Ядерные силы в атомном ядре могут проявляться как?

12 ответов на вопрос “Ядерные силы в атомном ядре могут проявляться как?”

  1. ALM33 Ответить

    Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).
    Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10–15 м. Длина (1,5 – 2,2)·10–15 м называется радиусом действия ядерных сил.
    Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нейтронного. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов другом. Например, ядра гелия и тяжелого водорода – трития . Энергии связи этих ядер составляют 7,72 МэВ и 8,49 МэВ.
    Разность энергий связи ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре . Полагая эту величину равной , можно найти, что среднее расстояние r между протонами в ядре равно 1,9·10–15 м, что согласуется с величиной радиуса ядерных сил.
    Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел A. Практически полное насыщение ядерных сил достигается у α-частицы, которая является очень устойчивым образованием.
    Ядерные силы зависят от ориентации спинов взаимодействующих нуклонов. Это подтверждается различным характером рассеяния нейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде. Ядерные силы не являются центральными.
    Итак, перечислим общие свойства ядерных сил:
    · малый радиус действия ядерных сил (R ~ 1 Фм);
    · большая величина ядерного потенциала U ~ 50 МэВ;
    · зависимость ядерных сил от спинов взаимодействующих частиц;
    · тензорный характер взаимодействия нуклонов;
    · ядерные силы зависят от взаимной ориентации спинового и орбитального моментов нуклона (спин-орбитальные силы);
    · ядерное взаимодействие обладает свойством насыщения;
    · зарядовая независимость ядерных сил;
    · обменный характер ядерного взаимодействия;
    · притяжение между нуклонами на больших расстояниях (r > 1 Фм), сменяется отталкиванием на малых (r < 0,5 Фм). взаимодействие между нуклонами возникает в результате испускания и поглощения квантов ядерного поляπ-мезонов. Они определяют ядерное поле по аналогии с электромагнитным полем, которое возникает как следствие обмена фотонами. Взаимодействие между нуклонами, возникающее в результате обмена квантами массы m, приводит к появлению потенциала Uя(r):
    .
    Для просмотра демонстраций щелкните по соответствующей гиперссылке:
    Деление ядер. Радиоактивность.
    Атомная электростанция.

    Энергия связи ядер. Дефект массы
    Радиоактивность

  2. felicss Ответить

    Решение задач по физике, подготовка к ЭГЕ и ГИА, механика термодинамика и др.
    Калькуляторы по физике

    Физика 7,8,9,10,11 класс, ЕГЭ, ГИА

    Основная информация по курсу физики для обучения и подготовки в экзаменам, ГВЭ, ЕГЭ, ОГЭ, ГИА
    Физика 7,8,9,10,11 класс, ЕГЭ, ГИА

    Физика атомного ядра. Энергия связи нуклонов в ядре.

    Энергией связи называется энергия, которую необходимо затратить для того, чтобы расщепить ядро .
    Физика атомного ядра. Энергия связи нуклонов в ядре.

    Физика атомного ядра. Ядерные реакции.

    Ядерные реакции — это процессы, идущие при столкновении ядер или элементарных частиц с другими ядрами, в результате которых изменяются квантовое состояние и нуклонный состав исходного ядра, а также появляются новые частицы среди продуктов реакции.
    Физика атомного ядра. Ядерные реакции.

    Физика атомного ядра. Состав ядра.

    Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами ).
    Физика атомного ядра. Состав ядра.

    Физика атомного ядра. Радиоактивность.

    Об открытии радиоактивности, альфа, бета и гамма лучах и радиоактивных превращениях.
    Физика атомного ядра. Радиоактивность.

  3. SSmann13 Ответить

    Обратимся к рассмотрению обменного взаимодействия между нуклонами. Существуют положительный , отрицательный и нейтральный мезоны. Модуль заряда – или – мезонов численно равен элементарному заряду e. Масса заряженных – мезонов одинакова и равна (140 МэВ), масса – мезона равна 264 (135 МэВ). Спин как заряженных, так и нейтральных – мезонов равен 0. Все три частицы нестабильны. Время жизни – и – мезонов составляет 2,6 с, – мезона – 0,8·10-16 с. Взаимодействие между нуклонами осуществляется по одной из следующих схеме:
    (22.6)
    (22.7)
    1. Нуклоны обмениваются мезонами: . (22.8)
    В этом случае протон испускает – мезон, превращаясь в нейтрон. Мезон поглощается нейтроном, который вследствие этого превращается в протон, затем такой же процесс протекает в обратном направлении. Таким образом, каждый из взаимодействующих нуклонов часть времени проводит в заряженном состоянии, а часть в нейтральном.
    2. Нуклоны обмениваются – мезонами:
    . (22.9)
    3. Нуклоны обмениваются – мезонами:
    , (22.10)
    Все эти процессы доказаны экспериментально. В частности, первый процесс подтверждается при прохождении пучка нейтронов через водород. В пучке появляются движущиеся протоны, а соответствующее число практически покоящихся нейтронов обнаруживается в мишени.
    Модели ядра. Под моделью ядра в ядерной физике понимают совокупность физических и математических предположений с помощью которых можно рассчитать характеристики ядерной системы, состоящей из А нуклонов.
    Гидродинамическая (капельная) модель ядраВ ее основу положено предположение о том, что благодаря большой плотности нуклонов в ядре и чрезвычайно сильному взаимодействию между ними независимое движение отдельных нуклонов является невозможным и ядро представляет собой каплю заряженной жидкости плотностью .
    Оболочечная модель ядра В ней предполагается, что каждый нуклон движется независимо от других в некотором среднем потенциальном поле (потенциальной яме , создаваемом остальными нуклонами ядра.
    Обобщённая модель ядра, объединяет основные положения создателей гидродинамической и оболочечной моделей. В обобщенной модели предполагается, что ядро состоит из внутренней устойчивой части – остова, который образован нуклонами заполненных оболочек, и внешних нуклонов, движущихся в поле, создаваемом нуклонами остова. В связи с этим движение остова описывается гидродинамической моделью, а движение внешних нуклонов – оболочечной. За счет взаимодействия с внешними нуклонами остов может деформироваться, а ядро – вращаться вокруг оси, перпендикулярной оси деформации.
    26. Реакции деления атомных ядер. Ядерная энергетика.
    Ядерными реакциями называются превращения атомных ядер, вызванные их взаимодействием друг с другом или с другими ядрами или элементарными частицами. Первое сообщение о ядерной реакции принадлежит Э.Резерфорду. В 1919г он обнаружил, что когда – частицы проходят через газообразный азот, некоторые из них поглощаются, причем одновременно происходит испускание протонов. Резерфорд пришел к выводу, что ядра азота превращались в ядра кислорода в результате ядерной реакции вида:
    , (22.11)
    где – частица; − протон ( водород).
    Важным параметром ядерной реакции является ее энергетический выход , который определятся по формуле:
    (22.12)
    Здесь и – суммы масс покоя частиц до реакции и после нее. При ядерные реакции протекают с поглощением энергии, поэтому они называются эндотермическими,а при − с выделением энергии. В этом случае они называются экзотермическими.
    В любой ядерной реакции всегда выполняются законы сохранения:
    электрического заряда;
    − числа нуклонов;
    − энергии;
    − импульса.
    Первые два закона позволяют правильно записывать ядерные реакции даже в тех случаях, когда одна из частиц, участвующих в реакции, или один из его продуктов неизвестны. С помощью законов сохранения энергии и импульса можно определить кинетические энергии частиц, которые образуются в процессе реакции, а также направления их последующего движения.
    Для характеристики эндотермических реакций вводится понятие пороговая кинетическая энергия, или порог ядерной реакции , т.е. наименьшая кинетическая энергия налетающей частицы (в системе отсчета, где ядро-мишень покоится), при которой ядерная реакция становится возможной. Из закона сохранения энергии и импульса следует, что пороговая энергия ядерной реакции рассчитывается по формуле:
    . (22.13)
    Здесь – энергия ядерной реакции (7.12); -масса неподвижного ядра – мишени; − масса налетающей на ядро частицы.
    Реакции деления.В 1938г немецкие ученые О. Ган и Ф. Штрассман обнаружили, что при бомбардировке урана нейтронами иногда возникают ядра приблизительно вдвое меньшие, чем исходное ядро урана. Это явление было названо делением ядра.
    Оно представляет собой первую экспериментально наблюдаемую реакцию ядерных превращений. Примером может служить одна из возможных реакций деления ядра урана-235:
    . (22.14)
    Процесс деления ядер протекает очень быстро за время ~10-12 с. Энергия, которая выделяется в процессе реакции типа (22.14), составляет примерно 200 МэВ на один акт деления ядра урана-235.
    В общем случае реакцию деления ядра урана–235 можно записать в виде:
    +нейтроны. (22.15)
    Объяснить механизм реакции деления можно в рамках гидродинамической модели ядра. Согласно этой модели при поглощении нейтрона ядром урана оно переходит в возбужденное состояние (рис. 22.2).
    Избыточная энергия, которую получает ядро вследствие поглощения нейтрона, вызывает более интенсивное движение нуклонов. В результате ядро деформируется, что приводит к ослаблению короткодействующего ядерного взаимодействия. Если энергия возбуждения ядра больше некоторой энергии, называемой энергией активации, то под влиянием электростатического отталкивания протонов ядро расщепляется на две части, с испусканием нейтронов деления. Если энергия возбуждения при поглощении нейтрона меньше энергии активации, то ядро не доходит до
    критической стадии деления и, испустив – квант, возвращается в основное
    состояние.

    Рис. 22.2
    Важной особенностью ядерной реакции деления является возможность реализовать на ее основе самоподдерживающуюся цепную ядерную реакцию. Это обусловлено тем, что при каждом акте деления выделяется в среднем больше одного нейтрона. Масса, заряд и кинетическая энергия осколков Х и У, образующихся в процессе реакции деления типа (22.15), различны. Эти осколки быстро тормозятся средой, вызывая ионизацию, нагревание и нарушение ее структуры. Использование кинетической энергии осколков деления за счет нагревания ими среды является основой превращения ядерной энергии в тепловую. Осколки деления ядра находятся после реакции в возбужденном состоянии и переходят в основное состояние путем испускания β – частиц и –квантов.
    Управляемая ядерная реакция осуществляется в ядерном реакторе и сопровождается выделением энергии. Первый ядерный реактор был построенв 1942 г в США под руководством физика Э.Ферми. В СССР первый ядерный реактор создан в 1946 г под руководством И. В. Курчатова. Затем, после накопления опытов управления ядерными реакциями, начали строить атомные электростанции.

  4. Бербер Ответить

    На рис. выше показано, что в атоме водорода ядро ​​и электрон очень далеки друг от друга, в том смысле, что атом гораздо больше, чем ядро (а электрон еще меньше.) Но в дейтроне расстояние между протоном и нейтроном сравнимо с их размерами. Это отчасти объясняет, почему ядерные силы являются гораздо более сложными, чем силы в атоме.
    Известно, что электроны имеют небольшую массу по сравнению с протонами и нейтронами. Отсюда следует, что
    масса атома, по существу близка к массе его ядра,
    размер атома (по существу размер электронного облака) обратно пропорционален массе электронов и обратно пропорционален общей электромагнитной силе; принцип неопределенности квантовой механики играет решающую роль.

    А если ядерные силы аналогичны электромагнитным

    Что же с дейтроном? Он так же, как и атом, сделан из двух объектов, но они почти одинаковой массы (массы нейтрона и протона отличаются лишь части примерно на одну 1500-ю часть), так что обе частицы в равной степени важны в определении массы дейтрона и его размера. Теперь предположим, что ядерная сила тянет протон к нейтрону так же, как электромагнитные силы (это не совсем так, но представьте себе, на мгновение); а затем, по аналогии с водородом, мы ожидаем, размер дейтрона обратно пропорциональным массе протона или нейтрона, и обратно пропорциональным величине ядерной силе. Если ее величина была такой же (на определенном расстоянии), как у электромагнитной силы, то это будет означать, что так как протон примерно в 1850 раз тяжелее электрон, то дейтрон (и действительно любое ядро) должно быть по крайней мере в тысячу раз меньше, чем у водорода.

    Что дает учет существенной разницы ядерных и электромагнитных сил

    Но мы уже догадались, что ядерная сила намного больше электромагнитной (на том же расстоянии), потому что, если это не так, она была бы не в состоянии предотвратить электромагнитное отталкивание между протонами вплоть до распада ядра. Так что протон и нейтрон под ее действием сближаются вместе еще более плотно. И поэтому не удивительно, что дейтрон и другие ядер не просто в одну тысячу, но в сто тысяч раз меньше, чем атомы! Опять же, это только потому, что
    протоны и нейтроны почти в 2000 раз тяжелее, чем электроны,
    на этих расстояниях, большая ядерная сила между протонами и нейтронами в ядре во много раз больше, чем соответствующие электромагнитные силы (в том числе электромагнитного отталкивания между протонами в ядре.)
    Эта наивная догадка дает примерно правильный ответ! Но это не полностью отражает сложность взаимодействия между протоном и нейтроном. Одна из очевидных проблем состоит в том, что сила, подобная электромагнитной, но с большей притягивающей или отталкивающей способностью, должна очевидно проявляться в повседневной жизни, но мы не наблюдаем ничего подобного. Так что, что-то в этой силе должно отличаться от электрических сил.

    Короткий диапазон ядерной силы

    Что их отличает, так это то, что удерживающие от распада атомное ядро ядерные силы являются очень важными и большими для протонов и нейтронов, находящихся на очень коротком расстоянии друг от друга, но на определенном расстоянии (так называемом “диапазоне” силы), они падают очень быстро, гораздо быстрее, чем электромагнитные. Диапазон, оказывается, может также быть размером с умеренно большое ядро, только в несколько раз больше, чем протон. Если поместить протон и нейтрон на расстоянии, сравнимом с этим диапазоном, они будут притягиваться друг к другу и образуют дейтон; если их разнести на большее расстояние, они едва ли будут ощущать какое-либо притяжение вообще. На самом деле, если их поместить слишком близко друг к другу, так, что они начнут перекрываться, то они будут на самом деле отталкиваются друг от друга. В этом и проявляется сложность такого понятия, как ядерные силы. Физика продолжает непрерывно развиваться в направлении объяснения механизма их действия.

    Физический механизм ядерного взаимодействия

    У всякого материального процесса, включая и взаимодействие между нуклонами, должны быть материальные же переносчики. Ими являются кванты ядерного поля – пи-мезоны (пионы), из-за обмена которыми и возникает притяжение между нуклонами.
    Согласно принципам квантовой механики, пи-мезоны, то и дело возникая и тут же исчезая, образуют вокруг «голого» нуклона что-то вроде облака, называемого мезонной шубой (вспомните об электронных облаках в атомах). Когда два нуклона, окруженные такими шубами, оказываются на расстоянии порядка 10-15 м, происходит обмен пионами подобно обмену валентными электронами в атомах при образовании молекул, и между нуклонами возникает притяжение.
    Если же расстояния между нуклонами становятся меньше 0,7∙10-15 м, то они начинают обмениваться новыми частицами – т.наз. ω и ρ-мезонами, вследствие чего между нуклонами возникает не притяжение, а отталкивание.

    Ядерные силы: строение ядра от простейшего к большему

    Резюмируя все вышесказанное, можно отметить:
    сильное ядерное взаимодействие гораздо, гораздо слабее, чем электромагнетизм на расстояниях, значительно больших, чем размер типичного ядра, так что мы не сталкиваемся с ним в повседневной жизни; но
    на коротких расстояниях, сравнимых с ядром, оно становится гораздо сильнее – сила притяжения (при условии, что расстояние не слишком короткое), способна преодолеть электрическое отталкивание между протонами.
    Итак, эта сила имеет значение только на расстояниях, сравнимых с размерами ядра. На рисунке ниже показан вид ее зависимости от расстояния между нуклонами.

    Большие ядра удерживаются вместе с помощью более или менее той же силы, что держит дейтрон вместе, но детали процесса усложняются, так что их непросто описать. Они также не в полной мере понятны. Хотя основные очертания физики ядра были хорошо изучены в течение десятилетий, многие важные детали все еще активно исследуются.

  5. losinluk Ответить

    В результате исследования атомного ядра Э. Резерфорд в 1911 г. был открыт протон, частица с положительным электрическим зарядом, равным модулю заряда электрона.
    В 1932 г. Д. Чедвик делает открытие новой частицы близкой по массе протону, но не имеющей электрического заряда. Частицу назвали нейтроном.
    В этом же году советский физик Д. Иваненко и немецкий физик В. Гейзенберг предложили протонно-нейтронную (нуклонную) модель атомного ядра. В соответствие с этой моделью ядро состоит из протонов (Z) и нейтронов (N). В атоме число протонов равно числу электронов. Атом электрически нейтрален.
    Протоны и нейтроны (нуклоны) в ядре взаимодействуют между собой силами особой природы – ядерными силами. Ядерные силы превышают действие кулоновских сил почти в 100 раз и проявляют себя на очень малых расстояниях.
    Для полного расщепления ядра на нуклоны нужно затратить очень большую энергию, равную энергии связи ядра. Мерой энергии связи атомного ядра является дефект масс – разность суммарной массы всех нуклонов ядра в свободном состоянии и массой ядра.
    При взаимодействии атомных ядер с элементарными частицами, обладающими большой кинетической энергией, возникают ядерные реакции. В результате таких реакций происходят изменения атомных ядер.
    Особый интерес представляют ядерные реакции с нейтронами. В 1938 г. немецкие ученые О. Ган и Ф. Штрассман открыли деление ядер урана при захвате ими нейтронов. Рождаемая в ходе деления лавина новых нейтронов ведет к развитию цепной ядерной реакции с выделением огромной энергии. Первое применение такая реакция нашла в атомной бомбе.
    Также реакции с выделением колоссальной энергии идут при слиянии (синтезе) легких ядер. Реакции синтеза протекают при очень высоких температурах. Поэтому их еще называют термоядерными реакциями. Самоподдерживающие термоядерные реакции протекают в недрах звезд.

  6. crazy_axl Ответить

    Состав ядра атома
    В 1932г. после открытия  протона и нейтрона учеными Д.Д. Иваненко (СССР) и В. Гейзенберг (Германия) предложили  протонно-нейтронную модель атомного ядра.
    Согласно этой модели ядро состоит из протонов и нейтронов. Общее число нуклонов (т. е. протонов и нейтронов) называют массовым числом A:  A = Z + N. Ядра химических элементов обозначают символом :
      X  – химический символ элемента.
    Например,  – водород,  – кислород,  – уран.
    Для характеристики атомных ядер вводится ряд обозначений. Число протонов, входящих в состав атомного ядра, обозначают символом и называют зарядовым числом (это порядковый номер в периодической таблице Менделеева). Заряд ядра равен Ze, где e – элементарный заряд. Число нейтронов обозначают символом N.
    Ядерные силы
    Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удерживающие нуклоны в ядре, называются ядерными. Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы примерно в 100 раз превосходят электростатические силы и на десятки порядков превосходят силы гравитационного взаимодействия нуклонов.
    Ядерные силы обладают следующими свойствами:
    обладают силами притяжения;
    является силами короткодействующими (проявляются на малых расстояниях между нуклонами);
    ядерные силы не зависят от наличия или отсутствия у частиц электрического заряда.
    Дефект массы и энергия связи ядра атома
    Важнейшую роль в ядерной физике играет понятие энергии связи ядра.
    Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.
    Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра Mя всегда меньше суммы масс входящих в его состав протонов и нейтронов:  
    Разность масс  называется дефектом масс. По дефекту массы с помощью формулы Эйнштейна E = mc2 можно определить энергию, выделившуюся при образовании данного ядра, т. е. энергию связи ядра Eсв:  
    Эта энергия выделяется при образовании ядра в виде излучения γ-квантов.
    Ядерная энергетика
    В нашей стране была построена первая в мире атомная электростанция и запущена в 1954 году в СССР, в городе Обнинске. Развивается строительство мощных атомных электростанций. В настоящее время в России 10 действующих АЭС. После аварии на Чернобыльской АЭС приняты дополнительные меры по безопасности атомных реакторов.
    Преимущества АЭС:
    практическая независимость от источников топлива из-за небольшого объёма используемого топлива;
    экологическая чистота при правильной эксплуатации.
    Проблемы ядерной энергетики:
    тяжелые последствия аварий;
    радиоактивные отходы;
    тепловое загрязнение;
    содействие распространению ядерного оружия.
    Схема работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР)
    атомная электроэнергетика

  7. ink_01 Ответить


    (1.9.2)
    Ядерное взаимодействие между ядром и частицей аппроксимируется отвесной линией. Нейтроны не имеют электрического заряда и потому беспрепятственно сближаются с ядрами, т.е. для них отсутствует кулоновский барьер (жирная горизонтальная линия на рис. 1.9.1б в области r > R). Ядерный потенциал у нейтрона оказывается таким же (с точностью до различия в массах), как и у протона (см. ниже п.5).
    4. Ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов и от взаимной ориентации орбитального и спинового моментов каждого из нуклонов. Это означает, что внутри ядра следует учитывать спин-орбитальное взаимодействие нуклонов. Зависимость ядерных сил от спина хорошо видна на примере дейтона, который имеет спин, равный единице, т.е. нейтрон и протон могут существовать в связанном состоянии только при параллельных спинах. При антипараллельных спинах нейтрон и протон не образует связанной системы, но притяжение между ними все же существует, что приводит к значительной эффективности рассеяния нейтронов на протонах. Поэтому рассеяние нейтронов на водородосодержащих средах оказывается также эффективным и широко используется для замедле­ния нейтронов в ядерных реакторах.
    Если нуклоны одноименные, то наибольшее притяжение между ними наблюдается в случае антипараллельной ориентации их спинов, а для разноименных нуклонов – в случае параллельной ориентации спинов. Как раз этой особенностью объясняется эффект спаривания нуклонов (см. §1.4 п.3).
    5. Интенсивность ядерного взаимодействия не зависит от электрического заряда нуклонов. Ядерные силы, действующие между двумя протонами (р – р), протоном и нейтроном (р – n) и двумя нейтронами (n – n), находящихся в одинаковых пространственных и спиновых состояниях, одинаковы по величине. Это свойство называется зарядовой независимостью ядерных сил. Другими словами, протон и нейтрон оказываются равноправными относительно ядерного взаимодействия. Это, конечно, не означает, что взаимное кулоновское отталкивание протонов не играет роли внутри ядра или при рассеянии двух свободных протонов. На рис. 1.9.2 изображена схема энергетических уровней двух зеркальных ядер и . Зеркальными называются ядра изобаров, количество протонов в одном из которых равно количеству нейтронов в другом и наоборот. В зеркальных ядрах число (р – n) связей остается постоянным, а (р – р) связи заменены на (n – n) связи. Энергии основных состояний у них сдвинуты друг относительно друга на величину разности ΔUкул кулоновской энергии ядер и разность Δmнук нуклонов (mn > mp)

    (1.9.3)
    Из рисунка видно, что соответствующие уровни энергии (энергетические спектры ядер) очень близки, а спины и четности уровней совпадают. Однако, строго говоря, приведенная информация не является прямым доказательством зарядовой независимости ядерных сил, так как сопоставляются не процессы парных взаимодействий между нуклонами отдельных типов, а рассматриваются свойства сложных нуклонных систем. Непосредственное доказательство гипотезы о зарядовой независимости ядерных сил получено в прямых опытах по изучению (р – р) и (n – р) рассеяния.
    6. Постоянство средней энергии связи на нуклон (рис. 1.4.2) указывает на свойство насыщения ядерных сил. Это означает, что каждый нуклон в ядре взаимодействует с ограниченным числом соседних нуклонов. Свойство насыщения ядерных сил имеет парный характер. Например, пара нейтронов и пара протонов образует одно из самых прочных легких ядер – aчастицу. Присоединение еще одного нейтрона к a-частице оказывается невозможным.
    7. Ядерные силы имеют нецентральный характер. Центральными называются силы, которые действуют вдоль прямой, соединяющей взаимодействующие тела. Центральные силы могут зависеть от относительной ориентации спинов частиц, но не должны зависеть от ориентации спинов относительно линии, соединяющей частицы. Рассмотрим некоторые свойства простейшего ядра , которое имеет такое же значение в ядерной физике, как атом водорода – в атомной физике. Спины нейтрона и протона в дейтоне параллельны (см. п.4), поэтому магнитный момент дейтона должен определяться алгебраической сумме магнитных моментов протона и нейтрона, равной μd + μd = 2,79 – 1,91 = 0,88. Измеренное значение магнитного момента дейтона μd = 0,86 (см. таблицу 1.6.1) немного отличается, хотя величина расхождения намного превышает точность измерений. Различие можно объяснить только наличием у протона орбитального момента. Дейтон имеет квадрупольный момент +0,0028·10‑24 см2 (таблица 1.6.2), т.е. распределение плотности электрического заряда (а следовательно и ядерного вещества) отлично от сферически симметричного и вытянуто вдоль спина. Таким образом, система из протона и нейтрона имеет наибольшую энергию связи только тогда, когда спины обоих нуклонов направлены вдоль оси дейтона. Это свидетельствует о том, что ядерные силы в общем случае имеют нецентральный характер, так как они зависят не только от расстояния между нуклонами, но и от ориентации спинов относительно линии, соединяющей нуклоны. Макроскопическим аналогом такого явления служит характер взаимодействия между двумя одинаково намагниченными шариками (рис. 1.9.3). При параллельных векторах магнитной индукции каждого из шариков между ними могут действовать как силы притяжения, так и отталкивания, в зависимости от ориентации векторов магнитной индукции относительно вектора, проходящего через центры инерции шариков.
    8. Ядерные силы имеют обменный характер. Это означает, что взаимодействие между двумя нуклонами вызвано обменом третьей частицей – пи-мезоном. Такую гипотезу высказали в 1934 г. И. Тамм и в 1935 г. Х. Юкава по аналогии с представлением о взаимодействии между электрическими зарядами, принятым в квантовой электродинамике. Взаимодействие между зарядами осуществляется через электромагнитное поле, которое может быть представлено как совокупность квантов энергии – фотонов. Каждый заряд создает вокруг себя поле, непрерывно испуская и поглощая фотоны. Процесс взаимодействия между двумя зарядами заключается в обмене виртуальными, а не реальными фотонами. В квантовой механике виртуальными называются частицы, которые не могут быть обнаружены за время их существования. Рассмотрим на примере покоящегося электрона процесс создания им в окружающем пространстве электрического поля:

    (1.9.4)
    Превращение, описываемое уравнением (1.9.4), сопровождается нарушением закона сохранения энергии:

    (1.9.5)
    где – энергия виртуального фотона. Изменение энергии системы должно удовлетворять квантовомеханическому соотношению неопределенностей:

    (1.9.6)
    Если до истечения времени

    (1.9.7)
    виртуальный фотон будет поглощен этим же или другим электроном, то нарушение закона сохранения энергии не может быть обнаружено. Если же электрону сообщить дополнительную энергию (от электрического поля или при соударении с другим зарядом), то может быть испущен реальный фотон, время существования которого неограниченно.
    За время виртуальный фотон может передать взаимодействие между точками, разделенных расстоянием

    (1.9.8)
    Так как энергия виртуального фотона может быть сколь угодно мала (если ), то радиус действия электромагнитных сил неограничен. Однако, если масса покоя виртуальной частицы отлична от нуля, то радиус взаимодействия соответствующих сил будет ограничен величиной (предполагая, что ее скорость )

    (1.9.9)
    Полагая в (1.9.9) радиус r действия ядерных сил равным 1,3·10-13 см, получим, что кванты поля ядерных сил должны иметь массу покоя Таким образом, для образования свободных (не виртуальных) квантов ядерного поля необходима энергия не менее 140 Мэв. Эти частицы были впоследствии открыты в составе космических лучей (1947 г., Оккиалини и Поуэлл) и были названы π-мезонами (пионами).
    Существует три типа пионов – положительный (π+) пион с зарядом +е, отрицательный (π-) с зарядом –е и нейтральный (π0). Все три частицы нестабильны. Заряженные пионы имеют одинаковую массу, равную 273mе (140 МэВ), и время жизни τ = 2,55·10-8 с. Масса нейтрального пиона составляет 264mе (135 МэВ), а время жизни τ = 2,1·10-16 с. Спин любого из пиона равен нулю.
    В результате аналогичных (1.9.4) виртуальных процессов

    (1.9.10)

    (1.9.11)

    (1.9.12)
    нуклон оказывается окруженным облаком виртуальных π-мезонов, которые образуют поле ядерных сил. Поглощение этих пионов другими нуклонами приводит к сильному взаимодействию между нуклонами и происходит по одной из следующих схем:

    (1.9.13)

    (1.9.14)

    (1.9.15)
    Процесс (1.9.13) находит экспериментальное подтверждение в рассеянии нейтронов на протонах. После прохождения пучка нейтронов через мишень, содержащую ядра 1Н, в пучке появляются протоны, которые имеют ту же энергию и направление движения, что и падающие нейтроны. Количество таких протонов намного превышает возможность образования протонов в результате упругого взаимодействия нейтронов с протонами мишени. Соответствующее количество нейтронов обнаруживается и в мишени. Остается признать, что часть нейтронов, пролетая вблизи ядер 1Н захватывает виртуальные π+-мезоны и превращается в протоны.
    Орбитальное движение π –мезонов в виртуальном процессе (1.9.11) вызывает возникновение у нейтрона отрицательного магнитного момента (см. таб. 1.6.1), так как нейтрон часть времени проводит в виртуальном состоянии . Аномальный магнитный момент протона (вместо одного ядерного магнетона, см. §1.6 п.2) можно также объяснить орбитальным движением π+-мезонов в течение того времени, когда протон находится в виртуальном состоянии (1.9.10).
    Оценим время виртуального процесса как

    (1.9.16)
    где радиус действия ядерных сил, а v – скорость пиона. Полагая кинетическую энергию пиона равной средней энергии связи нуклона в ядре МэВ, получим

    (1.9.17)
    Эту величину часто называют характерным временем ядерного взаимодействия.
    В рамках обменной теории оказывается маловероятным обмен пионами между одним и двумя другими нуклонами, находящимися в пределе радиуса действия ядерных сил. Отсюда вытекает свойство насыщения ядерных сил со всеми вытекающими последствиями: постоянство удельной энергии связи, рост объема ядра пропорционально числу частиц нуклонов в ядре, независимость потенциала от координаты внутри ядра. Мезонная теория содержит в своей основе глубокое и правильное описание природы ядерных сил, но выяснилось, что расчеты в этой теории настолько сложны, что никому еще не удалось их проделать. И до настоящего времени не существует надежных способов решения уравнений этой теории. Это является одной из причин создания большого числа разнообразных моделей ядра в ядерной физике (см. гл.2 §1).

  8. Android-I Ответить

    Особенности ядерных сил. Огромная энергия связи нукло­нов в ядрах (по сравнению с энергией связи электронов в атоме) означает, что между нуклонами действуют мощные ядерные силы притяжения, по сравнению с которыми электромагнит­ные силы отталкивания в сотни раз слабее.
    Отличительными особенностями ядерных сил являются сле­дующие.
    1.Эти силы являются короткодействующими с радиусом дей­ствия ~10-13 см. На существенно меньших расстояниях при­тяжение нуклонов сменяется их отталкиванием.
    2.Они обладают зарядовой независимостью, что проявляется в одинаковости сил взаимодействия нуклонов п—п, р-р, п—р.
    3.Эти силы не являются центральными. Их, образно говоря, нельзя представить направленными вдоль прямой, проходя­щей через центры взаимодействующих нуклонов.
    4.Обладают свойством насыщения: каждый нуклон в ядре взаи­модействует с ограниченным числом ближайших нуклонов.Это проявляется практически в независимости удельной энер­гии связи от массового числа А.
    Механизм взаимодействия нуклонов. Согласно классической физике взаимодействие между частицами осуществляется по­средством силовых полей. Так, покоящийся электрический за­ряд создает вокруг себя электрическое поле, которое воздейст­вует на другой заряд с некоторой силой.
    Квантовая физика не изменила такое представление, но учла квантовые свойства самого поля: всякому полю должна соот­ветствовать определенная частица — квант поля, которая и является переносчиком взаимодействия. Одна из взаимодейст­вующих частиц испускает квант поля, другая его поглощает. В этом и состоит механизм взаимодействия частиц. Существенно, что обмен частицами лежит в основе вообще всех взаимодейст­вий частиц и является фундаментальным квантовым свойством природы (например, электромагнитные взаимодействия осуще­ствляются путем обмена фотонами).
    При взаимодействии нуклонов квантами поля являются π-мезоны, существование которых было предсказано Юкавой (1935). По его оценке эти частицы занимали промежуточное положе­ние по массе между электроном и нуклоном. И такие частицы были экспериментально обнаружены.
    Квантовая природа подобных процессов взаимодействия за­ключается в том, что они могут происходить только благодаря со­отношению неопределенностей. По классическим законам такие процессы идти не могут в связи с нарушением закона сохранения энергии.
    Квантовая теория этот запрет устраняет. Согласно соотношению неопределенностей энергия—время ис­пущенный π-мезон с энергией mπс2 (а это есть величина Е ) мо­жет существовать только конечное время, которое не больше, чем

    По истечении этого времени π-мезон поглощается испустившим его нуклоном. Расстояние, на которое π-мезон удаляется от нуклона, при этом составляет

  9. Сергей1706 Ответить

    Многие ядра устойчивы по отношению к одним видам распада и неустойчивы к другим. Нуклиды, ядра которых устойчивы по отношению к любым видам распада, называются стабильными.
    С увеличением Z все более начинает проявляться разрыхляющее действие протонов, вследствие чего в атомах тяжелых ядер начинает наблюдаться избыток нейтронов. У элементов, начиная с Z82 ядерные силы притяжения уже не способны обеспечить полную устойчивость ядер. Такое ядро стремится перейти в стабильное состояние. В результате чего происходят процессы их внутренней перестройки.
    Способность ядер или их возбужденных состояний спонтанно, самопроизвольно переходить в другие с меньшей энергией, испуская частицы или кванты, называется радиоактивным распадом, а явление испускания ядрами частиц или гамма – квантов, называется радиоактивностью.
    При этом при переходе ядра в более стабильное состояние нейтроны переходят в протоны с испусканием электрона (бета-распад). Если в ядре будет недостаток нейтронов (отношение N / Z лежит ниже области стабильности), то неустойчивость ядер определяется кулоновскими силами отталкивания. В этом случае переход в устойчивое состояние обычно реализуется путем испускания ядром альфа – частиц, состоящих из 2 нейтронов и двух протонов. Для более легких ядер переход в более устойчивое состояние ядра может осуществляться путем превращения протона в нейтрон и испусканием позитрона и нейтрино.

    Ядерные силы

    Нуклоны в атомных ядрах, несмотря на электростатическое отталкивание существующее между протонами, очень сильно связаны между собой. Об этом свидетельствует высокая стабильность ядер и тот факт, что для расщепления ядра требуется чрезвычайно высокая энергия. Следовательно, при взаимодействии между протонами и нейтронами проявляются особые силы притяжения, намного превосходящие по величине кулоновские. Эти силы называют ядерными силами. Некоторые свойства ядерных сил:
    1. Ядерные силы очень велики и действуют на очень коротких расстояниях (радиус их действия ограничен размерами ядер, 10-15м);
    2. Особенностью ядерных сил является их избирательность. Они действуют только между нуклонами;
    3. Каждый нуклон взаимодействует не со всеми нуклонами, находящимися в ядре, а только с несколькими соседними (свойство насыщения).

  10. marade43rus Ответить

    Удельная энергия связи – средняя энергия, приходящаяся на 1 нуклон: . (4)
    Для большинства ядер удельная энергия связи почти одинакова и ~ 8 МэВ. Поэтому полная энергия связи примерно пропорциональна массовому числу, т.е. числу нуклонов в ядре. Это говорит о свойстве ядерных сил, называемом насыщением. Оно заключается в том, что каждый нуклон взаимодействует только с ограниченным числом соседних нуклонов.
    Нуклоны в ядре удерживаются специфическими ядерными силами, которые являются проявлением сильного взаимодействия. Ядерные силы обладают следующими свойствами:
    – являются короткодействующими, радиус их действия 10–14 м;
    – самые интенсивные, они на 2-3 порядка мощнее электромагнитных сил. Ядерные силы обеспечивают существование ядер с удельной энергией связи около 8 МэВ.
    – Обладают свойством насыщения. Это проявляется в том, что в ядре протон может образовывать связанное состояние не более, чем с двумя нейтронами. По этой причине изотоп водорода тритий уже нестабилен.
    – Обладают зарядовой независимостью, т. е. силы, действующие между протоном и нейтроном, протоном и протоном, нейтроном и нейтроном одинаковы. Это свойство не означает полную тождественность систем р – р, п – п, р – п, так как протоны и нейтроны являются фермионами и системы р – р, п – п состоят из тождественных частиц, а система р – п – из разных.
    – Имеют обменный характер. При взаимодействии нуклоны могут обмениваться своими координатами, зарядами, проекциями спинов.
    – Зависят от спина нуклонов. На эту зависимость указывает тот факт, что нет состояния дейтрона со спином 0. Т.е. спины протона и нейтрона в этом состоянии только параллельны.
    – Являются нецентральными, т. е. зависят от ориентации спинов нуклонов относительно прямой , соединяющей нуклоны.
    В 1935 г. японский физик Х. Юкава высказал гипотезу, что ядерное взаимодействие есть результат обмена нуклонов виртуальной частицей. Эти частицы должны иметь массу больше массы электрона, но меньше массы протона, поэтому их назвали мезонами. (От греч. mesos – промежуточный, средний). Мезоны стали искать экспериментально. В 1947 году они были обнаружены в космическом излучении. Эти частицы назвали пи-мезонами (от англ. рrimary – первичный). Сейчас эти частицы именуют более кратко – пионы. Пион существует в виде p0, p–, p+.
    Пи-мезоны играют важную роль при нуклон-нуклонном взаимодействии на расстояниях 1,5–2 Фм. Суть мезонной теории ядерных сил следующая. Два нуклона, находясь на расстояниях r £ h/2mpc, обмениваются пионами, что является причиной ядерного взаимодействия. Возможны 4 типа обмена:
    p « p + p0, (5)
    n « n + p0, (6)
    p « n + p+, n « p + p–, (7)
    при которых нуклоны оказываются окруженными облаком виртуальных пионов, образующих поле ядерных сил. Поглощение мезонов другим нуклоном приводит к сильному взаимодействию между нуклонами.
    На расстояниях меньше 1,5 Фм нуклоны обмениваются более тяжелыми мезонами: h (549 МэВ), r(770 МэВ), w(782 МэВ), которые определяют отталкивание нуклонов.

Добавить комментарий для losinluk Отменить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *