широкого использования реакторов-размножителей и применения в качестве атомного топлива плутония. К тому времени можно надеяться на практическое использование термоядерной энергии, источники производства которой – дейтерий, тритий, содержащиеся в морской воде, – велики.
    ***
    В отличие от атомной энергетики использование возобновляемых источников энергии находит полную поддержку со стороны общественности всех промышленно развитых стран из-за их экологической чистоты и безопасности. По ряду технологий получения возобновляемых источников энергии за последние 10 лет произошел значительный прогресс, а некоторые из них находятся в стадии коммерциализации и выхода на широкий энергетический рынок. Это прежде всего относится к разработкам по солнечным электростанциям, которые могут быть конкурентоспособными при производстве электроэнергии в отдаленных районах, а также для покрытия пиковых нагрузок. Некоторый вклад в производство электроэнергии может дать энергия ветра, геотермальных вод и биомассы. Однако для выхода на широкий энергетический рынок последних требуется перевести достижения НИОКР в данной области на практические рельсы, устранить существующие барьеры на рынке возобновляемых источников энергии, а усилия НИОКР сосредоточить на раскрытии полного потенциала новых технологий в данной области.

  3. Creon Ответить

    Трёхконтурные тепловые схемы (рис., в) применяют лишь в тех случаях, когда необходимо полностью исключить контакт теплоносителя первого (радиоактивного) контура с рабочим телом; например, при охлаждении активной зоны жидким натрием его контакт с рабочим телом (водяным паром) может привести к крупной аварии. Жидкий натрий как теплоноситель применяют только в ядерных реакторах на быстрых нейтронах (FBR – Fast Breeder Reactor). Особенность АЭС с реактором на быстрых нейтронах состоит в том, что одновременно с выработкой электрической и тепловой энергии они воспроизводят делящиеся изотопы, пригодные для использования в тепловых ядерных реакторах (см. Реактор-размножитель).
    Турбины АЭС обычно работают на насыщенном или слабоперегретом паре. При использовании турбин, работающих на перегретом паре, насыщенный пар для повышения температуры и давления пропускают через активную зону реактора (по особым каналам) либо через специальный теплообменник – пароперегреватель, работающий на углеводородном топливе. Термодинамическая эффективность цикла АЭС тем выше, чем выше параметры теплоносителя, рабочего тела, которые определяются технологическими возможностями и свойствами конструкционных материалов, применяемых в контурах охлаждения АЭС.
    На АЭС боль­шое вни­ма­ние уде­ля­ют очи­ст­ке те­п­ло­но­си­те­ля, по­сколь­ку имею­щие­ся в нём ес­тественные при­ме­си, а так­же про­дук­ты кор­ро­зии, на­ка­п­ли­ваю­щие­ся в про­цес­се экс­плуа­та­ции обо­ру­до­ва­ния и тру­бо­про­во­дов, яв­ля­ют­ся ис­точ­ни­ка­ми ра­дио­ак­тив­но­сти. Сте­пень чис­то­ты те­п­ло­но­си­те­ля во мно­гом оп­ре­де­ля­ет уро­вень ра­ди­ационной об­ста­нов­ки в по­ме­ще­ни­ях АЭС.
    АЭС прак­ти­че­ски все­гда стро­ят вбли­зи по­тре­би­те­лей энер­гии, т. к. рас­хо­ды на транс­пор­ти­ров­ку ядер­но­го то­п­ли­ва на АЭС, в от­ли­чие от уг­ле­во­до­род­но­го то­п­ли­ва для ТЭС, ма­ло влия­ют на се­бе­стои­мость вы­ра­ба­ты­вае­мой энер­гии (обыч­но ядер­ное то­п­ли­во в энер­ге­тич. ре­ак­то­рах за­ме­ня­ют на но­вое один раз в неск. лет), а пе­ре­да­ча как элек­трической, так и те­п­ло­вой энер­гии на боль­шие рас­стоя­ния за­мет­но по­вы­ша­ет их стои­мость. АЭС со­ору­жа­ют с под­вет­рен­ной сто­ро­ны от­но­си­тель­но бли­жай­ше­го на­се­лён­но­го пунк­та, во­круг неё соз­да­ют са­ни­тар­но-за­щит­ную зо­ну и зо­ну на­блю­де­ния, где про­жи­ва­ние на­се­ле­ния не­до­пус­ти­мо. В зо­не на­блю­де­ния раз­ме­ща­ют кон­троль­но-из­ме­ри­тель­ную ап­па­ра­ту­ру для по­сто­ян­но­го мо­ни­то­рин­га ок­ру­жаю­щей сре­ды.
    АЭС – ос­но­ва ядер­ной энер­ге­ти­ки. Глав­ное их на­зна­че­ние – про­изводство элек­тро­энер­гии (АЭС кон­ден­са­ци­он­но­го ти­па) или ком­би­нированное про­изводство элек­тро­энер­гии и те­п­ла (атом­ные те­п­ло­элек­тро­цен­тра­ли – АТЭЦ). На АТЭЦ часть от­ра­бо­тав­ше­го в тур­би­нах па­ра от­во­дит­ся в т. н. се­те­вые те­п­ло­об­мен­ни­ки для на­гре­ва­ния во­ды, цир­ку­ли­рую­щей в замк­ну­тых се­тях те­п­ло­снаб­же­ния. В отдельных слу­ча­ях те­п­ло­вая энер­гия ядер­ных ре­ак­то­ров мо­жет ис­поль­зо­вать­ся толь­ко для нужд те­п­ло­фи­ка­ции (атом­ные стан­ции те­п­ло­снаб­же­ния – АСТ). В этом слу­чае на­гре­тая во­да из те­п­ло­об­мен­ни­ков пер­во­го-вто­ро­го кон­ту­ров по­сту­па­ет в се­те­вой те­п­ло­об­мен­ник, где от­да­ёт те­п­ло се­те­вой во­де и за­тем воз­вра­ща­ет­ся в кон­тур.
    Од­но из пре­иму­ществ АЭС по срав­не­нию с обыч­ны­ми ТЭС – их вы­со­кая эко­ло­гич­ность, со­хра­няю­щая­ся при ква­ли­фи­цир. экс­плуа­та­ции ядер­ных ре­ак­то­ров. Су­ще­ст­вую­щие барь­е­ры ра­ди­ационной безо­пас­но­сти АЭС (обо­лоч­ки твэ­лов, кор­пус ядер­но­го ре­ак­то­ра и т. п.) пред­от­вра­ща­ют за­гряз­не­ние те­п­ло­но­си­те­ля ра­дио­ак­тив­ны­ми про­дук­та­ми де­ле­ния. Над ре­ак­тор­ным за­лом АЭС воз­во­дит­ся за­щит­ная обо­лоч­ка (кон­тей­мент) для ис­клю­че­ния по­па­да­ния в ок­ру­жаю­щую сре­ду ра­дио­ак­тив­ных ма­те­риа­лов при са­мой тя­жё­лой ава­рии – раз­гер­ме­ти­за­ции пер­во­го кон­ту­ра, рас­плав­ле­нии ак­тив­ной зо­ны. Под­го­тов­ка пер­со­на­ла АЭС пре­ду­смат­ри­ва­ет обу­че­ние на специальных тре­на­жё­рах (ими­та­то­рах АЭС) для от­ра­бот­ки дей­ст­вий как в штат­ных, так и в ава­рий­ных си­туа­ци­ях. На АЭС име­ется ряд служб, обес­пе­чи­ваю­щих нор­маль­ное функ­цио­ни­ро­ва­ние стан­ции, безо­пас­ность её пер­со­на­ла (напр., до­зи­мет­рический кон­троль, обес­пе­че­ние са­ни­тар­но-ги­гие­нических тре­бо­ва­ний и др.). На тер­ри­то­рии АЭС соз­да­ют временные хра­ни­ли­ща для све­же­го и от­ра­бо­тан­но­го ядер­но­го то­п­ли­ва, для жид­ких и твёр­дых ра­дио­ак­тив­ных от­хо­дов, по­яв­ляю­щих­ся при её экс­плуа­та­ции. Всё это при­во­дит к то­му, что стои­мость ус­та­нов­лен­но­го ки­ло­ват­та мощ­но­сти на АЭС бо­лее чем на 30% пре­вы­ша­ет стои­мость ки­ло­ват­та на ТЭС. Од­на­ко стои­мость от­пус­кае­мой по­тре­би­те­лю энер­гии, вы­ра­бо­тан­ной на АЭС, ни­же, чем на ТЭС, из-за очень ма­лой до­ли в этой стои­мо­сти то­п­лив­ной со­став­ляю­щей. Вслед­ст­вие вы­со­кой эко­но­мич­но­сти и осо­бен­но­стей ре­гу­ли­ро­ва­ния мощ­но­сти АЭС обыч­но ис­поль­зу­ют в ба­зо­вых ре­жи­мах, при этом ко­эффициент ис­поль­зо­ва­ния ус­та­нов­лен­ной мощ­но­сти АЭС мо­жет пре­вы­шать 80%. По ме­ре уве­ли­че­ния до­ли АЭС в об­щем энер­ге­тическом ба­лан­се ре­гио­на они мо­гут ра­бо­тать и в ма­нёв­рен­ном ре­жи­ме (для по­кры­тия не­рав­но­мер­но­стей на­груз­ки в ме­ст­ной энер­го­сис­те­ме). Спо­соб­ность АЭС ра­бо­тать дли­тель­ное вре­мя без сме­ны то­п­ли­ва по­зво­ля­ет ис­поль­зо­вать их в уда­лён­ных ре­гио­нах. Раз­ра­бо­та­ны АЭС, ком­по­нов­ка обо­ру­до­ва­ния ко­то­рых ос­но­ва­на на прин­ци­пах, реа­ли­зуе­мых в су­до­вых ядер­ных энер­ге­тич. ус­та­нов­ках (см. Ато­мо­ход). Та­кие АЭС мож­но раз­мес­тить, напр., на бар­же. Пер­спек­тив­ны АЭС с ВТГР, вы­ра­ба­ты­ваю­щие те­п­ло­вую энер­гию для осу­ще­ст­в­ле­ния тех­но­ло­гических про­цес­сов в ме­тал­лур­гическом, хи­мическом и неф­тяном про­из­вод­ст­вах, при га­зи­фи­ка­ции уг­ля и слан­цев, в про­изводстве син­те­тического угле­во­до­род­но­го то­п­ли­ва. Срок экс­плуа­та­ции АЭС 25–30 лет. Вы­вод АЭС из экс­плуа­та­ции, де­мон­таж ре­ак­то­ра и ре­куль­ти­ва­ция её пло­щад­ки до со­стоя­ния «зе­лё­ной лу­жай­ки» – слож­ное и до­ро­го­стоя­щее ор­га­ни­за­ци­он­но-тех­ническое ме­ро­прия­тие, осу­ще­ст­в­ляе­мое по раз­ра­ба­ты­вае­мым в ка­ж­дом кон­крет­ном слу­чае пла­нам.
    Первая в мире действующая АЭС мощностью 5000 кВт пущена в России в 1954 в г. Обнинск. В 1956 вступила в строй АЭС в Колдер-Холле в Великобритании (46 МВт), в 1957 – АЭС в Шиппингпорте в США (60 МВт). В 1974 пущена первая в мире АТЭЦ – Билибинская (Чукотский автономный окр.). Массовое строительство крупных экономичных АЭС началось во 2-й пол. 1960-х гг. Однако после аварии (1986) на Чернобыльской АЭС привлекательность ядерной энергетики заметно снизилась, а в ряде стран, имеющих достаточные собственные традиционные топливно-энергетические ресурсы или доступ к ним, строительство новых АЭС фактически прекратилось (Россия, США, Великобритания, ФРГ). В начале 21 в., 11.3.2011 в Тихом океане у восточного побережья Японии в результате сильнейшего землетрясения магнитудой от 9,0 до 9,1 и последовавшего за ним цунами (высота волн достигала 40,5 м) на АЭС «Фукусима 1» (посёлок Окума, префектура Фукусима) произошла крупнейшая техногенная катастрофа – радиационная авария максимального 7-го уровня по Международной шкале ядерных событий. Удар цунами вывел из строя внешние средства электроснабжения и резервные дизельные генераторы, что явилось причиной неработоспособности всех систем нормального и аварийного охлаждения и привело к расплавлению активной зоны реакторов на энергоблоках 1, 2 и 3 в первые дни развития аварии. В декабре 2013 АЭС была официально закрыта. По состоянию на первую половину 2016 высокий уровень излучения делает невозможной работу не только людей в реакторных зданиях, но и роботов, которые из-за высокого уровня радиации выходят из строя. Планируется, что вывоз пластов почвы в специальные хранилища и её уничтожение займут 30 лет.
    31 страна мира использует АЭС. На 2015 действует ок. 440 ядерных энергетических реакторов (энергоблоков) суммарной мощностью более 381 тыс. МВт (381 ГВт). Ок. 70 атомных реакторов находятся в стадии строительства. Мировым лидером по доле в общей выработке электроэнергии является Франция (второе место по установленной мощности), в которой ядерная энергетика составляет 76,9%.
    Крупнейшая АЭС в мире на 2015 (по установленной мощности) – Касивадзаки-Карива (г. Касивадзаки, префектура Ниигата, Япония). В эксплуатации находятся 5 кипящих ядерных реакторов (BWR) и 2 улучшенных кипящих ядерных реактора (ABWR), суммарная мощность которых составляет 8212 МВт (8,212 ГВт).
    Крупнейшая АЭС в Европе – Запорожская АЭС (г. Энергодар, Запорожская область, Украина). С 1996 работают 6 энергоблоков с реакторами типа ВВЭР-1000 суммарной мощностью 6000 МВт (6 ГВт).

  4. Bokus Ответить

    Атомная энергетика – важнейшая подотрасль глобальной энергетики, начавшая несколько десятков лет назад вносить заметный вклад в глобальное производство электроэнергии. Себестоимость электроэнергии, вырабатываемой АЭС сегодня, позволяет говорить о серьезной конкуренции с их стороны другим типам электростанций. Явное преимущество АЭС – отсутствие выбросов аэрозолей и парниковых газов в атмосферу.
    Около 17% производства электроэнергии в мире принадлежит АЭС. Отрасль также занимает третье место после угольной энергетики и гидроэнергетики. Наибольшее распространение АЭС имеют в США, в эксплуатации страны находится сегодня свыше 100 энергоблоков общей мощностью до 100 ГВт, но лидером в области атомной энергетики в мире является Франция, которая использует 58 энергоблоков, производящих около 75% всей атомной энергии мира. В целом же на сегодняшний день мировая атомная энергетика включает в себя 440 атомных реакторов, которые расположены в 31 стране мира и суммарно производят около 370 ГВт электроэнергии.

    Мировым лидером по доле АЭС в национальном производстве электроэнергии является Франция. Атомная энергетика в этой стране развивается планомерно и устойчиво. Здесь эксплуатируются 59 атомных энергоблоков суммарной электрической мощностью около 70 ГВт, которые вырабатывают 78% всей электроэнергии страны. В конце 1997 года во Франции введен в эксплуатацию реакторный энергоблок с водой под давлением (PWR) электрической мощностью 1450 МВт, который относится к третьему поколению реакторных установок повышенной безопасности. В 2007 году начато сооружение нового, третьего по счету энергоблока мощностью 1600 МВт на атомной станции вблизи города Фламанвиль.
    В Японии эксплуатируются 55 ядерных энергоблоков, которые производят в стране 34% электрической энергии, и еще один строится. Причем в 1991 году их было 41, то есть за последние годы построено 14 новых энергоблоков. К 2016 году планируется доведение доли «атомного» электричества до 40%. Необходимо отметить, что все АЭС в Японии размещаются на морском побережье в сейсмически активных районах.
    В Швеции доля выработки энергии на 10 энергоблоках составляет около 45% в общем национальном производстве электроэнергии.
    На территории Германии действуют 17 ядерных энергоблоков, и доля вырабатываемой на АЭС электроэнергии составляет более 30%.

    Самый большой в мире парк АЭС принадлежит США. Находящиеся в эксплуатации 103 энергоблока суммарной мощностью почти 100 ГВт обеспечивают производство почти 20% всей электроэнергии страны.

  5. Kazragore Ответить

    В настоящее время тридцать одна страна мира получает энергию с помощью 192-х атомных электростанций. На этих станциях эксплуатируется 438 энергоблоков. В России десять действующих АЭС, на которых функционируют 33 энергоблока.
    Список лидеров возглавляют США, последующие места занимают Франция и Япония. По количеству вырабатываемой электроэнергии на атомных станциях Россия занимает 8-ое место, а Украина – 10-ое. Таким образом, на сегодняшний день в мире на атомных электростанциях вырабатывается суммарно 391 878 мегаватт, в частности:

    в США на АЭС вырабатывается 102 709 МВт электроэнергии;
    в Франции на АЭС вырабатывается 65 880 МВт электроэнергии;
    в Японии на АЭС вырабатывается 46 292 МВт электроэнергии;
    в России на АЭС вырабатывается 25 242 МВт электроэнергии;
    в Южной Корее на АЭС вырабатывается 21 442 МВт электроэнергии;
    в Китае на АЭС вырабатывается 16 703 МВт электроэнергии;
    в Канаде на АЭС вырабатывается 14 398 МВт электроэнергии;
    в Украине на АЭС вырабатывается 13 835 МВт электроэнергии;
    в Германии на АЭС вырабатывается 12 696 МВт электроэнергии;
    в Великобритании на АЭС вырабатывается 10 902 МВт электроэнергии;
    в Швеции на АЭС вырабатывается 9 769 МВт электроэнергии;
    в Испании на АЭС вырабатывается 7 860 МВт электроэнергии;
    в Бельгии на АЭС вырабатывается 6 212 МВт электроэнергии;
    в Индии на АЭС вырабатывается 5 780 МВт электроэнергии;
    в Тайване на АЭС вырабатывается 5 178 МВт электроэнергии;
    в Чехии на АЭС вырабатывается 3 892 МВт электроэнергии;
    в Швейцарии на АЭС вырабатывается 3 430 МВт электроэнергии;
    в Финляндии на АЭС вырабатывается 2 820 МВт электроэнергии;
    в Болгарии на АЭС вырабатывается 2 000 МВт электроэнергии;
    в Венгрии на АЭС вырабатывается 2 000 МВт электроэнергии;
    в Бразилии на АЭС вырабатывается 1 990 МВт электроэнергии;
    в ЮАР на АЭС вырабатывается 1 880 МВт электроэнергии;
    в Словакии на АЭС вырабатывается 1 844 МВт электроэнергии;
    в Мексике на АЭС вырабатывается 1 364 МВт электроэнергии;
    в Румынии на АЭС вырабатывается 1 300 МВт электроэнергии;
    в Аргентине на АЭС вырабатывается 1 023 МВт электроэнергии;
    в Иране на АЭС вырабатывается 1 000 МВт электроэнергии;
    в Пакистане на АЭС вырабатывается 787 МВт электроэнергии;
    в Словении на АЭС вырабатывается 727 МВт электроэнергии;
    в Нидерландах на АЭС вырабатывается 515 МВт электроэнергии;
    в Армении на АЭС вырабатывается 408 МВт электроэнергии.
    Больше всего новых энергоблоков строится в Китае — 28 шт, в России — 10, в Индии — 6, в США — 5, в Южной Корее — 5, в Японии — 2, в ОАЭ — 2, в Пакистане — 2, в Словакии — 2, в Тайване — 2, в Украине — 2, в Франции — 1, в Финляндии — 1, в Бразилии — 1, в Белоруссии — 1 , в Бразилии — 1 и в Аргентине строится 1 новый энергоблок.

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *