Как вы думаете почему все живое на земле можно назвать детьми солнца?

7 ответов на вопрос “Как вы думаете почему все живое на земле можно назвать детьми солнца?”

  1. Bralkis Ответить

    Вопрос 2. Опишите известные вам типы питания.
    Существует три типа питания.
    Автотрофное питание. Автотрофные организмы способны самостоятельно синтези­ровать необходимые органические соедине­ния, используя в качестве источника углерода углекислый газ. Источником энергии при этом является солнечный свет или окисление неорганических соединений.
    Гетеротрофное питание. Гетеротроф­ные организмы в качестве источника углерода и в качестве источника энергии используют готовые органические вещества.
    Миксотрофное питание. Миксотрофные организмы способны питаться и как ав­тотрофы, и как гетеротрофы. Например, эвг­лена зеленая на свету ведет себя как автотроф, самостоятельно синтезируя органические ве­щества, а в темноте — как гетеротроф (питает­ся готовыми органическими соединениями). К миксотрофам относятся также некоторые паразитические высшие растения.
    Вопрос 3. Какие организмы называют автотрофными?
    Как указано в предыдущем ответе, автотрофными называют организмы, способные синтезировать органические вещества за счет энергии солнечного света или энергии, выде­ляющейся при окислении неорганических со­единений. При этом источником углерода яв­ляется углекислый газ. К организмам, исполь­зующим энергию солнечного света, относятся растения, цианобактерии и некоторые бакте­рии. Все они объединены в группу фотосин­тетиков. Растения и цианобактериии (сине- зеленые водоросли) осуществляют фотосинтез с выделением кислорода; бактерии — без вы­деления кислорода. Автотрофов, использую­щих для получения энергии окисление неорга­нических веществ, называют хемосинтети­ками. К ним относят несколько древних групп прокариот: серобактерии (окисляют се­роводород до серы), железобактерии (окисля­ют Fe2+ до Fe3+) и др.

  2. Nitaxe Ответить

    Вопрос 1. Что такое ассимиляция?
    Ассимиляция, или пластический обмен, — это совокупность всех процессов биосинтеза, протекающих в живых организмах. Ассимиляция всегда сопровождается поглощением энергии, источником которой могут являться молекулы АТФ (например, в ходе биосинтеза белка) или солнечный свет (в случае фотосинтеза). Кроме энергии для осуществления процессов ассимиляции нужен материал, из которого организм сможет образовывать необходимые ему органические соединения. Для автотрофов это углекислый газ (СО2), вода, минеральные соли. Гетеротрофам нужны готовые органические соединения. В их числе так называемые незаменимые вещества; молекулы, которые гетеротрофы самостоятельно синтезировать не могут и должны получать с пищей. В случае человека это витамины, жирные кислоты с большим количеством двойных связей, многие аминокислоты.
    Вопрос 2. Опишите известные вам типы питания.
    Существует три типа питания.
    Автотрофное питание. Автотрофные организмы способны самостоятельно синтезировать необходимые органические соединения, используя в качестве источника углерода углекислый газ. Источником энергии при этом является солнечный свет или окисление неорганических соединений.
    Гетеротрофное питание. Гетеротрофные организмы в качестве источника углерода и в качестве источника энергии используют готовые органические вещества.
    Миксотрофное питание. Миксотрофные организмы способны питаться и как автотрофы, и как гетеротрофы. Например, эвглена зеленая на свету ведет себя как автотроф, самостоятельно синтезируя органические вещества, а в темноте — как гетеротроф (питается готовыми органическими соединениями). К миксотрофам относятся также некоторые паразитические высшие растения.
    Вопрос 3. Какие организмы называют автотрофными?
    Автотрофными называют организмы, способные синтезировать органические вещества за счет энергии солнечного света или энергии, выделяющейся при окислении неорганических соединений. При этом источником углерода является углекислый газ. К организмам, использующим энергию солнечного света, относятся растения, цианобактерии и некоторые бактерии. Все они объединены в группу фотосинтетиков. Растения и цианобактериии (сине-зеленые водоросли) осуществляют фотосинтез с выделением кислорода; бактерии — без выделения кислорода. Автотрофов, использующих для получения энергии окисление неорганических веществ, называют хемосинтетиками. К ним относят несколько древних групп прокариот: серобактерии (окисляют сероводород до серы), железобактерии (окисляют Fе2+ до Fе3+) и др.
    Вопрос 4. Почему у зеленых растений в результате фотосинтеза выделяется в атмосферу свободный кислород?
    Если вода находится в жидком состоянии, то небольшая часть ее молекул обязательно распадается на ионы Н+ и ОН—. Во время световой фазы фотосинтеза часть избыточной энергии хлорофилла тратится на превращение ионов Н+ в атомы водорода. Оставшиеся без своей «пары» ионы ОН— отдают электроны хлорофиллу, превращаясь в свободные радикалы ОН. Радикалы активно взаимодействуют между собой, образуя воду и молекулярный кислород: 4ОН             Н2О + О2.
    Таким образом, выделение в атмосферу свободного кислорода происходит в ходе световой фазы фотосинтеза. Источником кислорода являются молекулы Н2О, в связи с чем описанный процесс называют еще фотолизом воды (разложением воды под действием света). Кислород является побочным продуктом фотосинтеза. Однако в ходе эволюции живые организмы быстро научились использовать его для дыхания, т. е. для более полного окисления органических веществ.
    Вопрос 5. Каковы признаки гетеротрофного типа питания? Приведите примеры гетеротрофных организмов.
    При гетеротрофном типе питания в качестве источника углерода и источника энергии организмы используют готовые органические соединения. Следовательно, гетеротрофные организмы полностью зависят от автотрофных, которые служат для них поставщиками органических веществ — прямыми (в случае травоядных) либо опосредованными (в случае, например, хищников). Гетеротрофные организмы — это все животные, грибы, большинство бактерий.
    Вопрос 6. Как вы думаете, почему все живое на Земле можно назвать «детьми Солнца»?
    Основным процессом, обеспечивающим появление на Земле органических веществ, является фотосинтез. Источником же энергии для фотосинтеза является солнечный свет. Почти все живые организмы используют энергию солнечного света, одни напрямую, запасая ее в виде органических соединений (фотосинтетики-автотрофы), другие опосредованно через использование готовых органических соединений, созданных растениями (гетеротрофы). Исключение составляет лишь уникальная группа бактерий-хемосинтетиков.

  3. Ingardia Ответить

    Вопрос 1. Что такое ассимиляция?
    Ассимиляция, или пластический обмен, – это совокупность всех процессов биосинтеза, протекающих в живых организмах. Ассимиляция всегда сопровождается поглощением энергии, источником которой могут являться молекулы АТФ (например, в ходе биосинтеза белка) или солнечный свет (в случае фотосинтеза). Кроме энергии для осуществления процессов ассимиляции нужен материал, из которого организм сможет образовывать необходимые ему органические соединения. Для автотрофов это углекислый газ (CO2), вода, минеральные соли. Гетеротрофам нужны готовые органические соединения. В их числе так называемые незаменимые вещества: молекулы, которые гетеротрофы самостоятельно синтезировать не могут и должны получать с пищей. В случае человека это витамины, жирные кислоты с большим количеством двойных связей, многие аминокислоты.
    Вопрос 2. Опишите известные вам типы питания.
    Существует три типа питания.
    Автотрофное питание. Автотрофные организмы способны самостоятельно синтезировать необходимые органические соединения, используя в качестве источника углерода углекислый газ. Источником энергии при этом является солнечный свет или окисление неорганических соединений.
    Гетеротрофное питание. Гетеротрофные организмы в качестве источника углерода и в качестве источника энергии используют готовые органические вещества.
    Миксотрофное питание. Миксотрофные организмы способны питаться и как автотрофы, и как гетеротрофы. Например, эвглена зеленая на свету ведет себя как автотроф, самостоятельно синтезируя органические вещества, а в темноте – как гетеротроф (питается готовыми органическими соединениями). К миксотрофам относятся также некоторые паразитические высшие растения.
    Вопрос 3. Какие организмы называют автотрофными?
    Как указано в предыдущем ответе, автотрофными называют организмы, способные синтезировать органические вещества за счет энергии солнечного света или энергии, выделяющейся при окислении неорганических соединений. При этом источником углерода является углекислый газ. К организмам, использующим энергию солнечного света, относятся растения, цианобактерии и некоторые бактерии. Все они объединены в группу фотосинтетиков. Растения и цианобактериии (сине – зеленые водоросли) осуществляют фотосинтез с выделением кислорода; бактерии – без выделения кислорода. Автотрофов, использующих для получения энергии окисление неорганических веществ, называют хемосинтетиками. К ним относят несколько древних групп прокариот: серобактерии (окисляют сероводород до серы), железобактерии (окисляют Fe2+ до Fe3+) и др.

  4. looking for a miracle Ответить

    Вспомните!
    Как, согласно клеточной теории, происходит увеличение числа клеток?
    Как вы считаете, одинакова ли продолжительность жизни разных типов клеток в многоклеточном организме? Обоснуйте свое мнение.
    В момент рождения ребенок весит в среднем 3–3,5 кг и имеет рост около 50 см, детеныш бурого медведя, чьи родители достигают веса 200 кг и более, весит не более 500 г, а крошечный кенгуренок – менее 1 грамма. Из серого невзрачного птенца вырастает прекрасный лебедь, юркий головастик превращается в степенную жабу, а из посаженного возле дома желудя вырастает громадный дуб, который спустя сотню лет радует своей красотой новые поколения людей. Все эти изменения возможны благодаря способности организмов к росту и развитию. Дерево не превратится в семя, рыба не вернется в икринку – процессы роста и развития необратимы. Эти два свойства живой материи неразрывно связаны друг с другом, и в их основе лежит способность клетки к делению и специализации.
    Рост инфузории или амебы – это увеличение размеров и усложнение строения отдельной клетки за счет процессов биосинтеза. Но рост многоклеточного организма – это не только увеличение размеров клеток, но и их активное деление – увеличение количества. Скорость роста, особенности развития, размеры, до которых может дорасти определенная особь, – все это зависит от многих факторов, в том числе и от влияния среды. Но основным, определяющим фактором всех этих процессов служит наследственная информация, которая хранится в виде хромосом в ядре каждой клетки. Все клетки многоклеточного организма происходят из одной оплодотворенной яйцеклетки. В процессе роста каждая вновь образующаяся клетка должна получить точную копию генетического материала, чтобы, обладая общей наследственной программой организма, специализироваться и, выполняя свою определенную функцию, являться неотъемлемой частью целого.
    В связи с дифференцировкой, т. е. разделением на разные типы, клетки многоклеточного организма имеют неодинаковую продолжительность жизни. Например, нервные клетки перестают делиться еще во время внутриутробного развития, и в течение жизни организма их количество может только уменьшаться. Однажды возникнув, больше не делятся и живут столько, сколько ткань или орган, в состав которых они входят, клетки, образующие поперечно-полосатые мышечные ткани у животных и запасающие ткани у растений. Постоянно делятся клетки красного костного мозга, образуя клетки крови, продолжительность жизни которых ограничена. В процессе выполнения своих функций быстро гибнут клетки кожного эпителия, поэтому в ростковой зоне эпидермиса клетки делятся очень интенсивно. Активно делятся камбиальные клетки и клетки конусов нарастания у растений. Чем выше специализация клеток, тем ниже их способность к размножению.
    В организме человека около 1014 клеток. Ежедневно погибает около 70 млрд клеток кишечного эпителия и 2 млрд эритроцитов. Самые короткоживущие – это клетки кишечного эпителия, чья продолжительность жизни составляет всего 1–2 дня.
    Жизненный цикл клетки. Период жизни клетки от момента ее возникновения в процессе деления до гибели или конца последующего деления называют жизненным циклом. Клетка возникает в процессе деления материнской клетки и исчезает в ходе собственного деления или гибели. Продолжительность жизненного цикла у разных клеток очень сильно различается и зависит от типа клеток и условий внешней среды (температуры, наличия кислорода и питательных веществ). Например, жизненный цикл амебы равен 36 часам, а бактерии могут делиться каждые 20 минут.
    Жизненный цикл любой клетки представляет собой совокупность событий, протекающих в клетке с момента ее возникновения в результате деления и до гибели или последующего митоза. Жизненный цикл может включать митотический цикл, состоящий из подготовки к митозу – интерфазы и самого деления, а также стадию специализации – дифференцировки, во время которой клетка выполняет свои специфические функции. Продолжительность интерфазы всегда больше, чем само деление. У клеток кишечного эпителия грызунов интерфаза длится в среднем 15 часов, а деление осуществляется за 0,5–1 час. Во время интерфазы в клетке активно идут процессы биосинтеза, клетка растет, образует органоиды и готовится к следующему делению. Но, несомненно, самым важным процессом, происходящим во время интерфазы в ходе подготовки к делению, является удвоение ДНК (§ 2.6).
    Рис. 52. Фазы митоза
    Две спирали молекулы ДНК расходятся и на каждой из них синтезируется новая полинуклеотидная цепь. Редупликация ДНК происходит с высочайшей точностью, что обеспечивается принципом комплементарности. Новые молекулы ДНК являются абсолютно идентичными копиями исходной, и после завершения процесса удвоения они остаются соединенными в области центромеры. Молекулы ДНК, входящие в состав хромосомы после редупликации, называют хроматидами.
    В точности процесса редупликации заключается глубокий биологический смысл: нарушение копирования привело бы к искажению наследственной информации и, как следствие, к нарушению функционирования дочерних клеток и всего организма в целом.
    Если бы удвоения ДНК не происходило, то при каждом делении клетки количество хромосом уменьшалось бы вдвое и довольно скоро в каждой клетке совсем не осталось бы хромосом. Однако нам известно, что во всех клетках тела многоклеточного организма количество хромосом одинаково и из поколения в поколение не изменяется. Это постоянство достигается благодаря митотическому делению клеток.
    Митоз. Митоз – это деление, в процессе которого происходит строго одинаковое распределение точно скопированных хромосом между дочерними клетками, что обеспечивает образование генетически идентичных – одинаковых – клеток.
    Весь процесс митотического деления условно разделяют на четыре фазы: профаза, метафаза, анафаза и телофаза (рис. 52).
    В профазе хромосомы начинают активно спирализоваться – скручиваться и приобретают компактную форму. В результате такой упаковки считывание информации с ДНК становится невозможным и синтез РНК прекращается. Спирализация хромосом является обязательным условием успешного разделения генетического материала между дочерними клетками. Представьте себе некое небольшое помещение, весь объем которого заполнен 46 нитями, общая длина которых в сотни тысяч раз превышает размер этого помещения. Это ядро человеческой клетки. В процессе редупликации каждая хромосома удваивается, и мы имеем в том же объеме уже 92 перепутанные нити. Разделить их поровну, не запутавшись и не порвав, практически невозможно. Но смотайте эти нити в клубки, и вы легко их сможете распределить на две равные группы – по 46 клубков в каждой. Нечто аналогичное и происходит во время митотического деления.
    К концу профазы ядерная оболочка распадается, и между полюсами клетки протягиваются нити веретена деления – аппарата, который обеспечивает равномерное распределение хромосом.
    В метафазе спирализация хромосом становится максимальной, и компактные хромосомы располагаются в экваториальной плоскости клетки. На этой стадии отчетливо видно, что каждая хромосома состоит из двух сестринских хроматид, соединенных в области центромеры. Нити веретена деления прикрепляются к центромере.
    Анафаза протекает очень быстро. Центромеры расщепляются надвое, и с этого момента сестринские хроматиды становятся самостоятельными хромосомами. Нити веретена деления, прикрепленные к центромерам, оттягивают хромосомы к полюсам клетки.
    На стадии телофазы дочерние хромосомы, собравшиеся у полюсов клетки, раскручиваются и вытягиваются. Они вновь превращаются в хроматин и становятся плохо различимыми в световой микроскоп. Вокруг хромосом на обоих полюсах клетки формируются новые ядерные оболочки. Образуются два ядра, содержащие одинаковые диплоидные наборы хромосом.

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *