Каким образом реализуется наследственная информация о структуре и функциях?

2 ответов на вопрос “Каким образом реализуется наследственная информация о структуре и функциях?”

  1. Buthris Ответить

    Савинская Екатерина, 10 А
    «Реализация наследственной информации в клетке»
    1. Почему углеводы не могут выполнять функцию хранения информации?
    Углеводы, даже если рассматривать не моносахара, аполисахариды, состоящие из длинных цепочек моносахаров, являются регулярными биополимерами. То есть они состоят из повторяющегося одного и того же мономера — глюкозы. Организм использует их как источникэнергии, поэтому расщепляет в первую очередь. А нуклеиновые кислоты состоят из различных нуклеотидов и являются нерегулярными биополимерами.
    2. Каким образом реализуется наследственная информация оструктуре и функциях небелковых молекул, синтезируемых в клетке?
    В генах, как известно, записана информация о структуре белков и некоторых других высокомолекулярных веществ (пептидов, РНК). Значительная часть белков -это ферменты, катализирующие разнообразнейшие биохимические процессы в клетке. От наличия определенного фермента и будет зависеть синтез различных небелковых молекул, то есть вся наследственнаяинформация реализуется посредством синтеза белка.
    3. При каком структурном состоянии молекулы ДНК могут быть источниками генетической информации?
    Если клетка не готовится к делению и ДНК не удваивается, тоона является источником генетической информации, то есть в этот момент ДНК свернута в спираль и раскручивается только определенный участок с необходимой информацией.
    4. Какие особенности строениямолекул РНК обеспечивают их функцию переноса информации о структуре белка от хромосом к месту его синтеза?
    Значение нуклеиновых кислот очень велико. Особенности их химического строения обеспечивают возможностьхранения, переноса в цитоплазму и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой клетке. Белки обуславливают большинство свойств и признаковклеток.
    РНК (рибонуклеиновая кислота), так же как и ДНК представляет собой полимер, мономерами которого служат нуклеотиды. Азотистые основания те же самые, что…

  2. IWYXYM Ответить

    Процесс биосинтеза белка осуществляется на рибосомах, а хранителем генетической информации является ДНК- Для передачи информации с ДНК, нахо -дящейся в ядре, к месту синтеза белка требуется посредник. Его роль выполняет информационная (матричная) РНК, которая синтезируется на одной из цепей молекулы ДНК по принципу комплементарности.
    Таким образом, реализация наследственной информации в клетке осуществляется в два этапа: сначала информация о структуре белка копируется с ДНК на иРНК (транскрипция), а затем реализуется на рибосоме в виде конечного продукта — белка (трансляция). Это можно представить в виде схемы:

    Транскрипция. Переписывание наследственной информации с ДНК на иРНК называется транскрипцией (от лат. транскрипцио — переписывание). Этот процесс происходит следующим образом.
    На определенном участке молекулы ДНК происходит разъединение комплементарных цепей. Вдоль одной из цепей (ее называют транскрибируемой цепью) начинает движение фермент РНК-полимераза.
    а ) ген
    б) кодон
    в) генетический код
    РНК-полимераза синтезирует из нуклеотидов молекулу иРНК, при этом транскрибируемая цепь ДНК используется в качестве матрицы (рис. 65). Полученная иРНК комплементарна участку транскрибируемой цепи ДНК, значит, порядок нуклеотидов в иРНК строго определен порядком нуклеотидов в ДНК Например, если участок транскрибируемой цепи ДНК имеет последовательность нуклеотидов А Ц Г Т Г А, то соответствующий участок молекулы иРНК будет иметь вид У Г ЦАЦУ (обратите внимание, что в состав нуклеотидов РНК вместо тимина входит урацил). Таким образом, в результате транскрипции генетическая информация переписывается с ДНК на иРНК
    Транскрипция может происходить одновременно на нескольких генах одной хромосомы и на генах, расположенных в разных хромосомах.

    Поскольку в одной молекуле ДНК содержится множество генов, очень важно, чтобы РНК-полимераза начинала синтез иРНК со строго определенного участка ДНК- Поэтому в начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором. РНК-полимераза распознает промотор, взаимодействует с ним и начинает синтез цепочки иРНК с нужного места. Фермент синтезирует иРНК, присоединяя к ней новые нуклеотиды, пока не дойдет до особой последовательности нуклеотидов в молекуле ДНК — терминатора. Эта последовательность нуклеотидов указывает на то, что синтез иРНК нужно прекратить.
    У прокариот синтезированные молекулы иРНК могут сразу же взаимодействовать с рибосомами и участвовать в синтезе белков. У эукариот иРНК синтезируется в ядре. Там она взаимодействует со специальными ядерными белками и переносится через поры в ядерной мембране в цитоплазму.
    На специальных генах синтезируются и два других типа РНК: тРНК и рРНК
    Трансляция. Процесс синтеза белка из аминокислот, происходящий на рибосомах, называется трансляцией (от лат. трансляцио — перевод). В ходе трансляции осуществляется перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка. Иными словами, «язык» нуклеотидов переводится на «язык» аминокислот.
    В цитоплазме обязательно должен быть полный набор аминокислот, необходимых для синтеза белков. Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей, или синтезируются в самом организме.
    Информационная РНК связывается с малой субъединицей рибосомы, после этого присоединяется большая субъединица (рис. 66).
    Синтез белка начинается со стартового кодона АУТ. Так как этот триплет кодирует аминокислоту метионин, то все белки (за исключением особых случаев) будут начинаться с остатка метионина. Отщепление этого остатка у большинства белков происходит позднее, в ходе созревания белковой молекулы.
    Начиная со стартового кодона, молекула иРНК последовательно, триплет за триплетом, продвигается через рибосому, что сопровождается ростом полипеп-тидной цепочки. Соединение аминокислот в нужную последовательность (в соответствии с кодонами иРНК) осуществляется на рибосомах при участии транспортных р н к
    Благодаря специфическому расположению комплементарных нуклеотидов молекула тРНК, как уже отмечалось, имеет форму, напоминающую лист клевера (рис. 67). У каждой тРНК имеется акцепторный конец, к которому присоединяется определенная аминокислота, предварительно активированная энергией АТФ. Для активации одной аминокислоты необходимо расщепить одну молекулу АТФ.
    В противоположной части молекулы тРНК находится специфический триплет — ант и кодон, ответственный за прикрепление по принципу комплемен-тарности к соответствующему триплету иРНК (кодону).
    Молекула тРНК с присоединенной активированной аминокислотой благодаря антикодону комплементарно связывается с соответствующим кодоном иРНК Таким же образом к следующему кодону иРНК прикрепляется вторая тРНК с активированной аминокислотой. Между двумя аминокислотами возникает пептидная связь, после чего первая тРНК освобождается от аминокислоты и покидает рибосому.

    После этого иРНК сдвигается на один триплет, а в рибосому проникает следующая молекула тРНК с аминокислотой. В результате к образованному дипептиду присоединяется третья аминокислота и иРНК сдвигается еще на один триплет. Так происходит наращивание полипептид-ной цепочки.
    Процесс трансляции продолжается до тех пор, пока в рибосому не попадет один из трех стоп-кодонов:

    УАА, УАГ или УГА, после чего синтез белка прекращается и рибосома распадается на две субъединицы.
    Все описанные реакции происходят очень быстро. Подсчитано, что синтез крупной молекулы белка осуществляется приблизительно за 1 —2 мин.
    Каждый этап биосинтеза белка катализируется соответствующими ферментами и снабжается энергией за счет расщепления АТФ.
    Молекула иРНК может связываться одновременно с несколькими рибосомами. Комплекс из иРНК и рибосом (от 5—6 до нескольких десятков) называется пол и сомой. Образование полисом повышает эффективность функционирования иРНК, так как позволяет одновременно осуществлять синтез нескольких одинаковых молекул белка.
    Если синтез белка происходил на рибосомах, связанных с шероховатой ЭПС, то образовавшаяся полипептидная цепь сначала оказывается внутри полости эндоплазматической сети, а затем транспортируется в комплекс Гольджи. В этих органоидах происходит созревание белка — формирование вторичной, третичной и четвертичной структуры, присоединение к белковой молекуле небелковых компонентов и др. Если синтез белка осуществлялся на свободных рибосомах, расположенных в гиалоплазме, то синтезированная белковая молекула транспортируется в нужную часть клетки, где и приобретает соответствующую структуру.
    Таким образом, генетическая информация, которая содержится в ДНК, в результате процессов транскрипции и трансляции реализуется в клетке в виде молекул белков. Синтез белка обеспечивается взаимодействием всех типов РНК: рРНК является главным структурным компонентом рибосом, иРНК — носителем информации о первичной структуре белка, тРНК доставляют на рибосому аминокислоты, а также обеспечивают их правильное включение в полипептид-ную цепь.
    Биосинтез РНК (транскрипция) и биосинтез белка (трансляция) осуществляются с использованием матриц — ДНК и иРНК соответственно. Поэтому, так же как и репликация, процессы транскрипции и трансляции являются реакциями матричного синтеза.

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *