Как подключить двигатель 380 на 220 без потери мощности?

10 ответов на вопрос “Как подключить двигатель 380 на 220 без потери мощности?”

  1. obezyanka Ответить

    Начала и концы обмоток (различные варианты)
    Схемы подключения трехфазного двигателя в однофазную сеть
    Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме “звезда” (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или “треугольник” (концы одной обмотки соединены с началом другой).

    Подключение трехфазного двигателя по схеме треугольник

    Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник
    В распределительной коробке контакты обычно сдвинуты – напротив С1 не С4, а С6, напротив С2 – С4.

    Положение контактов в распределительной коробке трехфазного двигателя

    Подключение трехфазного двигателя по схеме звезда

    Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда
    При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.
    Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой – подключение третьего контакта через фазосдвигающий конденсатор.

    Подключение трехфазного двигателя к однофазной сети
    Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.
    Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно – если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).
    Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети – 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В – для “звезды”, 220 – для “треугольника). Большее напряжение для “звезды”, меньшее – для “треугольника”. В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

    Таблички трехфазных электродвигателей
    Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как “треугольником” (на 220В), так и “звездой” (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему “треугольник”, поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении “звездой”.
    Табличка Б информирует, что обмотки двигателя подсоединены по схеме “звезда”, и в распределительной коробке не предусмотрена возможность переключить их на “треугольник” (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме “звезда”, или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме “треугольник”.
    Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме “звезда”. При подключении 220В по схеме “треугольник”, двигатель сгорит.

    Начала и концы обмоток (различные варианты)

    Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.
    Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме “треугольник”. В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.
    Если в двигателе обмотки соединены “звездой”, и имеется возможность изменить ее на “треугольник”, то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на “треугольник”, использовав для этого перемычки.
    Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):
    определению пар проводов, относящихся к одной обмотке;
    нахождению начала и конца обмоток.
    Первая задача решается “прозваниванием” всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

    Определение пар проводов относящихся к одной обмотке
    Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

    Нахождение начала и конца обмоток
    К концам одной обмотки (например, A) подключается батарейка, к концам другой (например, B) – стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В. Таким же образом проверяется и обмотка А – с батарейкой, подсоединенной к обмотке C или B.
    В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого – как концы (А2, В2, С2) и соединить их по необходимой схеме – “треугольник” или “звезда” (если напряжение двигателя 220/127В).
    Извлечение недостающих концов. Пожалуй, самый сложный случай – когда двигатель имеет соединение обмоток по схеме “звезда”, и нет возможности переключить ее на “треугольник” (в распределительную коробку выведено всего лишь три провода – начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме “треугольник” необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

    Табличка разбираемого электродвигателя

    Клеммная колодка
    Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме “треугольник”, подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме “звезда”, смирившись со значительной потерей мощности.

    Статор электродвигателя

    Припаянные провода

    Припаянные провода

    Вывод проводов в клеммную коробку

    Подключение проводов к клеммной колодке

    Схемы подключения трехфазного двигателя в однофазную сеть

    Подключение по схеме “треугольник”. В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме “треугольник”. При этом их мощность может достигать 70% от номинальной. Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий – через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.

    Подключение трехфазного двигателя к однофазной сети по схеме треугольник

    Подключение трехфазного двигателя к однофазной сети по схеме треугольник
    Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

    Подключение трехфазного электродвигателя в однофазную сеть по схеме “треугольник” с пусковым конденсатором Сп
    Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными – пока не будет нажата кнопка “стоп”.

    Выключатель
    Реверс. Направление вращения двигателя зависит от того, к какому контакту (“фазе”) подсоединена третья фазная обмотка.

    Реверс трехфазного двигателя
    Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.
    На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

    Схема подключения трехфазного двигателя к однофазной сети, с реверсом и кнопкой для подключения пускового конденсатора
    Подключение по схеме “звезда”. Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

    Подключение трехфазного двигателя к однофазной сети по схеме звезда
    Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения “звездой” емкость рассчитывается по формуле:
    Cр = 2800•I/U
    Для соединения “треугольником”:
    Cр = 4800•I/U
    Где Ср – емкость рабочего конденсатора в мкФ, I – ток в А, U – напряжение сети в В. Ток рассчитывается по формуле:
    I = P/(1.73•U•n•cosф)
    Где Р – мощность электродвигателя кВт; n – КПД двигателя; cosф – коэффициент мощности, 1.73 – коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.
    На практике величину емкости рабочего конденсатора при подсоединении “треугольником” можно посчитать по упрощенной формуле C = 70•Pн, где Pн – номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.
    Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.
    При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.
    Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

    Клиноременная передача мотоблока Салют 5
    Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.
    Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.
    Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).
    Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.
    Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 + … + Сn.

    Параллельное соединение конденсаторов
    В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

    Конденсаторы
    При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.
    Литература

  2. Mitrichh Ответить

    Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

    Таблица 1

    P, Вт
    IC1=IL1, A
    C1, мкФ
    L1, Гн
    100
    0.26
    3.8
    2.66
    200
    0.53
    7.6
    1.33
    300
    0.79
    11.4
    0.89
    400
    1.05
    15.2
    0.67
    500
    1.32
    19.0
    0.53
    600
    1.58
    22.9
    0.44
    700
    1.84
    26.7
    0.38
    800
    2.11
    30.5
    0.33
    900
    2.37
    34.3
    0.30
    1000
    2.63
    38.1
    0.27
    1100
    2.89
    41.9
    0.24
    1200
    3.16
    45.7
    0.22
    1300
    3.42
    49.5
    0.20
    1400
    3.68
    53.3
    0.19
    1500
    3.95
    57.1
    0.18
    В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.
    Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20…40°.
    На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.
    Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.
    Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить
    Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.
    Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.
    В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:
    IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° – IL1cos30° = Iлsinφ,
    получаем следующие значения этих токов:
    IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).
    При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.
    На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.
    Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85…0,9.

    Таблица 2

    P, Вт
    IC1, A
    IL1, A
    C1, мкФ
    L1, Гн
    100
    0.35
    0.18
    5.1
    3.99
    200
    0.70
    0.35
    10.2
    2.00
    300
    1.05
    0.53
    15.2
    1.33
    400
    1.40
    0.70
    20.3
    1.00
    500
    1.75
    0.88
    25.4
    0.80
    600
    2.11
    1.05
    30.5
    0.67
    700
    2.46
    1.23
    35.6
    0.57
    800
    2.81
    1.40
    40.6
    0.50
    900
    3.16
    1.58
    45.7
    0.44
    1000
    3.51
    1.75
    50.8
    0.40
    1100
    3.86
    1.93
    55.9
    0.36
    1200
    4.21
    2.11
    61.0
    0.33
    1300
    4.56
    2.28
    66.0
    0.31
    1400
    4.91
    2.46
    71.1
    0.29
    1500
    5.26
    2.63
    76.2
    0.27
    В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.
    Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.
    Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.
    Если же в магнитопровод ввести зазор порядка 0,2…1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.
    Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.
    В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.
    Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.
    Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.
    Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

    Таблица 3

    Зазор в
    магнитопроводе, мм
    Ток в сетевой обмотке, A,
    при соединении выводов на напряжение, В
    220
    237
    254
    0.2
    0.63
    0.54
    0.46
    0.5
    1.26
    1.06
    0.93
    1

    2.05
    1.75
    В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

    Таблица 4

    Трансформатор
    Номинальный
    ток, A
    Мощность
    двигателя, Вт
    ТС-360М
    1.8
    600…1500
    ТС-330К-1
    1.6
    500…1350
    СТ-320
    1.6
    500…1350
    СТ-310
    1.5
    470…1250
    ТСА-270-1,
    ТСА-270-2,
    ТСА-270-3
    1.25
    400…1250
    ТС-250,
    ТС-250-1,
    ТС-250-2,
    ТС-250-2М,
    ТС-250-2П
    1.1
    350…900
    ТС-200К
    1
    330…850
    ТС-200-2
    0.95
    300…800
    ТС-180,
    ТС-180-2,
    ТС-180-4,
    ТС-180-2В
    0.87
    275…700
    При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.
    Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.
    Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.
    Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2…3 В, что подтверждало высокую симметрию трехфазного напряжения.
    Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.
    В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.
    К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.
    Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

  3. nazimiwe82 Ответить

    Подключение трехфазного двигателя в сеть 220В через конденсатор.
    Иногда есть необходимость, чтобы электродвигатель работал то в ту, то в другую сторону. Это тоже несложная схема, в которую необходимо установить дополнительный тумблер переключения направления вращения ротора.
    Один конец тумблера (основной) запитывается на конденсатор, второй на ноль, третий на фазу. Если при такой схеме подключения мотор набирает слабо обороты, или его мощность снижается, то придется установить дополнительно пусковой конденсатор.

    Емкость конденсатора

    Есть несколько параметров устанавливаемых в электродвигатель конденсаторов, которые придется рассчитывать под необходимый номинал мощности мотора. И один из них – это емкость. Чтобы ее определить, можно воспользоваться несколькими формулами.
    Формула: C=2800x(I/U) – если схема подключения треугольник. И C=480x(I/U) – если звезда. При этом «I» – это сила тока, которую можно замерить электрическими клещами, «U» – это напряжение в сети переменного тока.
    Формула: C=66xP, где «P» – мощность движка.

    Есть более простой вариант определения емкости, в нем присутствует соотношение – на каждые 1,0 кВт мощности необходимо присоединять 70 мкФ. Кстати, в данном случае приходится именно подбирать.
    Поэтому рекомендуется использовать конденсаторы разной емкости. Подключая их в схему, производится запуск движка, который должен работать корректно. Если необходимо уменьшить или увеличить емкость, то добавляется или уменьшается один из конденсаторов.
    Внимание! При сборке схемы, необходимо проверять силу тока в обмотках. Она должна быть меньше, чем номинал данного показателя.
    Что касается емкости пускового конденсатора, то он должен быть в 2,5-3,0 раза больше, чем у рабочего.

    Пример подбора конденсаторов по емкости

    Вводные данные:
    Схема подключения – треугольник.
    Сила тока электродвигателя – 3 А (указывается и на бирке прибора, и в паспорте).
    Теперь данные подставляем в формулу: C=4800*(3/220)=65 мкФ. Конечно, такого конденсатора нет, но его можно заменить несколькими, соединенными параллельно между собой. К примеру, 10 штук по 6 мкФ, и один 5 мкФ. При этом емкость пускового прибора будет находиться в диапазоне 160-200 мкФ.
    Обратите внимание, что этот расчет делается на номинальную мощность мотора. Поэтому если электрический агрегат будет работать без нагрузки, то будет все время греться. Поэтому стоит продумать ситуацию, для чего можно просто снизить емкость установленного блока конденсаторов.
    Но данная ситуация – палка о двух концах. Все дело в том, что снижая емкость, снижается и мощность. Поэтому совет: установить в схему минимальный показатель емкости (в нашем случае 160 мкФ), а после проверки начинать поднимать его до оптимального значения.

  4. NunkyJoe Ответить

    Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от 220 вольт с пусковыми и рабочими емкостями.
    Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.
    Ниже я показываю 4 схемы реализации такого проекта. Вы можете выбрать для себя любой из них, более подходящий под ваши личные интересы и местные условия эксплуатации.
    Содержание статьи
    Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов
    Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе
    2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия
    Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик
    Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами
    Преимущества схемы тиристорного преобразователя: автор В Соломыков
    С этой темой я впервые столкнулся в конце 1998 года, когда к нам в электролабораторию РЗА пришел друг связист с журналом Радио за №6 от 1996 года и показал статью про безконденсаторный запуск.
    Мы сразу решили испытать ее в деле, благо все детали, включая тиристоры и подходящий двигатель, у нас имелись. Как раз был перерыв на обед.
    Для проверки спаяли электронный блок навесным монтажом. Справились где-то меньше, чем за час. Схема заработала практически без наладки. Оставили ее для наждака.
    Порадовали маленькие габариты блока и отсутствие необходимости подбирать конденсаторы. Особых отличий в потере мощности по сравнению с конденсаторным пуском замечено не было.

    Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов

    Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.

    Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора.

    Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.
    Три обмотки статора необходимо подключать по схеме треугольника.

    Их выводы собираются на клеммной колодке тремя последовательными перемычками.

    Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.
    Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».
    Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.
    Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.

    Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.
    Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.
    Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».

    Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.
    Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.
    Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.
    Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.
    При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.

    Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе


    Силовая выходная часть электронного ключа, осуществляющая коммутацию обмотки, выполнена на двух мощных диодах (VD1, VD2) и тиристорах (VS1, VS2), включенных по схеме обычного моста.
    Однако здесь они выполняют другую задачу: своими плечами из одного тиристора и диода поочередно шунтируют обмотку подключенного электродвигателя при достижении амплитудного значения синусоиды напряжения на схеме.
    За счет такого подключения создан электронный ключ двунаправленного действия, реагирующий на положительную и отрицательную полуволну гармоники.
    Диодами VD3 и VD4 осуществляется двухполупериодное напряжение сигнала, поступающего на цепи управления. Оно ограничивается и стабилизируется резистором R1 и стабилитроном VD5.
    Сигналы на открытие тиристоров электронного ключа поступают от биполярных транзисторов (VT1 и VT2).
    Переменный резистор R7 с номиналом на 10 килоом предназначен для регулировки момента открытия силового тиристора. Когда его ползунок установлен в минимальное положение сопротивления, то электронный ключ срабатывает при наибольшем напряжении амплитуды на обмотке B.
    Максимальное введение сопротивления резистора R7 закрывает электронный ключ.
    Запуск схемы осуществляют при положении ползунка R7, соответствующем максимальному сдвигу фаз токов между обмотками. После этого его сдвигают, определяют наиболее устойчивый режим работы, который зависит от приложенной нагрузки и мощности двигателя.
    Все электронные детали со своими номиналами приведены на схеме. Они не являются дефицитными. Их можно заменить любыми другими элементами, соответствующими по электрическим характеристикам.
    Вариант их размещения на электронной печатной плате показан на картинке. Регулировочный резистор R7 показан справа двумя подключенными проводами, синим и коричневым. Сам он не виден на фото.

    Силовая часть, созданная для работы с электродвигателями небольшой мощности, может выполняться без радиаторов охлаждения, как показано здесь. Если же диоды и тиристоры работают на пределе своих возможностей, то теплоотвод обязателен.
    Электронный блок ключа работает под напряжением сети 220 вольт. Его детали должны быть надежно заизолированы и защищены от случайного прикосновения человеком. Меры безопасности от поражения электрическим током необходимо соблюдать.

    2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия

    Здесь я полагаюсь на информацию из интернета, ибо вижу, что в принципе конструкции рабочие, а принципы управления токами в обмотках те же, что предложил В Голик.
    Кстати, авторы статей ссылаются на автомобильный украинский журнал «Сигнал» №4 за 1999 год. Пришлось поискать его в интернете. Однако разочаровался, там оказалась полностью перепечатанная статья из журнала Радио под авторством В Голик. Вот так…
    Если знаете, где можно найти первоисточник на эту информацию, то сообщите в комментариях.
    Электронные ключи, выполненные по технологии Бурлако, работают так же. Они просто выполнены из других, более усовершенствованных полупроводников, как и силовая часть.

    Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик

    Картинка подключения трехфазного электродвигателя упростилась. Вместо двунаправленного силового блока из двух тиристоров и диодов здесь работает один симистор VS1 серии ТС-2-10.

    Он также шунтирует одну обмотку «B» в момент достижения синусоидой напряжения амплитудного значения, когда ток параллельной цепочки минимален.
    При этом создается сдвиг фаз токов в параллельных обмотках, как и в предыдущей схеме, порядка 50-80 угловых градусов, что достаточно для вращения ротора.
    Работой симитора VS1 управляет ключ, выполненный на симметричном динисторе VS2 для каждого полупериода гармоники напряжения. Он получает команды от фазосдвигающей цепочки, выполненной из резистивно-емкостных элементов.
    Сдвиг фазы сигнала конденсатором C дополняется общим сопротивлением R1+R2. Подстроечный резистор R2 на 68 кОм работает как R7 в предыдущей схеме, регулируя время заряда конденсатора и, соответственно, момент подключения VS2, а через него VS1 в работу.
    Рекомендации автора по сборке и наладке
    Схема испытывалась и предназначена для работы с электродвигателями, раскручивающими ротор до 1500 оборотов в минуту с электрической мощностью 0,5÷2,2 кВт.
    На устройствах электронных ключей, работающих с мощными электродвигателями, необходимо обеспечивать теплоотвод с симистора VS1.
    При наладке устройства обращают внимание на оптимальную подгонку угла сдвига фаз токов между обмотками, когда двигатель запускается и работает нормально: без шума, гула и вибраций. Для этого может потребоваться изменение номиналов у элементов фазосдвигающей цепочки.
    Семисторы можно использовать другой марки. Важно, чтобы они соответствовали электрическим характеристикам. Вместо DB3 допустимо установить отечественный динистор KP1125.

    Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами

    Она же хорошо подходит под управление двигателями, собранными для вращения со скоростью 3000 оборотов в минуту. С этой целью у нее изменена система подключения обмоток с треугольника на разомкнутую звезду.
    На картинке ниже их полярность показана точками.

    В этой ситуации создается больший крутящий момент для запуска ротора.
    Рассматриваемая схема отличается от предыдущей дополнительным электронным ключом, подключенным к обмотке «A», создающим дополнительно сдвиг фазы тока. Он необходим для трудных условий работы.
    Рекомендации автора по наладке и работе не изменились.

    Преимущества схемы тиристорного преобразователя: автор В Соломыков

    Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.
    Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

    Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

    Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.
    Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:
    DD1 — К176ЛЕ5;
    DD2 — К176 ИР2.
    Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.
    Логическая часть
    Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.
    Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.
    Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.


    Таблица данных К176ИР2 и состояний регистров
    Число разрядов
    4х2
    Входы
    Выход
    Сторона сдвига
    Направо
    C
    D
    R
    Q0
    Qn
    Тип ввода
    Последовательно

    H
    Н
    H
    Qn-1
    Тип вывода
    Параллельно

    B
    H
    B
    Qn-1
    Тактовая частота
    2,5MHz

    X
    H
    Q1
    Qn не меняется
    Рабочая температура
    -45÷+85
    X
    X
    B
    H
    H
    Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.

    Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.

    Силовая часть схемы, принципы ее управления и наладки
    При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.
    При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.
    В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.
    Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.
    Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.
    Емкость конденсаторов предварительно рассчитывают по формуле:
    С = 0.01P (Вт) / n ∙ 1 / 30n (мкФ).
    При номинальной частоте вращения ротора выставляют n=1.
    Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.
    Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.
    Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.
    Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.
    Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.
    Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.
    Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.
    Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.
    Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.
    Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.

  5. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *