Чем отличается упругость древесины от ее прочности?

19 ответов на вопрос “Чем отличается упругость древесины от ее прочности?”

  1. bImAn26rus Ответить

    Упругость и пластичность
    Упругостью называется способность материала восстанавливать свою первоначальную форму после прекращения действия нагрузки. Древесина является довольно упругим материалом. Поэтому подкладки под наковальни ручных и механических молотов, ручки к инструментам ударного действия, ружейные ложа делают из дерева.
    Упругость зависит от влажности, объемного веса, прямослойности древесины, от количества и размеров сердцевинных лучей в ней, а также от возраста дерева. Повышение влажности упругость снижает. Большей упругостью обладает древесина тяжелая и плотная по сравнению с легкой; прямослойная — по сравнению со свилеватой; зрелая — с молодой; ядровая — с заболонной. Значительная упругость древесины хвойных пород при сравнительно небольшом ее объемном весе объясняется прямослойностью ее строения, так как очень мелкие, в большинстве своем однорядные сердцевинные лучи не вызывают значительного искривления волокон.
    Пластичность — свойство материала изменять форму под действием нагрузки без разрушения и сохраняться в измененном состоянии после прекращения действия сил. Оно зависит от тех же условий, что и упругость, но действие их на пластичность обратное. Условия, понижающие упругость, увеличивают пластичность, и наоборот. Особенно сильно повышает пластичность увлажнение и нагревание древесины паром (пропарка) или горячей водой (проварка).
    Высокой пластичностью отличаются бук, вяз, дуб, ясень. Пластичность древесины хвойных пород, отличающихся прямослойностью строения, незначительна.
    Хрупкость, вязкость и раскалываемость
    Хрупкость — свойство материала разрушаться под действием механических сил внезапно, без значительного изменения формы. Совершенно хрупкой древесины нет. Это объясняется ее волок¬нистым строением. Наиболее хрупкой является древесина ольхи.
    Вязкость — свойство, обратное хрупкости. Чем больше остаточные деформации древесины под действием механических сил, тем вязкость ее выше.
    Показателем вязкости и хрупкости древесины является сопротивление ее ударному изгибу. Древесина лиственных пород, как правило, оказывает сопротивление ударному изгибу в 1,5—3 раза больше, чем древесина хвойных пород.
    Раскалываемость — это способность древесины расщепляться вдоль волокон под действием клина. Упругость древесины улучшает ее раскалываемость, а вязкость снижает.
    При повышенной влажности древесина раскалывается легче. Однако при очень высокой влажности древесина мягких пород в результате снижения ее упругости раскалывается плохо. Легко раскалывается мерзлая древесина.
    Упругая с мелкими сердцевинными лучами древесина хвойных пород (особенно ель и пихта) легко раскалывается в радиальном и тангентальном направлениях. Сильно развитые сердцевинные лучи облегчают радиальное раскалывание, но затрудняют тангентальное. Легко раскалываются также бук, каштан, осина, липа, а в радиальном направлении — дуб.
    Твердость и износостойкость
    Твердостью называется свойство материала оказывать сопротивление проникновению твердых тел. Твердость торцевой поверхности ствола больше, чем твердость радиального и тангентального разрезов. Так, у лиственных пород эта разница в среднем составляет 30 %, а у хвойных — 40 %. Твердость древесины прямо пропорциональна ее объемному весу, но значительно снижается при увлажнении.
    На практике все породы подразделяются на твердые и мягкие. К твердым относятся дуб, граб, ясень, клен, каштан, ильм, вяз, орех, груша, береза, лиственница; к мягким — сосна, ель, пихта, ольха, липа, тополь, ива (табл. 2). Отдельно выделяют группу сверхтвердых пород: самшит, фисташка. Твердость торцевой поверхности твердых пород составляет 40 МПа и более.

    Износостойкость — это способность материала противостоять износу, то есть изменению его поверхности в процессе эксплуатации от истирания, смятия, выкрашивания и т. п. Износостойкость древесины довольно высокая и находится в прямой зависимости от ее твердости и объемного веса.
    Способность удерживать металлические крепления
    Свойство древесины удерживать в себе гвозди, нагели, шурупы и другие металлические крепления объясняется ее упругостью. Вбиваемый в древесину гвоздь раздвигает волокна, которые вследствие своей упругости давят на поверхность гвоздя и тем самым оказывают сопротивление его выдергиванию. Это сопротивление зависит от объемного веса, влажности и строения древесины, а также от направления вбиваемого гвоздя по отношению к волокнам. Оно определяется силой в килограммах, необходимой для извлечения забитого гвоздя. Сила удерживания креплений зависит от площади соприкосновения древесины с их поверхностью. Гвозди с квадратным или многогранным поперечным сечением, имеющие большую поверхность, нежели гвозди круглого сечения, держатся в древесине прочнее.
    Гвозди любой формы можно вколачивать только в мягкую древесину. В твердой древесине для них предварительно высверливают гнезда диаметром 0,7—0,8 толщины гвоздя и глубиной не менее половины его длины. В противном случае или материал расколется, или гвоздь согнется. Зато в твердой древесине гвоздь держится прочнее, чем в мягкой.
    Во влажную древесину вбить гвоздь легче, чем в сухую, так как упругость влажной древесины понижена. Но изогнутость волокон после ее высыхания остается, поэтому давление на гвоздь становится крайне незначительным и гвоздь держится слабо.
    В прямослойной древесине, более упругой, чем свилеватая, гвозди держатся прочнее, но прямослойная древесина легче раскалывается.
    Гвозди, вколоченные в торец древесины, держатся на 25—30 % слабее, чем вколоченные в боковую поверхность. Это объясняется тем, что в перерезанном конце волокна имеют пониженную упругость. Гвозди, вбитые в боковую поверхность в радиальном и тангентальном направлениях, держатся в древесине почти одинаково.
    Далее
    Вернуться к оглавлению

  2. hellboy9991 Ответить

         Под упругостью древесины понимают её способность сопротивляться изменению формы или объёма под воздействием механических напряжений.
    Упругость зависит от влажности, объёмного веса, прямослойности древесины и размеров сердцевинных лучей в ней.
    При кратковременных нагрузках до напряжений, соответствующих пределу пропорциональности (т.е. до момента необратимости деформации) деформация древесины пропорциональна напряжению и исчезает после снятия нагрузки.
    Основными показателями упругости древесины являются модуль упругости, модуль сдвига, и коэффициент деформации. Испытания проводят на малых образцах с чистой древесиной, по направлениям :- вдоль волокон, — радиально поперёк волокон, — тангенциально поперёк волокон.
    В столярстве редко нужно учитывать упругость древесины. Чаще, наверное, в плотничестве, при сооружении стропильных и кровельных систем. Например модуль упругости на статический изгиб у сосны- 12,6 ГПа, у ели- 11,0 ГПа, у берёзы- 15,4 ГПа, у дуба- 15,4 ГПа.
    Как видим модуль упругости не всегда выше у пород с более твёрдой древесиной. А, например, М. У. у берёзы вдоль волокон выше, чем у дуба и на сжатие и на растяжение. У сосны же М. У. на сжатие в радиальном направлении выше, чем у берёзы.
    Нужно отметить, что между величинами модуля упругости вдоль волокон и поперёк волокон имеется большая разница. Так при растяжении М. У. вдоль волокон меньше, чем поперёк волокон у хвойных пород в 16 -35 раз, а у лиственных в 7 -14 раз.Модуль упругости при радиальном растяжении выше чем при тангенциальном в 1,5 раза у всех пород. Это можно объяснить слабой связью между отдельными волокнами и сосудами.
    Свойство древесины  внезапно разрушаться под воздействием механических сил без значительного изменения формы называется хрупкостью.  Абсолютно хрупкой древесины нет, что объясняется её волокнистым строением. Наиболее хрупкой считают древесину ольхи.

  3. smit7272 Ответить

    Экологические характеристики. По безопасности для людей с пиломатериалами может сравниться только красный кирпич. Все остальные существующие сегодня строительные материалы выделяют в воздух вредные химические соединения в том или ином количестве. Особенно это касается клееных материалов (фанера, плиты ОСП, МДФ и ДСП), клееных пиломатериалов. Количество вредных веществ, которое принято считать безопасным, определяется государственными органами, в каждой стране оно имеет свои значения. Показатели безопасности не носят объективного характера, а зависят от существующего законодательства.
    Эксплуатационные характеристики. К ним относятся тепловые потери, звуконепроницаемость, несущие показатели и долговечность использования. По совокупности этих показателей дерево считается самым лучшим материалом в строительстве. По теплосберегающим свойствам или энергоэффективности, обрезной брус хвойных пород (сосны или ели,) толщиной 20 см заменяют кирпичную стену толщиной 60 см и бетонную стену толщиной 1,2 метра. В таких же соотношениях располагаются показатели по звукопроницаемости. Отношение прочности к теплопроводности у пиломатериалов на первом месте, они выдерживают нагрузку многоэтажных строений. Длительность эксплуатации во многом зависит от условий, некоторые старинные строения стоят до сих пор. Для повышения устойчивости к загниванию и открытому огню применяются специальные пропитки – первоначальные характеристики существенно улучшаются.

  4. multizero Ответить

    Прочность на сжатие проверяют в продольном и поперечном по отношению к волокнам направлению. При этом при продольном сжатии происходит уменьшение длины образца. При испытании образца древесины мягких сортов с высокой влажностью торцы начинают сминаться, а боковые части выпирают в сторону. Древесина твердая и сухая при продольном сжатии начинает разрушаться и части образца сдвигаются в разные стороны.
    Усредненное значение предела прочности продольного сжатия для всех видов древесины около 500 кгс на 1 кв. см.
    Величина прочности при поперечном сжатии намного меньше, чем при продольном и их соотношение друг к другу составляет 1:8. Момент, в который происходит разрушение древесины при поперечном сжатии не легко определить, как и силу давления, при которой оно происходит.
    Обычно проверяют прочность на поперечное сжатие в двух направлениях – радиальном и тангенциальном. При этом лиственные породы имеют прочность в 1.5 раза больше при сжатии в радиальном направлении, нежели при тангенциальном. Прочность древесины хвойных пород при сжатии в радиальном направлении ниже, чем при тангенциальном сжатии.
    Испытание механических свойств древесины на сжатие: а — вдоль волокон; б — поперек волокон — радиально; в — поперек волокон — тангенциально.

    Прочность древесины на растяжение

    Прочность древесины при растяжении вдоль волокон колеблется в пределах 1100 – 1400 кгс/см2, правда использование ее в деталях, работающих на растяжение затруднено в связи с тем, что она не выдерживает нагрузок в местах крепления. В этих местах на древесину действуют силы сжатия и скалывания, а они имеют более низкие значения. Ярким примером использования древесины с работой на растяжение являются оглобли в конных повозках.
    В поперечном направлении прочность на растяжение низкая и ее значение не превышает 5% от предела прочности на растяжение в продольном направлении. Поэтому в тех случаях, когда деталь из древесины работает на растяжение, применяют только древесину с продольным расположением волокон.
    Величина поперечной прочности древесины на растяжение учитывается при резке и сушке материала, режимы этих операций подбираются в прямой зависимости от прочности.

    Испытание механических свойств древесины на изгиб

    Усредненная прочность всех пород деревьев при изгибе принято считать равной 1000 кгс/см2, что в два раза больше прочности на сжатие и примерно на 30% меньше прочности при продольном растяжении. При изгибе разные слои древесины испытывают разное напряжение — верхний слой получает сжатие, а нижний, напротив, — растяжение. В средней части образца, подвергаемого изгибу, находится нейтральная область, которая не испытывает никаких напряжений. Зона, испытывающая напряжение растяжения, начинает разрушаться в первую очередь – крайние волокна древесины разрываются.
    Визуально определить прочность древесины на изгиб можно по характеру излома – качественные образцы будут иметь неровный излом с наличием большого количества щепы, а дефектная – почти ровный, без выступов и вмятин.
    При изгибе одна часть заготовки подвергается сжатию, другая – растяжению, поэтому показатель сопротивления изгибу находится между показателями сопротивлений сжатия и растяжения. Отношение сопротивления сжатия к сопротивлению растяжения колеблется от 1.7 до 2.2 у разных пород дерева.
    Влажность дерева также отражается на показателе сопротивления статическому изгибу – при изменении влажности на 1%, сопротивление изменяется на 4%.
    По величине сопротивления ударному изгибу можно определить вязкость или хрупкость древесины. Если сопротивление невелико, древесина хрупкая, а высокий показатель сопротивления говорит о большой вязкости древесины.
    Измеряют сопротивление ударному изгибу с помощью маятника, замеряя работу Q кг/м, которая требуется маятнику определенного веса для того, чтобы сломать испытуемый брусок. Само сопротивление вычисляют по формуле A = Q/bh2, в которой b и h – соответственно ширина и высота сечения образца в сантиметрах.
    Испытание механических свойств древесины на изгиб

    Прочность древесины при сдвиге

    Смещение в заготовке одной части древесины относительно другой называется сдвигом. Сдвиги образуются под действием внешних нагрузок разного характера. Выделяют сдвиги, возникающие от скалывания вдоль или поперек волокон и от распила (перерезания).
    Прочность при скалывании меньше прочности продольного сжатия примерно в 5 раз. А если сравнивать прочность скалывания вдоль и поперек волокон в одном образце, то предел прочности при продольном скалывании в два раза выше, чем при поперечном. Прочность древесины при перерезании выше прочности при скалывании раза в четыре.

    Самая прочная древесина

    Все породы деревьев различаются по прочности. Из хвойных деревьев наиболее прочной считается лиственница. Это дерево обладает уникально твердой и долговечной древесиной, устойчивой к гниению и влагостойкой. Смолистая и прочная, она замечательна еще и тем, что, находясь в воде способна приобретать прочность камня. Древесина лиственницы используется в производстве мебели и в строительстве. В строительстве подводных сооружений ей практически нет альтернативы. Успешно применяется в кораблестроении.
    Из лиственных пород, используемых человеком, первое место по прочности занимает дуб. Древесина очень долговечная, гибкая, имеет великолепные декоративные качества и применяется во многих областях промышленности. Из нее делают дорогую мебель, паркет, хороша для поделок.
    До настоящего времени в Литве, в маленькой деревушке Стелмуж, растет дуб, возраст которого более 1500 лет. На высоте человеческого роста диаметр ствола составляет 4 метра, а обхват дерева на трехметровой высоте равен 13.5 метров. Этот дуб является памятником природы, он – самый старый представитель дубовых деревьев во всей Европе.
    В мире есть несколько образцов деревьев с «железной» древесиной. Амазонское дерево в Бразилии, азобе в Африке, темир-агач в Азербайджане и Иране. Закавказские леса и леса Северной Ирландии – место произрастания персидской парротии, которая также поражает своей прочностью. К сожалению, все перечисленные деревья редко встречаются в природе, и их находки – это настоящее чудо.

  5. joy_5 Ответить

    « Назад

    Механические свойства древесины 17.06.2008 07:50

    Применение древесины в качестве конструкционного материала обусловлено способностью сопротивляться действию усилий, т.е. механическими свойствами.
    Различают следующие свойства древесины, проявляющиеся под воздействием механических нагрузок:прочность – способность сопротивляться разрушению, деформативность – способность сопротивляться изменению размеров и формы, технологические и эксплуатационные свойства.
    Показатели механических свойств древесины определяют обычно при следующих видах испытаний: растяжении, сжатии, изгибе и сдвиге. Поскольку древесина – анизотропный материал, т.е. материал с различными свойствами в разных направлениях, указывают направление действия нагрузок: вдоль или поперек волокон (в радиальном или тангенциальном направлении).
    Из-за сопротивления древесины внешним нагрузкам в ней возникают внутренние силы. Эти силы, отнесённые к единице площади сечения (1 см2) называются напряжениями.
    Максимальное напряжение, предшествующее разрушению тела, называют пределом прочности.
    Предел прочности определяют на малых, чистых и не имеющих пороках образцах в лабораториях на испытательных машинах. Эти образцы имеют базисное сечение с размерами 20 * 20 мм и должны включать не менее 4-5 годичных слоёв. Некоторые виды испытаний производят на образцах, сечение которых отличается от указанного.
    Прочность при сжатии определяется на образцах призматической формы. Схема испытания на прочность при сжатии вдоль волокон и размер образца показаны на рисунке:

    Образец постепенно нагружают до разрушения. Затем по силоизмерителю испытательной машины отсчитывают максимальную нагрузку Рмах, Н. Предел прочности б, МПа, вычисляют по формуле: бw = Pmax / (a * b), где (a * b) – площадь сечения образца, мм2.
    В среднем для всех отечественных пород при влажности древесины 12% предел прочности на сжатие вдоль волокон составляет около 50 МПа.
    Прочность при сжатии поперёк волокон определяется по схеме на рисунке. Здесь указана равнодействующая сил, которые либо равномерно распределены по всей поверхности образца, либо по всей ширине, но на части длины его (местное сжатие). И в том, и в другом случаях определяют условный предел прочности. В качестве этого показателя используют предел пропорциональности, т.е. величину напряжений, до которых наблюдают линейную зависимость между напряжениями и деформациями. В среднем для всех пород он составляет 1/10 предела прочности при сжатии вдоль волокон.
    Испытания на прочность при растяжении проводятся на образцах другого вида:

    Такая форма образцов обусловлена стремлением обеспечить разрушение в тонкой рабочей части, а не в месте закрепления, под воздействием именно растягивающих напряжений.
    В среднем для всех пород предел прочности при растяжении вдоль волокон равен 130 МПа, а предел прочности при растяжении поперёк волокон в 20 раз ниже. Поэтому при конструировании изделий из древесины избегают растягивающих нагрузок, направленных поперёк волокон.
    Для испытания древесины на статический изгиб применяют образцы в форме бруска размерами 20 * 20 * 300 мм:

    Предел прочности при статическом изгибе, МПа, вычисляют по формуле: бw = (3/2) * ((Pmax*l) / (b * h2)), где Pmax – максимальная нагрузка, Н; l – пролет, т.е. расстояние между центрами опор, равный 240 мм; b и h – ширина (в радиальном) и высота (в тангенциальном) направлениях, мм.
    В среднем предел прочности при статическом изгибе составляет 100 МПа.
    При испытаниях к образцу прикладывают две равные и противоположно направленные силы, вызывающие разрушение в параллельной им плоскости, происходит сдвиг. Различают три вида испытаний на сдвиг: скалывание вдоль волокон, скалывание поперёк волокон и перерезание древесины поперёк волокон.
    Схемы действия сил при этих испытаниях показаны на рисунке:

    Для испытания на скалывание вдоль волокон применяют образец, форма и размеры которого показаны на рисунке:

    Предел прочности при скалывании вдоль волокон определяют по формуле: Tw = Pmax / (b * l), где (b * l) – площадка скалывания, мм2.
    Величина предела прочности – касательных максимальных напряжений при скалывании вдоль волокон в среднем для всех пород составляет примерно 1/5 от предела прочности при сжатии вдоль волокон. Предел прочности при скалывании поперёк волокон в 2 раза меньше, а предел прочности при перерезании поперёк волокон в 4 раза больше, чем предел прочности при скалывании вдоль волокон.
    Деформативность. При кратковременных нагрузках в древесине возникают преимущественно упругие деформации, которые после нагрузки исчезают. До определённого предела зависимость между напряжениями и деформациями близка к линейной (закон Гука). Основным показателем деформативности служит коэффициент пропорциональности – модуль упругости.
    Модуль упругости вдоль волокон Е = 12-16 ГПа, что в 20 раз больше, чем поперёк волокон. Чем больше модуль упругости, тем более жесткая древесина.
    С увеличением содержания связанной воды и температуры древесины, жесткость её снижается. В нагруженной древесине при высыхании или охлаждении часть упругих деформаций преобразуется в “замороженные” остаточные деформации. Они исчезают при нагревании или увлажнении.
    Поскольку древесина состоит в основном из полимеров с длинными гибкими цепными молекулами, её деформативность зависит от продолжительности воздействия нагрузок.
    Механические свойства древесины, как и других полимеров, изучаются на базе общей науки реологии. Эта наука рассматривает общие законы деформирования материалов под воздействием нагрузки с учётом фактора времени.
    Эксплуатационные и технологические свойства. Прочность древесины при длительных постоянных нагрузках важно знать в связи с применением её в строительных конструкциях. Показателем этого свойства является предел длительного сопротивления бд.с., который в среднем для всех видов нагрузки составляет примерно 0,5 – 0,6 величины предела прочности при кратковременных статических испытаниях.
    Показателем прочности при переменных нагрузках является предел выносливости, средняя величина которого составляет примерно 0,2 от статического предела прочности.
    При проектировании деревянных конструкций в расчётах используют не пределы прочности малых образцов древесины, а в несколько раз меньшие показатели – расчётные сопротивления.
    Они учитывают большие размеры элементов конструкций, наличие пороков древесины, длительность действия нагрузки, влажность, температуру и другие факторы.
    Удельная вязкость характеризует способность древесины поглощать работу при ударе без разрушения и определяется при испытаниях на изгиб. Ударная вязкость у древесины лиственных пород в среднем в 2 раза больше, чем у древесины хвойных пород.
    Твёрдость характеризует способность древесины сопротивляться вдавливанию более твёрдого тела. Испытания на статическую твёрдость проводят по схеме, показанной на рисунке:

    Для испытания на твёрдость используют приспособление, которое имеет пуансон с полусферическим наконечником. Его вдавливают на глубину радиуса. После испытания в древесине остаётся отпечаток, площадь проекции которого при указанном радиусе полусферы составляет 100 мм2. Показателем статической твёрдости образца, Н/мм2, является усилие, отнесенное к этой площади. Статическая твёрдость торцевой поверхности выше, чем боковых поверхностей.
    Все отечественные породы по твёрдости торцевой поверхности при влажности 12% делят на 3 группы: мягкие (твёрдость 40 Н/мм2 и менее), твёрдые (41-80) и очень твёрдые (более 80 Н/мм2).
    Ударную твёрдость определяют, сбрасывая стальной шарик диаметром 25 мм с высоты 0,5 м на поверхность образца, величена которого тем больше, чем меньше твёрдость древесины.
    Износостойкость – способность древесины сопротивляться износу, т.е. постепенному разрушению её поверхностных зон при трении. Испытания на износостойкость древесины показали, что износ с боковых поверхностей значительно больше, чем с поверхности торцевого разреза. С повышением плотности и твёрдости древесины износ уменьшился. У влажной древесины износ больше, чем у сухой.
    Уникальным свойством древесины является способность удерживать крепления: гвозди, шурупы, скобы, костыли и др. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдёргиванию гвоздя. Усилие, необходимое для выдёргивания гвоздя, забитого в торец образца, меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон. С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается. Усилия, необходимые для выдёргивания шурупов (при прочих равных условиях), больше, чем для выдёргивания гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву.
    Технологическая операция гнутья древесины основана на её способности сравнительно легко деформироваться при действии избегающих усилий. Способность гнуться выше у кольцесосудистых пород – дуба, ясеня и др., а из рассеянно-сосудистых – бука; хвойные породы обладают меньшей способностью к загибу. Гнутью подвергают древесину, находящуюся в нагретом и влажном состоянии. Это увеличивает податливость древесины и позволяет вследствие образования замороженных деформаций при последующем охлаждении и сушке под нагрузкой зафиксировать новую форму детали.
    Для сравнительной оценки качества древесины используют так называемые удельные характеристики механических свойств, т.е. показатели ее механических свойств, отнесенные к единице плотности.
    Удельная прочность при сжатии и статическом изгибе у хвойных пород выше, чем у лиственных. Значительно выше у хвойных пород и удельная жесткость. По остальным свойствам удельные характеристики у древесины лиственных пород выше, чем у хвойных.
    Удельная прочность при сжатии и статическом изгибе у хвойных пород выше, чем у лиственных. Значительно выше у хвойных пород и удельная жесткость. По остальным свойствам удельные характеристики у древесины лиственных пород выше, чем у хвойных.
    Удельные характеристики древесины имеют особое значение, когда от изделия или конструкции требуется высокая прочность при малом весе. Это важно для транспортного машиностроения, авиастроения, судостроения и в других случаях.
    Показатели механических свойств древесины определяют обычно при следующих видах испытаний: растяжении, сжатии, изгибе и сдвиге. Поскольку древесина – анизотропный материал, т.е. материал с различными свойствами в разных направлениях, указывают направление действия нагрузок: вдоль или поперек волокон (в радиальном или тангенциальном направлении). Из-за сопротивления древесины внешним нагрузкам в ней возникают внутренние силы. Эти силы, отнесённые к единице площади сечения (1 см2) называются напряжениями. Максимальное напряжение, предшествующее разрушению тела, называют пределом прочности.Предел прочности определяют на малых, чистых и не имеющих пороках образцах в лабораториях на испытательных машинах. Эти образцы имеют базисное сечение с размерами 20 * 20 мм и должны включать не менее 4-5 годичных слоёв. Некоторые виды испытаний производят на образцах, сечение которых отличается от указанного.определяется на образцах призматической формы.Применение древесины в качестве конструкционного материала обусловлено способностью сопротивляться действию усилий, т.е. механическими свойствами.
    Различают следующие свойства древесины, проявляющиеся под воздействием механических нагрузок: прочность – способность сопротивляться разрушению, деформативность – способность сопротивляться изменению размеров и формы, технологические и эксплуатационные свойства.

  6. Andrey-756 Ответить




    § 3. Свойства древесины
    Древесина, как и любой конструкционный материал, обладает определёнными свойствами, которые нужно учитывать при изготовлении изделия. Различают свойства физические (плотность, влажность, цвет, запах) и механические (твёрдость, прочность, упругость). С такими свойствами, как цвет и запах древесины, вы уже ознакомились в 5 классе.
    Рассмотрим физические свойства древесины. Плотность ρ древесины — это её масса m (г), занимающая единицу объёма V (см3):

    Если сухая берёзовая дощечка размером 10 х 10 х 1 см3 (то есть объёмом 100 см3) имеет массу 64 г, то плотность её будет равна: 64 : 100 = 0,64 г/см3.
    Плотность сухой древесины составляет 0,35…0,7 г/см3 (350…700 кг/м3). Более плотной является древесина берёзы, клёна, ясеня, лиственницы, дуба (ρ = 0,64…0,72 г/см3), менее плотной — древесина липы, тополя, кедра, ели, осины, сосны (ρ = 0,4…0,52 г/см3).
    Влажность древесины — это количество содержащейся в ней влаги. Влажность определяется отношением веса этой влаги к весу сухой древесины и выражается в процентах:

    где m1 — масса образца влажной древесины;
    m2 — масса этого же образца древесины после высушивания.
    Если, например, масса бруска влажной древесины составляла 80 г, а после его высушивания — 50 г, то первоначальная влажность древесины была равна:

    У свежеспиленного дерева влажность древесины очень высокая — около 80 %. Влага ухудшает механические свойства древесины, поэтому древесину сушат до тех пор, пока влажность не будет составлять 9…15 %. Применяют следующие виды сушки древесины: естественную на воздухе (которая может длиться до 2 лет) и искусственную в специальных сушильных камерах (от 2 до 25 дней).
    Рассмотрим механические свойства. Твёрдость — это свойство древесины сопротивляться проникновению в неё другого тела, например режущего инструмента во время резания или гвоздя при его забивании. По степени твёрдости породы древесины подразделяют на мягкие (ольха, тополь, липа, осина, ель, сосна), твёрдые (клён, ясень, лиственница, дуб, бук) и очень твёрдые (самшит, граб, акация, груша). Твёрдость древесины зависит от её влажности: чем суше древесина, тем больше её твёрдость.
    Прочность древесины — это свойство материала сопротивляться разрушению под действием внешних нагрузок. Наибольшие нагрузки выдерживает древесина дуба, бука, берёзы, лиственницы. Менее прочной является древесина липы, ели, ольхи, ясеня.
    Упругость — свойство древесины восстанавливать свою первоначальную форму после прекращения действия нагрузки. Упругость зависит от влажности, плотности и возраста древесины. Чем древесина суше и плотнее, тем она более упругая. Древесина клёна, ясеня, бука, вяза и берёзы обладает большей упругостью, чем остальные древесные породы.
    Лабораторно-практическая работа № 3

    Исследование плотности древесины

    Получите у учителя образцы сухой древесины, измерьте их длину а, ширину б, толщину в и вычислите их объём V (в см3). Результаты запишите в таблицу.
    Взвесьте образцы и запишите их массу m в таблицу.
    По формуле определите плотность древесины ρ.

    Лабораторно-практическая работа № 4

    Исследование влажности древесины

    Получите у учителя образцы сухой древесины, взвесьте их и запишите массу m2 в таблицу.
    Проделайте такой опыт: опустите образцы в воду на 5-10 мин, затем извлеките их из воды и протрите насухо тканью; взвесьте образцы и запишите их массу m1 в таблицу.
    Определите разность масс (m1 – m2) и влажность древесины (Вл) по формуле, приведённой в § 2. Запишите результаты в таблицу.

    Сравните влажность образцов и сделайте вывод, какая древесина впитывает влагу лучше, а какая — хуже.

    Новые слова и понятия

    Свойства древесины: физические (плотность, влажность), механические (твёрдость, прочность, упругость); сушка древесины.

    Проверяем свои знания

    Как определяют плотность древесины?
    Как вы думаете, почему у свежеспиленного дерева очень высокая влажность древесины?
    Каким образом определяют влажность древесины?
    С какой целью сушат древесину?
    Чем отличается упругость древесины от её прочности?

  7. ramax89 Ответить

    В местах врубок или соединений деревянных деталей с металлическими (под башмаками, болтами и др.) существенное практическое значение имеет прочность древесины при сжатии поперек волокон. Классическим примером работы древесины на сжатие поперек волокон служат также железнодорожные шпалы (места под рельсами). Различают три случая сжатия древесины поперек волокон:
    1. Нагрузка распределена по всей поверхности сжимаемой детали.
    2. Нагрузка приложена на части длины, но по всей ширине детали.
    3. Нагрузка приложена на части длины и ширины детали.
    Все эти случаи встречаются в практике: первый случай — при прессовании древесины, второй — при использовании шпал под рельсами, третий — при употреблении древесины под головки металлических креплений. При сжатии поперек волокон древесины разных пород наблюдаются два типа деформирования: однофазное, как и при сжатии вдоль волокон, и трехфазное, характеризуемое более сложной диаграммой.

    таблица прочности древесины при сжатии вдоль волокон

    Порода
    Предел прочности, кГ/см2, при влажности
    Порода
    Предел прочности, кГ/см2, при влажности
    15%
    30% и более
    15%
    30 % и более
    Лиственница
    550
    255
    Дуб
    510
    310
    Сосна
    415
    210
    Ясень
    500
    325
    Ель
    390
    195
    Орех грецкий
    485
    240
    Кедр
    360
    185
    Бук
    475
    260
    Пихта сибирская
    345
    175
    Береза
    465
    225
    Акация белая
    665
    415
    Вяз
    405
    250
    Граб
    530
    265
    Липа
    400
    240
    Клен
    520
    280
    Ольха
    385
    235
    Груша
    515
    265
    Осина
    375
    190
    Тополь
    345
    180
    При однофазном деформировании на диаграмме хорошо выражен приблизительно прямолинейный участок, продолжающийся почти до достижения максимальной нагрузки, при которой образец древесины разрушается. При трехфазном деформировании процесс деформирования древесины при сжатии поперек волокон проходит три фазы: первая фаза характеризуется на диаграмме начальным, примерно прямолинейным участком, показывающим, что в этой стадии деформирования древесина условно подчиняется закону Гука, как и при однофазном деформировании; в конце этой фазы достигается условный предел пропорциональности; вторая фаза характеризуется на диаграмме почти горизонтальным или слабонаклонным криволинейным участком; переход из первой фазы во вторую более или менее резкий; третья фаза характеризуется на диаграмме прямолинейным участком с крутым подъемом; переход из второй фазы в третью в большинстве случаев постепенный.
    По характеру деформирования при радиальном и тангенциальном сжатии породы можно подразделить на две группы: к первой группе относятся хвойные и кольцесосудистые лиственные породы (за исключением дуба), а ко второй — рассеяннососудистые лиственные породы. Древесина хвойных пород (сосна, ель) и колъцесосудистых лиственных пород (ясень, ильм) при радиальном сжатии дает диаграмму, характерную для трехфазного деформирования, а при тангенциальном сжатии — диаграмму однофазного деформирования.
    Отмеченный характер деформирования древесины названных пород может быть объяснен следующим. При радиальном сжатии деформация первой фазы протекает в основном из-за сжатия ранней зоны годичных слоев, слабой в механическом отношении; первая фаза продолжается до тех пор, пока стенки элементов ранней зоны не потеряют устойчивости и не начнут сминаться. С потерей устойчивости этих элементов начинается вторая фаза, когда деформация протекает в основном в результате смятия элементов ранней зоны; это происходит при почти неизменной или мало возрастающей нагрузке. По мере вовлечения в деформацию элементов поздней зоны годичных слоев вторая фаза плавно переходит в третью. Третья фаза протекает главным образом за счет сжатия элементов поздней зоны, состоящей преимущественно из механических волокон, которые могут сминаться только при больших нагрузках.
    При тангенциальном сжатии деформирование происходит с самого начала за счет элементов обеих зон годичного слоя, причем характер деформирования, естественно, определяется элементами поздней зоны. В конце деформирования наступает разрушение образца, яснее выраженное у древесины хвойных пород: образцы обычно выпучиваются в сторону выпуклости годичных слоев, которые при тангенциальном изгибе ведут себя, как кривые брусья при продольном изгибе.
    Среди кольцесосудистых лиственных пород отмеченным закономерностям не подчиняется дуб, древесина которого при радиальном сжатии деформируется по однофазному типу, а при тангенциальном обнаруживает тенденцию к переходу на трехфазное деформирование. Это объясняется тем, что при радиальном сжатии сильное влияние на характер деформирования оказывают широкие сердцевинные лучи. При тангенциальном сжатии тенденция к переходу на трехфазное деформирование объясняется радиальной группировкой мелких сосудов в поздней зоне.
    Древесина рассеяннососудистых лиственных пород (березы, осины, бука) обнаружила трехфазное деформирование как при радиальном, так и при тангенциальном сжатии, что, по-видимому, надо объяснить отсутствием заметной разницы между ранней и поздней зонами годичных слоев. У древесины граба наблюдается переходная форма деформирования (от трехфазного к однофазному); очевидно, в этом случае сказывается влияние ложношироких сердцевинных лучей.
    Начало разрушения древесины можно наблюдать лишь при однофазном деформировании; при трехфазном деформировании древесина может уплотниться до четверти начальной высоты без видимых следов разрушения. По этой причине при испытаниях на сжатие поперек волокон ограничиваются определением напряжения при пределе пропорциональности по диаграмме сжатия, не доводя образец до разрушения.
    Древесину испытывают двумя методами: при сжатии по всей поверхности образца и при сжатии на части длины, но по всей ширине (смятие). Для испытаний на сжатие поперек волокон изготовляют образец такой же формы и размеров, как и при сжатии вдоль волокон; годичные слои на торцах в этом образце должны быть параллельны одной паре противоположных граней и перпендикулярны другой паре. Образец располагают на опорной части машины боковой поверхностью и подвергают ступенчатой нагрузке по всей верхней поверхности со средней скоростью 100 ±20 кГ/мин. Деформацию древесины мягких пород измеряют индикатором с точностью 0,005 мм через каждые 20 кГ нагрузки и твердых пород — через 40 кГ; испытание продолжается до явного перехода предела пропорциональности. На основании парных отсчетов (нагрузка-деформация) вычерчивают диаграмму сжатия, на которой определяют с точностью до 5 кГ нагрузку при пределе пропорциональности как ординату точки перехода прямолинейного участка диаграммы в явно криволинейный. Условный предел прочности при сжатии поперек волокон подсчитывают путем деления найденной указанным способом нагрузки при пределе пропорциональности на площадь сжатия (произведение ширины образца на его длину).
    Для испытаний на смятие применяют образец в форме брусочка квадратного сечения 20X20 мм, длиной 60 мм. Нагрузка на такой образец передается по всей ширине через стальную призму шириной 2 см, помещаемую посредине образца перпендикулярно длине; прилегающие к образцу ребра призмы имеют закругления радиусом 2 мм. В остальном порядок и условия испытания те же, что и по первому способу, но условный предел прочности подсчитывается путем деления нагрузки при пределе пропорциональности на площадь сжатия, равную 1,8 а, где а — ширина образца, 1,8 — средняя ширина нажимной поверхности призмы в сантиметрах.
    Условный предел прочности при смятии поперек волокон получается на 20—25% выше, чем при сжатии; это объясняется дополнительным сопротивлением от изгиба волокон у ребер призмы. При третьем случае сжатия поперек волокон показатели условного предела прочности немного превышают показатели, полученные во втором случае в результате дополнительного сопротивления скалыванию поперек волокон у ребер штампа, идущих параллельно волокнам древесины.

    условный предел прочности при смятии поперек волокон

    Порода
    Условный предел прочности, кГ/см2, при смятии
    Порода
    Условный предел прочности, кГ/см2. при смятии
    радиальном
    тангенциальном
    радиальном
    тангенциальном
    Сосна
    34
    51
    Карагач
    52
    50
    Лиственница
    44
    63
    Граб
    147
    111
    Дуб
    76
    56
    Бук
    78
    52
    Ясень
    90
    99
    Клен
    112
    73
    Вяз
    51
    39
    Береза
    65
    41
    Ильм
    52
    55
    Осина
    36
    29
    Древесина пород с широкими или очень многочисленными лучами (дуб, бук, клен, отчасти береза) характеризуется более высоким условным пределом прочности при радиальном смятии (примерно в 1,5 раза); для прочих лиственных пород (с узкими лучами) показатели условного предела прочности при смятии в обоих направлениях практически одинаковы или мало различаются.
    Для древесины хвойных пород, наоборот, условный предел прочности при тангенциальном смятии в 1,5 раза выше, чем при радиальном вследствие резкой неоднородности в строении годичных слоев; при радиальном смятии деформируется главным образом более слабая, ранняя, древесина, а при тангенциальном сжатии нагрузка с самого начала воспринимается и поздней древесиной. По сравнению с пределом прочности при сжатии вдоль волокон условный предел прочности при смятии поперек волокон составляет в среднем около 1/8 (от 1/6 для твердых лиственных пород до 1/10 для хвойных и мягких лиственных пород).

     прочность древесины при статическом изгибе

    Для испытания на статический изгиб применяются образцы в форме бруска размерами 20X20X300 мм. Неподвижные опоры и ножи должны иметь закругление радиусом 15 мм; расстояние между центрами опор l = 24 см. После измерения посредине длины сечения (ширины b и высоты h) образец располагают на опорах и нагружают в двух точках на расстоянии 8 см от каждой опоры, равномерно со скоростью 700 ±150 кГ/мин на весь образец, который доводится до полного излома. По шкале машины отсчитывают максимальную Нагрузку Рmах с точностью 1 кГ.
    Предел прочности при статическом изгибе существенно зависит от влажности. При изгибе в древесине возникают нормальные напряжения (на растяжение и сжатие вдоль волокон) и касательные напряжения (на скалывание вдоль волокон). Первые достигают максимума в крайних волокнах, наиболее удаленных от нейтральной плоскости, а вторые — в нейтральной зоне, которая теоретически должна проходить посредине высоты бруска.
    В древесине из-за различий прочности при растяжении и сжатии вдоль волокон нейтральная плоскость смещается в сторону растянутой зоны, что обусловливает неравенство нормальных напряжений (на растяжение и сжатие вдоль волокон). Деформация при изгибе внешне выражается прогибом образца и измеряется стрелой прогиба. Так как прочность древесины при сжатии вдоль волокон значительно меньше, чем прочность при растяжении, разрушение при изгибе начинается в зоне сжатия в виде складок, хотя на глаз оно редко заметно. Окончательное разрушение происходит в зоне растяжения и заключается в разрыве или отщепе крайних волокон и полном изломе образца. Излом древесины высокого качества волокнистый или защепистый, при низком качестве — раковистый, почти гладкий.
    Защепистость излома более резко выражена в растянутой зоне образца; пучки волокон там крупнее и длиннее; в сжатой зоне, наоборот, эти пучки мелкие и короткие. В табл. приведены показатели предела прочности при статическом изгибе для древесины основных наших лесных пород.
    Прочность древесины при статическом изгибе по величине занимает промежуточное положение между прочностью при растяжении и сжатии вдоль волокон и может быть в среднем для разных пород принята равной около 900 кГ/см2. Если прочность при сжатии вдоль волокон принять за единицу, прочность при статическом изгибе будет примерно в 2 раза, а прочность при растяжении вдоль волокон — в 2,7 раза выше. Предел пропорциональности при статическом изгибе составляет в среднем 0,7 от предела прочности.

    таблица прочности древесины при статическом изгибе

    Порода
    Предел прочности, кГ/см2, при влажности
    Порода
    Предел прочности, кГ/см2, при влажности
    15 %
    30 % и выше
    15%
    30 % и выше
    Лиственница
    985
    615
    Орех грецкий
    975
    605
    Сосна
    760
    495
    Береза
    965
    595
    Ель
    705
    440
    Бук
    955
    645
    Кедр
    045
    425
    Дуб
    945
    680
    Пихта сибирская
    605
    405
    Вяз
    840
    590
    Акация белая
    1390
    975
    Липа
    775
    540
    Граб
    1210
    735
    Ольха
    710
    495
    Ясень
    1085
    745
    Осина
    685
    455
    Клен
    1055
    775
    Тополь
    610
    405
    Груша
    975
    635
    Высокая прочность и легкость приложения усилия обусловливают широкое применение древесины для деталей, работающих на изгиб: всевозможные балки, стропила, фермы, мосты, ригели шахтных креплений, подмости, обрешетка и т. д. Различие между прочностью при радиальном и тангенциальном изгибе обнаруживается только у хвойных пород: предел прочности при тангенциальном изгибе может быть на 10—12% выше, чем при радиальном; у лиственных пород прочность при изгибе в обоих направлениях практически можно считать одинаковой (разница 2—4%). Кроме обычного поперечного изгиба, когда волокна древесины направлены вдоль оси: бруска, могут быть случаи, когда волокна направлены поперек оси бруска. В двух последних случаях предел прочности древесины ели и сосны составляет 1—5%, а бука — около 20% предела прочности при обычном изгибе.

    прочность древесины при сдвиге

    Надежность соединения элементов деревянных конструкций и изделий во многих случаях определяется способностью древесины сопротивляться действию касательных напряжений. Для того чтобы при механических испытаниях древесины установить предельные значения касательных напряжений, следовало бы создать условия чистого сдвига рабочей части образца. Однако это сопряжено со значительными трудностями в технике эксперимента. Вместе с тем для инженерных расчетов можно ограничиться результатами более простых испытаний на сдвиг. При этих испытаниях к образцу прикладываются две равные и противоположно направленные силы, вызывающие разрушение в параллельной им плоскости. Учитывая волокнистое строение древесины, различают три вида испытаний на сдвиг: скалывание вдоль волокон, скалывание поперек волокон и перерезание древесины поперек волокон. Схемы действия сил при этих испытаниях, а также плоскости разрушения, которые задаются принудительно. Каждый вид испытаний на сдвиг может быть проведен не только в радиальном, как показано на схемах, но и в тангенциальном направлении.

    прочность при скалывании вдоль волокон

  8. Alan_T Ответить

    Применение древесины в качестве конструкционного материала обусловлено способностью сопротивляться действию усилий, т.е. механическими свойствами.
    Различают следующие свойства древесины, проявляющиеся под воздействием механических нагрузок: прочность – способность сопротивляться разрушению, деформативность – способность сопротивляться изменению размеров и формы, технологические и эксплуатационные свойства.
    Показатели механических свойств древесины определяют обычно при следующих видах испытаний: растяжении, сжатии, изгибе и сдвиге. Поскольку древесина – анизотропный материал, т.е. материал с различными свойствами в разных направлениях, указывают направление действия нагрузок: вдоль или поперек волокон (в радиальном или тангенциальном направлении).
    Из-за сопротивления древесины внешним нагрузкам в ней возникают внутренние силы. Эти силы, отнесённые к единице площади сечения (1 см2) называются напряжениями. Максимальное напряжение, предшествующее разрушению тела, называют пределом прочности.
    Предел прочности определяют на малых, чистых и не имеющих пороках образцах в лабораториях на испытательных машинах. Эти образцы имеют базисное сечение с размерами 20 * 20 мм и должны включать не менее 4-5 годичных слоёв. Некоторые виды испытаний производят на образцах, сечение которых отличается от указанного.
    Прочность при сжатии определяется на образцах призматической формы. Схема испытания на прочность при сжатии вдоль волокон и размер образца показаны на рисунке:

    Образец постепенно нагружают до разрушения. Затем по силоизмерителю испытательной машины отсчитывают максимальную нагрузку Рмах, Н. Предел прочности б, МПа, вычисляют по формуле: бw = Pmax / (a * b), где (a * b) – площадь сечения образца, мм2.
    В среднем для всех отечественных пород при влажности древесины 12% предел прочности на сжатие вдоль волокон составляет около 50 МПа.
    Прочность при сжатии поперёк волокон определяется по схеме на рисунке. Здесь указана равнодействующая сил, которые либо равномерно распределены по всей поверхности образца, либо по всей ширине, но на части длины его (местное сжатие). И в том, и в другом случаях определяют условный предел прочности. В качестве этого показателя используют предел пропорциональности, т.е. величину напряжений, до которых наблюдают линейную зависимость между напряжениями и деформациями. В среднем для всех пород он составляет 1/10 предела прочности при сжатии вдоль волокон.
    Испытания на прочность при растяжении проводятся на образцах другого вида:

    Такая форма образцов обусловлена стремлением обеспечить разрушение в тонкой рабочей части, а не в месте закрепления, под воздействием именно растягивающих напряжений.
    В среднем для всех пород предел прочности при растяжении вдоль волокон равен 130 МПа, а предел прочности при растяжении поперёк волокон в 20 раз ниже. Поэтому при конструировании изделий из древесины избегают растягивающих нагрузок, направленных поперёк волокон.
    Для испытания древесины на статический изгиб применяют образцы в форме бруска размерами 20 * 20 * 300 мм:

    Предел прочности при статическом изгибе, МПа, вычисляют по формуле: бw = (3/2) * ((Pmax*l) / (b * h2)), где Pmax – максимальная нагрузка, Н; l – пролет, т.е. расстояние между центрами опор, равный 240 мм; b и h – ширина (в радиальном) и высота (в тангенциальном) направлениях, мм.
    В среднем предел прочности при статическом изгибе составляет 100 МПа.
    При испытаниях к образцу прикладывают две равные и противоположно направленные силы, вызывающие разрушение в параллельной им плоскости, происходит сдвиг. Различают три вида испытаний на сдвиг: скалывание вдоль волокон, скалывание поперёк волокон и перерезание древесины поперёк волокон. Схемы действия сил при этих испытаниях показаны на рисунке:

    Для испытания на скалывание вдоль волокон применяют образец, форма и размеры которого показаны на рисунке:

    Предел прочности при скалывании вдоль волокон определяют по формуле: Tw = Pmax / (b * l), где (b * l) – площадка скалывания, мм2.
    Величина предела прочности – касательных максимальных напряжений при скалывании вдоль волокон в среднем для всех пород составляет примерно 1/5 от предела прочности при сжатии вдоль волокон. Предел прочности при скалывании поперёк волокон в 2 раза меньше, а предел прочности при перерезании поперёк волокон в 4 раза больше, чем предел прочности при скалывании вдоль волокон.
    Деформативность. При кратковременных нагрузках в древесине возникают преимущественно упругие деформации, которые после нагрузки исчезают. До определённого предела зависимость между напряжениями и деформациями близка к линейной (закон Гука). Основным показателем деформативности служит коэффициент пропорциональности – модуль упругости.
    Модуль упругости вдоль волокон Е = 12-16 ГПа, что в 20 раз больше, чем поперёк волокон. Чем больше модуль упругости, тем более жесткая древесина.
    С увеличением содержания связанной воды и температуры древесины, жесткость её снижается. В нагруженной древесине при высыхании или охлаждении часть упругих деформаций преобразуется в “замороженные” остаточные деформации. Они исчезают при нагревании или увлажнении.
    Поскольку древесина состоит в основном из полимеров с длинными гибкими цепными молекулами, её деформативность зависит от продолжительности воздействия нагрузок. Механические свойства древесины, как и других полимеров, изучаются на базе общей науки реологии. Эта наука рассматривает общие законы деформирования материалов под воздействием нагрузки с учётом фактора времени.
    Эксплуатационные и технологические свойства. Прочность древесины при длительных постоянных нагрузках важно знать в связи с применением её в строительных конструкциях. Показателем этого свойства является предел длительного сопротивления бд.с., который в среднем для всех видов нагрузки составляет примерно 0,5 – 0,6 величины предела прочности при кратковременных статических испытаниях.
    Показателем прочности при переменных нагрузках является предел выносливости, средняя величина которого составляет примерно 0,2 от статического предела прочности.
    При проектировании деревянных конструкций в расчётах используют не пределы прочности малых образцов древесины, а в несколько раз меньшие показатели – расчётные сопротивления. Они учитывают большие размеры элементов конструкций, наличие пороков древесины, длительность действия нагрузки, влажность, температуру и другие факторы.
    Удельная вязкость характеризует способность древесины поглощать работу при ударе без разрушения и определяется при испытаниях на изгиб. Ударная вязкость у древесины лиственных пород в среднем в 2 раза больше, чем у древесины хвойных пород.
    Твёрдость характеризует способность древесины сопротивляться вдавливанию более твёрдого тела. Испытания на статическую твёрдость проводят по схеме, показанной на рисунке:

    Для испытания на твёрдость используют приспособление, которое имеет пуансон с полусферическим наконечником. Его вдавливают на глубину радиуса. После испытания в древесине остаётся отпечаток, площадь проекции которого при указанном радиусе полусферы составляет 100 мм2. Показателем статической твёрдости образца, Н/мм2, является усилие, отнесенное к этой площади. Статическая твёрдость торцевой поверхности выше, чем боковых поверхностей.
    Все отечественные породы по твёрдости торцевой поверхности при влажности 12% делят на 3 группы: мягкие (твёрдость 40 Н/мм2 и менее), твёрдые (41-80) и очень твёрдые (более 80 Н/мм2).
    Ударную твёрдость определяют, сбрасывая стальной шарик диаметром 25 мм с высоты 0,5 м на поверхность образца, величена которого тем больше, чем меньше твёрдость древесины.
    Износостойкость – способность древесины сопротивляться износу, т.е. постепенному разрушению её поверхностных зон при трении. Испытания на износостойкость древесины показали, что износ с боковых поверхностей значительно больше, чем с поверхности торцевого разреза. С повышением плотности и твёрдости древесины износ уменьшился. У влажной древесины износ больше, чем у сухой.
    Уникальным свойством древесины является способность удерживать крепления: гвозди, шурупы, скобы, костыли и др. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдёргиванию гвоздя. Усилие, необходимое для выдёргивания гвоздя, забитого в торец образца, меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон. С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается. Усилия, необходимые для выдёргивания шурупов (при прочих равных условиях), больше, чем для выдёргивания гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву.
    Технологическая операция гнутья древесины основана на её способности сравнительно легко деформироваться при действии избегающих усилий. Способность гнуться выше у кольцесосудистых пород – дуба, ясеня и др., а из рассеянно-сосудистых – бука; хвойные породы обладают меньшей способностью к загибу. Гнутью подвергают древесину, находящуюся в нагретом и влажном состоянии. Это увеличивает податливость древесины и позволяет вследствие образования замороженных деформаций при последующем охлаждении и сушке под нагрузкой зафиксировать новую форму детали.
    Для сравнительной оценки качества древесины используют так называемые удельные характеристики механических свойств, т.е. показатели ее механических свойств, отнесенные к единице плотности.
    Удельная прочность при сжатии и статическом изгибе у хвойных пород выше, чем у лиственных. Значительно выше у хвойных пород и удельная жесткость. По остальным свойствам удельные характеристики у древесины лиственных пород выше, чем у хвойных.
    Удельные характеристики древесины имеют особое значение, когда от изделия или конструкции требуется высокая прочность при малом весе. Это важно для транспортного машиностроения, авиастроения, судостроения и в других случаях.
    [ химические свойства | физические свойства ]

  9. DJ_Diman Ответить

    У многих хвойных (сосна, ель, лиственница, кедр и др.) есть смоляные ходы, представляющие собой тонкие каналы в древесине, заполненные смолой. Они отсутствуют у пихты, можжевельника, тисса. Смола повышает стойкость древесины против гниения.
    В соотвествии с ГОСТ 20022.2-80 устанавливают классификацию древесины по стойкости к гниению и пропитываемости защитными средствами, скорости расконсервирования и уязвимости объектов защиты, а также классификацию защитных средств древесины.
    По стойкости к гниению породы древесины (табл. 1) подразделяют на 4 класса: стойкие, среднестойкие, малостойкие и нестойкие, причем классификация ведется как по заболони, так и по ядру.

    Таблица 1. Стойкость древесины к гниению

    Класс
    Порода древесины
    Заболонь
    Ядро
    Стойкие
    Сосна обыкновенная, ясень
    Сосна кедровая сибирская, сосна обыкновенная, лиственница, дуб, ясень
    Среднестойкие
    Ель, сосна кедровая сибирская, лиственница, пихта
    Ель, пихта, бук
    Малостойкие
    Береза, бук, вяз, граб, дуб, клен
    Вяз, клен
    Нестойкие
    Липа, ольха, осина
    Береза, липа, осина, ольха
    По пропитываемости защитными средствами породы древесины (табл. 2) подразделяют на следующие группы: легко пропитываемые, умеренно пропитываемые, трудно пропитываемые.

    Таблица 2. Пропитываемость древесины защитными средствами

    Класс
    Порода древесины
    Порода древесины
    Заболонь
    Ядро
    Легко пропитываемые
    Сосна обыкновенная, береза, бук
    _
    Умеренно пропитываемые
    Сосна кедровая сибирская, лиственница европейская, граб, дуб, клен, липа, ольха, осина
    Сосна кедровая сибирская, сосна обыкновенная, осина, ольха
    Трудно пропитываемые
    Ель, лиственница сибирская, пихта
    Ель, лиственница европейская, лиственница сибирская, пихта, береза, дуб, вяз, бук, ясень

    Плотность

    Плотность древесины (объемная масса) – это отношение массы древесины к ее объему, выражается в кг/м3. Плотность древесины зависит от ее влажности. Все показатели физико-механических свойств древесины определяются при влажности 12%.
    Между прочностью и плотностью существует тесная связь. Более тяжелая древесина, как правило, является более прочной. Плотность определяется количеством древесинного вещества в единице объема.
    По плотности при влажности 12 % древесину можно разделить на 3 группы:
    легкой плотности – до 550 кг/м3 (бальса, пихта сибирская, ель, ива, сосна, осина, липа, ольха);
    средней плотности – 551–700 кг/м3 (конский каштан, орех, береза, вишня, лиственница, тик, бук, дуб, свитения, платан, клен);
    плотные породы – от 771 кг/м3 и выше (ясень, слива, пекан, самшит, хурма, яблоня, маслина).
    Плотность древесины имеет большое практическое значение. Более плотная древесина хуже пропитывается антисептиками, менее подвержена истиранию на таких местах, как полы, лестницы, перила.

    Твердость

    Твердостью называется способность древесины сопротивляться внедрению в нее более твердых тел. На степень твердости оказывает влияние влажность древесины.
    По этому параметру все древесные породы при 12 %-ной влажности можно разделить на три группы:
    мягкие – торцовая твердость 40 МПа и менее (сосна, ель, кедр, пихта, можжевельник, тополь, липа, осина, ольха, каштан);
    твердые – торцовая твердость 40,1–80 МПа (лиственница, береза сибирская, бук, дуб, вяз, платан, рябина, клен, лещина, орех грецкий, хурма, яблоня, ясень);
    очень твердые – торцовая твердость более 80 МПа (акация белая, береза железная, граб, кизил, самшит, фисташка, тисс).
    Твердые породы древесины более износостойки по сравнению с мягкими. Это имеет существенное значение при обработке режущими инструментами: фрезеровании, распиловке. А также при устройстве полов, лестниц, перил, поскольку при эксплуатации древесина подвергается истиранию. В производстве паркета и паркетной доски из массива применяют породы с твердостью не ниже средней.
    свойства древесины

    Прочность

    Прочностью называется способность древесины сопротивляться разрушению под действием механических нагрузок. Она зависит от направления действующей нагрузки (растяжение, сжатие, изгиб, скалывание), породы дерева, плотности, влажности, наличия пороков и характеризуется пределом прочности – напряжением, при котором разрушается образец.
    Средняя величина предела прочности при растяжении вдоль волокон всех пород составляет 130 МПа. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности.
    При растяжении поперек волокон прочность древесины очень мала и в среднем составляет 1/20 от предела прочности при растяжении вдоль волокон, т. е. 6,5 МПа. При сжатии вдоль волокон деформация выражается в небольшом укорочении образца. Прочность древесины при сжатии поперек волокон ниже, чем вдоль волокон, примерно в 8 раз.
    свойства древесины

    В зависимости от применения

    Рассматривают и сравнивают свойства древесины различных пород в зависимости от вида изготовляемой продукции.
    Строительные элементы. Наиболее популярными видами строительных изделий из дерева являются оцилиндрованное бревно, массивный брус, клееный профилированный брус, конструкционные балки, строительные элементы крыши и перекрытий (доски и балки), элементы каркаса, стеновые панели из массивной древесины. Для данной категории изделий важное значение имеют такие свойства древесины, как прочность и стойкость к биоповреждениям.
    Напольные покрытия. Напольные покрытия выделены в отдельную категорию, поскольку на сегодняшний день большинство предприятий стараются обеспечить качество продукции в соответствии с требованиями европейских стандартов, в которых имеется градация не только по качеству, но и по внешнему виду продукции (по направлению волокон – радиальные, тангенциальные, смешанные; по наличию ядра, сердцевинных лучей и т. д.). К напольным покрытиям относятся: доска пола, паркетная планка, паркетная доска, террасная доска.
    В эту же категорию можно вынести элементы лестницы (ступеньки и перила). Для данной категории изделий важное значение имеют такие свойства древесины, как твердость, плотность, стабильность формы, истираемость.
    Отделочный материал, мебель и элементы столярного производства. Древесина широко применяется для внутренней и наружной отделки. Для обшивки дома используют доску, имитирующую оцилиндрованное бревно или брус. Для внутренней отделки широко используют отделочная доска (вагонка и евровагонка), мебельные щиты для изготовления мебели, подоконников, дверей, стеновых панелей и другие элементы столярного производства. Для данной категории изделий важное значение имеет стабильность формы, плотность древесины.
    Другие виды продукции. Это различные плитные материалы ДСтП, ДСП, ДВП, МДФ, ОСП и т. д.
    В следующем номере мы расскажем об областях применения древесины хвойных пород.
    ____________________________________________________________________
    Рекомендуем прочитать:

    Защита древесины

    Как и от чего нужно защищать древесину? Какие новые технологии могут предложить специалисты?

    Качество древесины

    Оценить строительный материал человеку, не являющемуся специалистом в данном вопросе, очень трудно. Да и профессионалу подчас требуется помощь специальной аппаратуры и дополнительные исследования.

  10. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *