Как можно ускорить реакцию разложения пероксида водорода?

10 ответов на вопрос “Как можно ускорить реакцию разложения пероксида водорода?”

  1. Finalts Ответить

    Пероксид водорода в обычных условиях представляет собой бесцветную вязкую жидкость (в толстом слое — светло-голубую), которая разлагается на свету, а также в присутствии примесей. Он неограниченно смешивается с водой, образуя слабокислотный раствор; в химических лабораториях обычно используют 30%-й раствор пероксида водорода, носящий название пергидроль. Проявляет окислительно-восстановительные свойства, с преобладанием окислительной функции.
    Разложение перекиси водорода описывается следующим уравнением:
    .
    Данная реакция протекает при нагревании до температуры выше или же при комнатной температуре, но в присутствии катализатора, в роли которого могут выступать гидроксид натрия (), диоксид марганца (), платина () или медь ().
    Учитывая условия задачи, рассчитаем количество вещества перекиси водорода (значения относительных атомных масс химических элементов, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):
    ;
    .
    ;
    .
    Согласно уравнению реакции, пероксид водорода и кислорода находятся в мольном соотношении равном
    .
    Это означает, что количество вещества кислорода равно:
    .
    Тогда, объем кислорода, выделившегося в ходе этой реакции будет равняться:
    ;
    .

  2. tapia797 Ответить

    Какой объем кислорода (O2) выделится при разложении перекиси водорода (H2O2), взятой в количестве: а) 34 грамма; б) 3 моль?

    Решение задачищ

    Реакции разложения – это реакции, в результате которых из одного вещества образуется несколько новых веществ.
    На свету, при нагревании или в присутствии катализатора происходит разложение  перекиси водорода. Запишем уравнение реакции  разложения перекиси водорода (H2O2):

    а) Вычислим молярную массу перекиси водорода (H2O2) и кислорода (O2) (смотри таблицу Менделеева):
    M (H2O2) = 2 ⋅ 1 + 2 ⋅ 16 = 34 (г/моль),
    M (O2) = 2 ⋅ 16 = 32 (г/моль).
    По уравнению реакции найдем массу кислорода (O2), который выделяется при полном разложении перекиси водорода (H2O2):

    при разложении перекиси водорода массой 68 г выделяется 32 г O2
    при разложении перекиси водорода массой 34 г выделяется х г O2
    Откуда:

    Следовательно, при полном разложении перекиси водорода выделится 16 г кислорода (O2).
    Найдем объем кислорода (O2), который выделится при полном разложении перекиси водорода,по формуле перерасчета, которая устанавливает связь между массой и объемом газа:

    Откуда выразим объем произвольной массы газа:
    Получаем:
    V (O2) = 16 ⋅ 22,4 / 32 = 11,2 (л).

    Ответ:

    при разложении перекиси водорода выделится 11,2 литра кислорода.
    б) По уравнению реакции найдем химическое количество кислорода (O2), который выделяется при полном разложении перекиси водорода (H2O2):

    при разложении перекиси водорода химическим количеством 2 моль выделяется 1 моль O2
    при разложении перекиси водорода химическим количеством 3 моль выделяется х моль O2
    Откуда:

    Следовательно, при полном разложении перекиси водорода выделится 1,5 моль кислорода (O2).
    Найдем объем кислорода (O2), который выделится при полном разложении перекиси водородапо формуле устанавливающей связь между объемом и химическим количеством:

    Получаем:
    V (O2) = 1,5 ⋅ 22,4 = 33,6 (л).

    Ответ:

    при разложении перекиси водорода выделится 33,6 литра кислорода.

  3. GreatSima Ответить

    Фермент каталаза содержится в крови; именно благодаря ей «вскипает» от выделения кислорода аптечная «перекись водорода», когда ее используют для дезинфекции порезанного пальца. Реакцию разложения концентрированного раствора Н2О2 под действием каталазы использует не только человек; именно эта реакция помогает жуку-бомбардиру бороться с врагами, выпуская в них горячую струю (см. ВЗРЫВЧАТЫЕ ВЕЩЕСТВА). Другой фермент – пероксидаза действует иначе: он не разлагает Н2О2, но в его присутствии происходит окисление других веществ пероксидом водорода.
    Ферменты, влияющие на реакции пероксида водорода, играют большую роль в жизнедеятельности клетки. Энергию организму поставляют реакции окисления с участием поступающего из легких кислорода. В этих реакциях промежуточно образуется Н2О2, который вреден для клетки, так как вызывает необратимое повреждение различных биомолекул. Каталаза и пероксидаза совместно превращают Н2О2 в воду и кислород.
    Реакция разложения Н2О2 часто протекает по радикально-цепному механизму (см. ЦЕПНЫЕ РЕАКЦИИ), при этом роль катализатора заключается в инициировании свободных радикалов. Так, в смеси водных растворов Н2О2 и Fe2+ (так называемый реактив Фентона) идет реакция переноса электрона с иона Fe2+ на молекулу H2O2 с образованием иона Fe3+ и очень неустойчивого анион-радикала [H2O2]. –, который сразу же распадается на анион ОН– и свободный гидроксильный радикал ОН. (см. СВОБОДНЫЕ РАДИКАЛЫ). Радикал ОН. очень активен. Если в системе есть органические соединения, то возможны их разнообразные реакции с гидроксильными радикалами. Так, ароматические соединения и оксикислоты окисляются (бензол, например, превращается в фенол), непредельные соединения могут присоединить гидроксильные группы по двойной связи: СН2=СН–СН2ОН + 2ОН. ® НОСН2–СН(ОН)–СН2–ОН, а могут вступить в реакцию полимеризации. В отсутствие же подходящих реагентов ОН. реагирует с Н2О2 с образованием менее активного радикала НО2., который способен восстанавливать ионы Fe2+, что замыкает каталитический цикл:
    H2O2 + Fe2+ ® Fe3+ + OH. + OH–
    ОН. + Н2О2 ® H2O + HO2.
    HO2. + Fe3+ ® Fe2+ + O2 + H+
    H+ + OH– ® H2O.
    При определенных условиях возможно цепное разложение Н2О2, упрощенный механизм которого можно представить схемой
    ОН. + Н2О2 ® H2O + HO2.2. + H2O2 ® H2O + O2 + OH. и т.д.
    Реакции разложения Н2О2 идут в присутствии различных металлов переменной валентности. Связанные в комплексные соединения, они часто значительно усиливают свою активность. Например, ионы меди менее активны, чем ионы железа, но связанные в аммиачные комплексы [Cu(NH3)4]2+, они вызывают быстрое разложение Н2О2. Аналогичное действие оказывают ионы Mn2+ связанные в комплексы с некоторыми органическими соединениями. В присутствии этих ионов удалось измерить длину цепи реакции. Для этого сначала измерили скорость реакции по скорости выделения из раствора кислорода. Затем в раствор ввели в очень малой концентрации (около 10–5 моль/л) ингибитор – вещество, эффективно реагирующее со свободными радикалами и обрывающее таким образом цепь. Выделение кислорода сразу же прекратилось, но примерно через 10 минут, когда весь ингибитор израсходовался, снова возобновилось с прежней скоростью. Зная скорость реакции и скорость обрыва цепей, нетрудно рассчитать длину цепи, которая оказалась равной 103 звеньев. Большая длина цепи обусловливает высокую эффективность разложения Н2О2 в присутствии наиболее эффективных катализаторов, которые с высокой скоростью генерируют свободные радикалы. При указанной длине цепи скорость разложения Н2О2 фактически увеличивается в тысячу раз.
    Иногда заметное разложение Н2О2 вызывают даже следы примесей, которые почти не обнаруживаются аналитически. Так, одним из самых эффективных катализаторов оказался золь металлического осмия: сильное каталитическое действие его наблюдалось даже при разведении 1:109, т.е. 1 г Os на 1000 т воды. Активными катализаторами являются коллоидные растворы палладия, платины, иридия, золота, серебра, а также твердые оксиды некоторых металлов – MnO2, Co2O3, PbO2 и др., которые сами при этом не изменяются. Разложение может идти очень бурно. Так, если маленькую щепотку MnO2 бросить в пробирку с 30%-ным раствором Н2О2, из пробирки вырывается столб пара с брызгами жидкости. С более концентрированными растворами происходит взрыв. Более спокойно протекает разложение на поверхности платины. При этом на скорость реакции сильное влияние оказывает состояние поверхности. Немецкий химик Вальтер Шпринг провел в конце 19 в. такой опыт. В тщательно очищенной и отполированной платиновой чашке реакция разложения 38%-ного раствора Н2О2 не шла даже при нагревании до 60° С. Если же сделать иглой на дне чашки еле заметную царапину, то уже холодный (при 12° С) раствор начинает выделять на месте царапины пузырьки кислорода, а при нагревании разложение вдоль этого места заметно усиливается. Если же в такой раствор ввести губчатую платину, обладающую очень большой поверхностью, то возможно взрывное разложение.
    Быстрое разложение Н2О2 можно использовать для эффектного лекционного опыта, если до внесения катализатора добавить к раствору поверхностно-активное вещество (мыло, шампунь). Выделяющийся кислород создает обильную белую пену, которую назвали «зубной пастой для слона».
    Некоторые катализаторы инициируют нецепное разложение Н2О2, например:
    H2O2 + 2I– + 2H+ ® 2H2O + I2
    I2 + H2O2 ® 2I– + 2H+ + O2.
    Нецепная реакция идет и в случае окисления ионов Fe2+ в кислых растворах: 2FeSO4 + H2O2 + H2SO4 ® Fe2(SO4)3 + 2H2O.
    Поскольку в водных растворах почти всегда есть следы различных катализаторов (катализировать разложение могут и ионы металлов, содержащихся в стекле), к растворам Н2О2, даже разбавленным, при их длительном хранении добавляют ингибиторы и стабилизаторы, связывающие ионы металлов. При этом растворы слегка подкисляют, так как при действии чистой воды на стекло получается слабощелочной раствор, что способствует разложению Н2О2.
    Все эти особенности разложения Н2О2 позволяют разрешить противоречие. Для получения чистого Н2О2 необходимо проводить перегонку при пониженном давлении, поскольку вещество разлагается при нагревании выше 70° С и даже, хотя очень медленно, при комнатной температуре (как сказано в Химической энциклопедии, со скоростью 0,5% в год). В таком случае, как же получена фигурирующая в той же энциклопедии температура кипения при атмосферном давлении, равная 150,2° С? Обычно в таких случаях используют физико-химическую закономерность: логарифм давления пара жидкости линейно зависит от обратной температуры (по шкале Кельвина), поэтому если точно измерить давление пара Н2О2 при нескольких (невысоких) температурах, то легко можно рассчитать, при какой температуре это давление достигнет 760 мм рт.ст. А это и есть температура кипения при обычных условиях.
    Теоретически радикалы ОН. могут образоваться и в отсутствие инициаторов, в результате разрыва более слабой связи О–О, но для этого нужна довольно высокая температура. Несмотря на относительно небольшую энергию разрыва этой связи в молекуле Н2О2 (она равна 214 кДж/моль, что в 2,3 раза меньше, чем для связи Н–ОН в молекуле воды), связь О–О все же достаточно прочная, чтобы пероксид водорода был абсолютно устойчив при комнатной температуре. И даже при температуре кипения (150° С) он должен разлагаться очень медленно. Расчет показывает, что при этой температуре разложение на 0,5% должно происходить тоже достаточно медленно, даже если длина цепи равна 1000 звеньев. Несоответствие расчетов и опытных данных объясняется каталитическим разложением, вызванным и мельчайшими примесями в жидкости и стенками реакционного сосуда. Поэтому измеренная многими авторами энергия активации разложения Н2О2 всегда значительно меньше, чем 214 кДж/моль даже «в отсутствие катализатора». На самом деле катализатор разложения всегда есть – и в виде ничтожных примесей в растворе, и в виде стенок сосуда, именно поэтому нагревание безводного Н2О2 до кипения при атмосферном давлении неоднократно вызывало взрывы.
    В некоторых условиях разложение Н2О2 происходит очень необычно, например, если нагреть подкисленный серной кислотой раствор Н2О2 в присутствии иодата калия KIO3, то при определенных концентрациях реагентов наблюдается колебательная реакция, при этом выделение кислорода периодически прекращается, а потом возобновляется с периодом от 40 до 800 секунд.
    Химические свойства Н2О2.
    Пероксид водорода – кислота, но очень слабая. Константа диссоциации H2O2 H+ + HO2– при 25° С равна 2,4·10–12, что на 5 порядков меньше, чем для H2S. Средние соли Н2О2 щелочных и щелочноземельных металлов обычно называют пероксидами (см. ПЕРОКСИДЫ). При растворении в воде они почти полностью гидролизуются: Na2O2 + 2H2O ® 2NaOH + H2O2. Гидролизу способствует подкисление растворов. Как кислота Н2О2 образует и кислые соли, например, Ва(НО2)2, NaHO2 и др. Кислые соли менее подвержены гидролизу, но легко разлагаются при нагревании с выделением кислорода: 2NaHO2 ® 2NaOH + O2. Выделяющаяся щелочь, как и в случае Н2О2, способствует разложению.
    Растворы Н2О2, особенно концентрированные, обладают сильным окислительным действием. Так, при действии 65%-ного раствора Н2О2 на бумагу, опилки и другие горючие вещества они воспламеняются. Менее концентрированные растворы обесцвечивают многие органические соединения, например, индиго. Необычно идет окисление формальдегида: Н2О2 восстанавливается не до воды (как обычно), а до свободного водорода: 2НСНО + Н2О2 ® 2НСООН + Н2. Если взять 30%-ный раствор Н2О2 и 40%-ный раствор НСНО, то после небольшого подогрева начинается бурная реакция, жидкость вскипает и пенится. Окислительное действие разбавленных растворов Н2О2 больше всего проявляется в кислой среде, например, H2O2 + H2C2O4 ® 2H2O + 2CO2, но возможно окисление и в щелочной среде:
    Na[Sn(OH)3] + H2O2 + NaOH ® Na2[Sn(OH)6]; 2K3[Cr(OH)6] + 3H2O2 ® 2KCrO4 + 2KOH + 8H2O.
    Окисление черного сульфида свинца до белого сульфата PbS + 4H2O2 ® PbSO4 + 4H2O можно использовать для восстановления потемневших свинцовых белил на старых картинах. Под действием света идет окисление и соляной кислоты:
    H2O2 + 2HCl ® 2H2O + Cl2. Добавление Н2О2 к кислотам сильно увеличивает их действие на металлы. Так, в смеси H2O2 и разбавленной H2SO4 растворяются медь, серебро и ртуть; иод в кислой среде окисляется до иодной кислоты HIO3, сернистый газ – до серной кислоты и т.д.
    Необычно происходит окисление калий-натриевой соли винной кислоты (сегнетовой соли) в присутствии хлорида кобальта в качестве катализатора. В ходе реакции KOOC(CHOH)2COONa + 5H2O2 ® KHCO3 + NaHCO3 + 6H2O + 2CO2 розовый CoCl2 изменяет цвет на зеленый из-за образования комплексного соединения с тартратом – анионом винной кислоты. По мере протекания реакции и окисления тартрата комплекс разрушается и катализатор снова розовеет. Если вместо хлорида кобальта использовать в качестве катализатора медный купорос, то промежуточное соединение, в зависимости от соотношения исходных реагентов, будет окрашено в оранжевый или зеленый цвет. После окончания реакции восстанавливается синий цвет медного купороса.
    Совершенно иначе реагирует пероксид водорода в присутствии сильных окислителей, а также веществ, легко отдающих кислород. В таких случаях Н2О2 может выступать и как восстановитель с одновременным выделением кислорода (так называемый восстановительный распад Н2О2), например:
    2KMnO4 + 5H2O2 + 3H2SO4 ® K2SO4 + 2MnSO4 + 5O2 + 8H2O;
    Ag2O + H2O2 ® 2Ag + H2O + O2;
    О3 + Н2О2 ® H2O + 2O2;
    NaOCl + H2O2 ® NaCl + H2O + O2.
    Последняя реакция интересна тем, что в ней образуются возбужденные молекулы кислорода, которые испускают оранжевую флуоресценцию (см. ХЛОР АКТИВНЫЙ). Аналогично из растворов солей золота выделяется металлическое золото, из оксида ртути получается металлическая ртуть и т.д. Такое необычное свойство Н2О2 позволяет, например, провести окисление гексацианоферрата(II) калия, а затем, изменив условия, восстановить продукт реакции в исходное соединение с помощью того же реактива. Первая реакция идет в кислой среде, вторая – в щелочной:
    2K4[Fe(CN)6] + H2O2 + H2SO4 ® 2K3[Fe(CN)6] + K2SO4 + 2H2O;
    2K3[Fe(CN)6] + H2O2 + 2KOH ® 2K4[Fe(CN)6] + 2H2O + O2.
    («Двойственный характер» Н2О2 позволил одному преподавателю химии сравнить пероксид водорода с героем повести известного английского писателя Стивенсона Странная история доктора Джекила и мистера Хайда, под влиянием придуманного им состава он мог резко изменять свой характер, превращаясь из добропорядочного джентльмена в кровожадного маньяка.)
    Получение Н2О2.
    Молекулы Н2О2 всегда получаются в небольших количествах при горении и окислении различных соединений. При горении Н2О2 образуется либо при отрыве атомов водорода от исходных соединений промежуточными гидропероксидными радикалами, например: HO2. + CH4 ® H2O2 + CH3., либо в результате рекомбинации активных свободных радикалов: 2ОН. ® Н2О2, Н. + НО2. ® Н2О2. Например, если кислородно-водородное пламя направить на кусок льда, то растаявшая вода будет содержать в заметных количествах Н2О2, образовавшийся в результате рекомбинации свободных радикалов (в пламени молекулы Н2О2 немедленно распадаются). Аналогичный результат получается и при горении других газов. Образование Н2О2 может происходить и при невысокой температуре в результате различных окислительно-восстановительных процессов.
    В промышленности пероксид водорода уже давно не получают способом Тенара – из пероксида бария, а используют более современные методы. Один из них – электролиз растворов серной кислоты. При этом на аноде сульфат-ионы окисляются до надсульфат-ионов: 2SO42– – 2e ® S2O82–. Надсерная кислота затем гидролизуется:
    H2S2O8 + 2H2O ® H2O2 + 2H2SO4.
    На катоде, как обычно, идет выделение водорода, так что суммарная реакция описывается уравнением 2H2O ® H2O2 + H2. Но основной современный способ (свыше 80% мирового производства) – окисление некоторых органических соединений, например, этилантрагидрохинона, кислородом воздуха в органическом растворителе, при этом из антрагидрохинона образуются Н2О2 и соответствующий антрахинон, который потом снова восстанавливают водородом на катализаторе в антрагидрохинон. Пероксид водорода извлекают из смеси водой и концентрируют перегонкой. Аналогичная реакция протекает и при использовании изопропилового спирта (она идет с промежуточным образованием гидропероксида): (СН3)2СНОН + О2 ® (СН3)2С(ООН)ОН ® (СН3)2СО + Н2О2. При необходимости образовавшийся ацетон также можно восстановить до изопропилового спирта.
    Применение Н2О2.
    Пероксид водорода находит широкое применение, а его мировое производство исчисляется сотнями тысяч тонн в год. Его используют для получения неорганических пероксидов, как окислитель ракетных топлив, в органических синтезах, для отбеливания масел, жиров, тканей, бумаги, для очистки полупроводниковых материалов, для извлечения из руд ценных металлов (например, урана путем перевода его нерастворимой формы в растворимую), для обезвреживания сточных вод. В медицине растворы Н2О2 применяют для полоскания и смазывания при воспалительных заболеваниях слизистых оболочек (стоматиты, ангина), для лечения гнойных ран. В пеналах для хранения контактных линз в крышку иногда помещают очень небольшое количество платинового катализатора. Линзы для их дезинфекции заливают в пенале 3%-ным раствором Н2О2, но так как этот раствор вреден для глаз, пенал через некоторое время переворачивают. При этом катализатор в крышке быстро разлагает Н2О2 на чистую воду и кислород.
    Когда-то модно было обесцвечивать волосы «перекисью», сейчас для окраски волос существуют более безопасные составы.
    В присутствии некоторых солей пероксид водорода образует как бы твердый «концентрат», который удобнее перевозить и использовать. Так, если к сильно охлажденному насыщенному раствору борнокислого натрия (буры) добавить Н2О2 в присутствии, постепенно образуются большие прозрачные кристаллы пероксобората натрия Na2[(BO2)2(OH)4]. Это вещество широко используется для отбеливания тканей и как компонент моющих средств. Молекулы Н2О2, как и молекулы воды, способны внедряться в кристаллическую структуру солей, образуя подобие кристаллогидратов – пероксогидраты, например, К2СО3·3Н2О2, Na2CO3·1,5H2O; последнее соединение широко известное под названием «персоль».
    Так называемый «гидроперит» CO(NH2)2·H2O2 представляет собой клатрат – соединение включения молекул Н2О2 в пустоты кристаллической решетки мочевины.
    В аналитической химии с помощью пероксида водорода можно определять некоторые металлы. Например, если к раствору соли титана(IV) – сульфата титанила добавить пероксид водорода, раствор приобретает ярко-оранжевый цвет вследствие образования надтитановой кислоты:
    TiOSO4 + H2SO4 + H2O2 ® H2[TiO2(SO4)2] + H2O. Бесцветный молибдат-ион MoO42– окисляется Н2О2 в интенсивно окрашенный в оранжевый цвет пероксидный анион. Подкисленный раствор дихромата калия в присутствии Н2О2 образует надхромовую кислоту: K2Cr2O7 + H2SO4 + 5H2O2 ® H2Cr2O12 + K2SO4 + 5H2O, которая довольно быстро разлагается: H2Cr2O12 + 3H2SO4 ® Cr2(SO4)3 + 4H2O + 4O2. Если сложить эти два уравнения, получится реакция восстановления пероксидом водорода дихромата калия:
    K2Cr2O7 + 4H2SO4 + 5H2O2 ® Cr2(SO4)3 + K2SO4 + 9H2O + 4O2.
    Надхромовую кислоту можно извлечь из водного раствора эфиром (в растворе эфира она значительно более устойчива, чем в воде). Эфирный слой при этом окрашивается в интенсивный синий цвет.
    Илья Леенсон
    ЛИТЕРАТУРА
    Долгоплоск Б.А., Тинякова Е.И. Генерирование свободных радикалов и их реакции. М., Химия, 1982
    Химия и технология перекиси водорода. Л., Химия, 1984

  4. Stanislav.Andreevich Ответить

    Вылейте раствор аммиаката меди в колбу с моющим средством и
    хорошо перемешайте. Поставьте колбу на стол и быстро добавьте в нее
    50-100 мл 30-50% раствора перекиси водорода. Произойдет сильное
    выделение газа. Из колбы ударит фонтан пены. Все пространство вокруг
    колбы за несколько секунд заполнится большим комком пены. От пены будет
    подниматься пар – реакция разложения перекиси водорода протекает с
    выделением тепла. В наших экспериментах высота и ширина образовавшейся
    пены была около 60 см.
    Если у вас нет 30-50% перекиси водорода – воспользуйтесь
    раствором гидроперита (продается в аптеке). Для успеха опыта разложение
    перекиси водорода должно проходить быстро, поэтому, чем больше его
    концентрация – тем лучше. С другой стороны катализатор разложения H2O2
    должен быть достаточно активным. Мы воспользовались аммиакатом меди.
    Можно попробовать взять перманганат калия. В некоторых случаях
    рекомендуют использовать иодид калия, но с ним опыт получается далеко не
    всегда.







  5. sasha_kosak Ответить

    Перекись водорода, а именно она лежит в основе нашего опыта, — очень неустойчивое соединение. Вещество, состоящее из двух атомов водорода и двух атомов кислорода, разлагается на кислород и воду даже при отсутствии каких-либо внешних стимулов. Однако процесс этот происходит очень медленно. Чтобы значительно ускорить его, достаточно добавить небольшое количество катализатора. Едва заметные следы присутствия меди, железа, марганца и даже ионов этих металлов способны запустить бурную реакцию разложения.

    1. Налейте в пластиковую бутылку 200 мл 3%-ного раствора перекиси водорода. Такой раствор продают в аптеке в качестве антисептического средства. Вместо перекиси можно взять отбеливатель — их тоже готовят на основе H2O2.
    Пероксид водорода (так иначе называют перекись) опасен для живых существ. Чтобы разложить H2O2 на кислород и воду, применяется фермент под названием «каталаза». Каталаза содержится почти во всех живых организмах, в том числе в дрожжах, которые мы используем в нашем опыте.

    2. Добавьте пищевой краситель. Лучше использовать именно пищевые краски — не потому, что мы собираемся есть пену (это в любом случае не полезно), но потому, что в них точно не содержится катализаторов разложения перекиси водорода.
    Перекись водорода — жидкость с плотностью 1,4 г/см3. Выделяющийся при ее разложении кислород — газ, один грамм которого занимает целых 700 см³.

    3. Долейте моющее средство. Лучше всего подходят средства для мытья посуды. Объем — примерно половина от объема перекиси, то есть 100 мл.
    Конечно, для опытов мы используем всего лишь 3%-ный раствор перекиси водорода, однако и этого достаточно, чтобы при ее разложении выделился газ в объеме гораздо больше исходного.

    4. Разведите дрожжи в теплой воде, используя для этого отдельный стаканчик. Сделать это не так просто — дрожжи будут склеиваться комками. Нужно терпеливо размешать в 50 мл воды столовую ложку дрожжей, а затем дать им постоять пять минут. Решительно залейте дрожжевой раствор в бутылку с перекисью водорода и приготовьтесь наблюдать. Если повезет, реакция пойдет столь интенсивно, что пена буквально выпрыгнет из бутылки.
    Чтобы увидеть выделившийся кислород, мы ловим его в мыльные пузыри. Для этого добавляем в раствор перекиси водорода пенящееся средство для мытья посуды.

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *