Кто и когда изобрел первый электродвигатель пригодный?

7 ответов на вопрос “Кто и когда изобрел первый электродвигатель пригодный?”

  1. ava783 Ответить

    Из истории электромобиля мы знаем, что первый электродвигатель появился раньше двигателя внутреннего сгорания. Как это было… Работы Андре-Мари Ампера, объединившие два разобщенных ранее явления — магнетизм и электричество, вдохновили другого гениального ученого — Майкла Фарадея. Открытия Ампера, Эрстеда и Араго побудили английского физика заняться вопросом о превращении магнитной и электрической энергии в механическую. В 1821 году поставленная задача была решена с помощью специального прибора, в котором было продемонстрировано явление непрерывного электромагнитного вращения.
    После удачного эксперимента Фарадей поставил себе новую задачу о превращении магнетизма в электричество. Явление, составляющее основу современной электроэнергетики, было открыто английским ученым лишь через десять лет. Оно было названо электромагнитной индукцией. Спустя 3 года русский физик Эмилий Ленц, обобщив проделанные Фарадеем опыты, сформулировал новый фундаментальный закон, дававший возможность безошибочно определить направление индуцированного тока.

    Так называемый принцип обратимости был доказан Ленцем не только теоретически, но и экспериментально: катушка, при ее вращении между полюсами магнита, генерировала электрический ток, обратная реакция заключалась в том, что катушка начинала вращаться, если в нее посылали ток. Исследование английского физика и опыты русского академика сыграли решающую роль в истории электродвигателя и развитии всего электромашиностроения в целом.

    Первые попытки создания электродвигателя

    Разработки теоретических предпосылок моментально дали толчок для создания первых электродвигателей и генераторов электрического тока. В 1824 году английский физик и математик Питер Барлоу с помощью прибора наглядно продемонстрировал возможность превращения электрической энергии в механическую. Колесо Барлоу представляло собой два горизонтально расположенных П-образных постоянных магнита, под которыми на одной оси размещены два медных зубчатых колеса. Когда через колеса проходил ток, они начинали вращаться в одном направлении.

    При этом ученый заметил, что смена полярности контактов и полюсов магнитов изменяла и направлении вращения колес. По сути, Барлоу изобрел первый униполярный электродвигатель. Его опыт дал пищу для размышления другим изобретателям, и уже в 1831 году была представлена еще одна модель электродвигателя. На этот раз Д. Генри сделал попытку использовать для получения качательного движения отталкивание одноименных и притяжения разноименных магнитных полюсов.

    Первый электродвигатель с возможностью практического применения

    Модели, созданные Барлоу и Генри, представляли собой электрические устройства с качательными или возвратно-поступательными движениями малой удельной мощности, посему не имели практического применения, а о серийном производстве электромобилей даже и речи не могло быть. Первый электродвигатель с непосредственным вращением рабочего вала был создан в 1834 году физиком и академиком Борисом Якоби. Но стоит отметить, что впервые идею о создании более современного электродвигателя с вращательным движением высказал английский ученый В. Риччи еще в 1833 году. Был ли знаком Якоби с работой Риччи, неизвестно.

    Двигатель Якоби состоял из двух групп электромагнитов. Попеременное изменение полярностей подвижных электромагнитов происходило путем специального коммутатора. Принцип этого устройства используется в некоторых современных электродвигателях. Мощность двигателя составляла всего 15 Вт, при частоте вращения ротора 80-120 об/мин.
    В 1837 году Якоби обратился к Министру народного просвещения графу С. Уварову с предложением о практическом применении своего электродвигателя. О предложении русского академика было доложено Николаю I. Император дал добро на создание «Комиссии для производства опытов относительно приспособления электромагнитной силы к движению машин по способу Якоби».
    Первый электродвигатель был далеко не совершенным и, конечно же, очень слабым. Так считал и сам академик, поэтому все средства выделенные комиссии были потрачены на усовершенствование электрической схемы. В 1838 году по Неве шел катер с 12 пассажирами, среди которых были физик Ленц, адмирал Крузенштерн и сам Якоби. Шлюпка крайне удивила гуляющих в тот день по набережной — никто из ее пассажиров не греб веслами.

    Заменил гребцов электродвигатель мощностью 0.6 кВт, питаемый от 320 гальванических элементов. Испытания прошли весьма удачно, и сенсационная новость о первом практическом применении электродвигателя разлетелась по всему миру.
    Видео: создание простейшего электродвигателя
    Tweet

  2. ghmot Ответить

    Давайте подвесим между полюсами неподвижного магнита проволочную петлю, через которую пропустим электрический ток. Мы увидим, что петля начнет отклоняться в сторону, чтобы выйти из магнитного поля. Именно это явление положено в основу всех электродвигателей. Главными частями электродвигателя являются: ротор и статор. Статор является неподвижной частью электродвигателя, служит магнитопроводом, в котором образуется магнитное поле. Подвижной вращающейся частью электродвигателя является ротор, на нем помещены витки провода, по которому пропускают электрический ток.
    Майкл Фарадей
    Двигатели, работающие от сети постоянного тока, являются двигателями постоянного тока. Двигатели, работающие от источника переменного тока, называются двигателями переменного тока. В результате проведенных экспериментов выдающийся английский физик Майкл Фарадей доказал, что при перемещении проводника в магнитном поле, можно создавать электрический ток индукционным методом. Так, в 1831 году было открыто явление электромагнитной индукции. Сразу же ученые и изобретатели нескольких стран взялись за разработку электродвигателя, пригодного для практики.
    Первый электродвигатель постоянного тока Б.С. Якоби
    Первыми были созданы электродвигатели постоянного тока, так как источники постоянного тока (батарея и гальванические элементы) были изобретены раньше. В 1834 году русским ученым Б. С. Якоби был создан первый электродвигатель, который состоял из двух частей — неподвижной и вращающейся. Благодаря изобретению был открыт принцип непрерывного вращательного движения. Мощность электродвигателя равнялась 15 Вт, источником тока были гальванические батареи. Однако практического применения электродвигатель не имел. В 1838 году Б. С. Якоби создал первый электродвигатель постоянного тока пригодный для практических целей. Мощность была увеличена за счет соединенных на одной плоскости 40 двигателей. Двигатель использовали для привода гребного вала лодки. 13 сентября 1838 года двигатель был установлен на лодке, в которой находилось 12 пассажиров. Испытания прошли весьма успешно. За 7 часов лодка проделала путь в 7 км со скоростью 2 км/ч. В сентябре 1839 года на катер с 14 пассажирами был установлен двигатель усовершенствованной конструкции, большей мощности, скорость которого составляла 4 км/ч. Двигатель Якоби стал самым надежным и мощным из всех конструкций, созданных на тот момент. К 70-м годам XIX столетия электродвигатель был полностью усовершенствован и сохранился в таком виде до наших дней.
    Со временем в электродвигателях стали использовать электромагниты вместо постоянных магнитов, что позволило существенно увеличить мощность. Принцип работы электродвигателя постоянного тока заключается в следующем: к обмотке электромагнита подводят электрический ток, в результате между его полюсами возникает магнитное поле. Виток провода размещен на роторе. Когда к витку провода через коллектор подводится электрический ток, он начинает вращаться вместе с ротором. Особенностью таких электродвигателей является возможность регулировать частоту вращения ротора. Микроэлектродвигатели используют в электробритвах, системах автоматического регулирования, кофемолках и других приборах быта. Мощные электродвигатели используют для привода подъемных кранов, прокатных станков, на электрофицированном транспорте.
    Трехфазный асинхронный электродвигатель
    В 1889 году замечательный русский инженер-электротехник М. О. Доливо-Добровольский создал систему трехфазного тока и создал первый трехфазный двигатель переменного тока. Основными частями двигателя переменного тока также являются ротор и статор. В отличие от двигателей постоянного тока они не имеют коллектора, ток на обмотки ротора поступает через контактные кольца. В некоторых двигателях отсутствуют выводы на обмотках для подключения к току, а замкнуты между собой. Внешне ротор был похож на колесо в беличьей клетке и получил название беличьего колеса. Конструкция такого ротора дала возможность уменьшить магнитное и электрическое сопротивление и повысить эффективность работы, без принципиальных изменений она сохранилась до сегодняшних дней. Двигатели переменного тока существуют синхронные и асинхронные. У синхронного двигателя частота вращения магнитного поля, производимая обмотками статора, синхронна с частотой вращения ротора. В асинхронных двигателях частота вращения ротора отстает от частоты вращения магнитного поля статора. Наиболее просты и надежны асинхронные двигатели. Они получили широкое распространение.

  3. stanikh Ответить

    1. Как показать, что магнитное поле действует на проводник с током, находящийся в этом поле? 
    Проводник подвешен на гибких проводах, которые присоединяются к источнику тока. Проводник помещен между полюсами дугообразного магнита, т.е. находится в магнитном поле. При замыкании электрической цепи проводник приходит в движение.
    2. Пользуясь рисунком 117, объясните, от чего зависит направление движения проводника с током в магнитном поле. 
    Направление движения проводника зависит от направления тока в нем и от расположения полюсов магнита.
    3. При помощи какого прибора можно осуществить вращение проводника с током в магнитном поле? При помощи какого устройства в рамке меняют направление тока через каждые пол-оборота? 
    В приборе легкая прямоугональная рамка насажена на вертикальную ось. На рамке уложена обмотка, состоящая из нескольких десятков витков проволоки, покрытой изоляцией. Концы обмотки присоединены к металлическим полукольцам: один конец обмотки присоединен к одному полукольцу, другой — к другому. Каждое полукольцо прижимается к металлической пластинке — щетке. Щетки служат для подвода тока от источника к рамке.
    При помощи полуколец и щеток.
    4. Опишите устройство технического электродвигателя. 
    В технических электродвигателях обмотка состоит из большого числа витков проволоки. Эти витки укладывают в пазы (прорези), сделанные вдоль боковой поверхности железного цилиндра. Этот цилиндр нужен для усиления магнитного поля.
    Магнитное поле, в котором вращается якорь такого двигателя, создается сильным электромагнитом. Электромагнит питается током от того же источника тока, что и обмотка якоря.
    Вал двигателя, проходящей по центральной оси железного цилиндра, соединяют с прибором, который приводится двигателем во вращение.
    5. Где применяются электрические двигатели? Каковы их преимущества по сравнению с тепловыми? 
    Применение: транспорт, насосы для выкачивания нефти из скважин.
    При одинаковой мощности они имеют меньшие размеры, чем тепловые двигатели. Они не загрязняют воздух и им не нужен запас топлива и воды. Их можно установить в удобном месте. Можно изготовить электрический двигатель любой мощности.
    6. Кто и когда изобрёл первый электродвигатель, пригодный для практического применения? 
    Борис Семенович Якоби в 1834 г.

  4. P.I.N Ответить




    § 62. Действие магнитного поля на проводник с током. Электрический двигатель
    Мы знаем, что проводники с токами взаимодействуют друг с другом с некоторой силой (§ 37). Это объясняется тем, что на каждый проводник с током действует магнитное поле тока другого проводника.
    Вообще магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.
    На рисунке 117, а изображён проводник АВ, подвешенный на гибких проводах, которые присоединены к источнику тока. Проводник АВ помещён между полюсами дугообразного магнита, т. е. находится в магнитном поле. При замыкании электрической цепи проводник приходит в движение (рис. 117, б).

    Рис. 117. Действие магнитного поля на проводник с током
    Направление движения проводника зависит от направления тока в нём и от расположения полюсов магнита. В данном случае ток направлен от А к Б, и проводник отклонился влево. При изменении направления тока на противоположное проводник переместится вправо. Точно так же проводник изменит направление движения при изменении расположения полюсов магнита.
    Практически важное значение имеет вращение проводника с током в магнитном поле.
    На рисунке 118 изображён прибор, с помощью которого можно продемонстрировать такое движение. В этом приборе лёгкая прямоугольная рамка ABCD насажена на вертикальную ось. На рамке уложена обмотка, состоящая из нескольких десятков витков проволоки, покрытой изоляцией. Концы обмотки присоединены к металлическим полукольцам 2: один конец обмотки присоединён к одному полукольцу, другой — к другому.

    Рис. 118. Вращение рамки с током в магнитном поле
    Каждое полукольцо прижимается к металлической пластинке — щётке 1. Щётки служат для подвода тока от источника к рамке. Одна щётка всегда соединена с положительным полюсом источника, а другая — с отрицательным.
    Мы знаем, что ток в цепи направлен от положительного полюса источника к отрицательному, следовательно, в частях рамки АВ и DC он имеет противоположное направление, поэтому эти части проводника будут перемещаться в противоположные стороны и рамка повернётся. При повороте рамки присоединённые к её концам полукольца повернутся вместе с ней и каждое прижмётся к другой щётке, поэтому ток в рамке изменит направление на противоположное. Это нужно для того, чтобы рамка продолжала вращаться в том же направлении.
    Вращение катушки с током в магнитном поле используется в устройстве электрического двигателя.
    В технических электродвигателях обмотка состоит из большого числа витков проволоки. Эти витки укладывают в пазы (прорези), сделанные вдоль боковой поверхности железного цилиндра. Этот цилиндр нужен для усиления магнитного поля. На рисунке 119 изображена схема такого устройства, оно называется якорем двигателя. На схеме (она дана в перпендикулярном сечении) витки проволоки показаны кружочками.

    Рис. 119. Схема якоря двигателя
    Магнитное поле, в котором вращается якорь такого двигателя, создаётся сильным электромагнитом. Электромагнит питается током от того же источника тока, что и обмотка якоря. Вал двигателя, проходящий по центральной оси железного цилиндра, соединяют с прибором, который приводится двигателем во вращение.
    Двигатели постоянного тока нашли особенно широкое применение на транспорте (электровозы, трамваи, троллейбусы).

    Якорь электродвигателя
    Есть специальные безыскровые электродвигатели, которые применяют в насосах для выкачивания нефти из скважин.
    В промышленности применяют двигатели, работающие на переменном токе (их вы будете изучать в старших классах).
    Электрические двигатели обладают рядом преимуществ. При одинаковой мощности они имеют меньшие размеры, чем тепловые двигатели. При работе они не выделяют газов, дыма и пара, а значит, не загрязняют воздух. Им не нужен запас топлива и воды. Электродвигатели можно установить в удобном месте: на станке, под полом трамвая, на тележке электровоза. Можно изготовить электрический двигатель любой мощности: от нескольких ватт (в электробритвах) до сотен и тысяч киловатт (на экскаваторах, прокатных станах, кораблях).
    Коэффициент полезного действия мощных электрических двигателей достигает 98%. Такого высокого КПД не имеет никакой другой двигатель.

    Якоби Борис Семёнович (1801—1874)
    Русский физик. Прославился открытием гальванопластики Построил первый электродвигатель, телеграфный аппарат, печатающий буквы.

    Один из первых в мире электрических двигателей, пригодных для практического применения, был изобретён русским учёным Борисом Семёновичем Якоби в 1834 г.

    Вопросы

    Как показать, что магнитное поле действует на проводник с током, находящийся в этом поле?
    Пользуясь рисунком 117, объясните, от чего зависит направление движения проводника с током в магнитном поле.
    При помощи какого прибора можно осуществить вращение проводника с током в магнитном поле? При помощи какого устройства в рамке меняют направление тока через каждые пол-оборота?
    Опишите устройство технического электродвигателя.
    Где применяются электрические двигатели? Каковы их преимущества по сравнению с тепловыми?
    Кто и когда изобрёл первый электродвигатель, пригодный для практического применения?

    Задание

    Вращение рамки с током в магнитном поле используется в устройстве электрических измерительных приборов. На рисунке 120, а показана схема устройства одного из таких приборов. Между полюсами постоянного магнита (или электромагнита) располагается лёгкая катушка К, внутри которой находится неподвижный железный сердечник С. Катушка расположена горизонтально. Ток в неё поступает по металлическим пружинкам П. При отсутствии тока пружинки удерживают катушку в горизонтальном положении, а прикреплённую к ней стрелку — на нулевом делении шкалы. Объясните, как действует прибор.

    Рис. 120
    На рисунке 121 изображён автомат, с помощью которого включается звонок, когда температура в помещении поднимается выше нормы. Назовите все части автомата. Объясните его действие. В каких случаях целесообразно применять такие автоматы? Приведите примеры.

    Рис. 121

  5. ber700 Ответить

    По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.

    Второе название асинхронных машин

    В ряде стран к асинхронным машинам причисляют также коллекторные машины. Второе название асинхронных машин — индукционные вследствие того, что ток в обмотке ротора индуцируется вращающимся полем статора. Асинхронные машины сегодня составляют большую часть электрических машин. В основном они применяются в качестве электродвигателей и являются основными преобразователями электрической энергии в механическую.

    Достоинства и недостатки

    Достоинства:
    Лёгкость в изготовлении.
    Отсутствие механического контакта со статической частью машины.
    Недостатки:
    Небольшой пусковой момент.
    Значительный пусковой ток.

    История

    Приоритет в создании асинхронного двигателя принадлежит Николе Тесле

    Вклад в развитие асинхронных двигателей внес Галилео Феррарис, который в 1885 г. в Италии построил модель асинхронного двигателя мощностью 3 Вт. В 1888 г. Феррарис опубликовал свои исследования в статье для Королевской Академии Наук в Турине (в том же году, Тесла получил патент США 381,968 от 01.05.1888 (U.S. Patent 0 381 968|заявка на изобретение № 252132 от 12.10.1887), в которой изложил теоретические основы асинхронного двигателя. Заслуга Феррариса в том, что сделав ошибочный вывод о небольшом к.п.д. асинхронного двигателя и о нецелесообразности применения систем переменного тока, он привлек внимание многих инженеров к проблеме совершенствования асинхронных машин. Статья Галилео Феррариса, опубликованная в журнале «Атти ди Турино», была перепечатана английским журналом и была прочитана в июле 1888 г. выпускником Дармштадтского Высшего технического училища, выходцем из России Михаилом Осиповичем Доливо-Добровольским.

    Доливо-Добровольский установил, что для создания вращающегося магнитного поля – основы работы асинхронного двигателя – технически и экономически целесообразно применение симметричной трехфазной магнитной системы, со сдвигом фаз на 120 электрических градусов. Трехфазный асинхронный электродвигатель, изготовленный Доливо-Добровольским в 1889 г., продемонстрировал высокую эффективность и неоспоримые преимущества перед двухфазными двигателями Феррариса и Тесла. По словам изобретателя: “уже при первом включении выявилось ошеломляющее для представлений того времени действие… попытка остановить его торможением за конец вала от руки блестяще провалилась, и только при особой ловкости было возможно воспрепятствовать таким способом его запуску при включении. Если принять во внимание малые размеры моторчика, это представлялось чудом для всех приглашенных свидетелей”. Несмотря на это отношение к переменному току у многих оставалось сдержанным. Корифей электротехники Т. Эдисон отказался даже осмотреть новое изобретение, заявив: «Нет, нет, переменный ток – это вздор, не имеющий будущего. Я не только не хочу осматривать двигатель переменного тока, но и знать о нем». Вскоре Доливо-Добровольскому удалось решить все основные проблемы, связанные с конструкцией двигателя, устройство которого до настоящего времени принципиально не менялось.

    Первая демонстрация

    Первой демонстрацией практического применения асинхронного двигателя и трехфазной системы стала Международная электротехническая выставка 1891 г. во Франкфурте-на-Майне. Выставку с гидроэлектростанцией на реке Неккар в городе Лауфен соединила 170-километровая линия электропередачи. А 25 августа на выставке зажглась тысяча электроламп, питаемых током от Лауфенской электростанции. Затем был пущен трехфазный асинхронный двигатель мощностью 75 кВт, приводивший в действие декоративный дестиметровый водопад. Разработки Доливо-Добровольского вскоре были внедрены в производство. Простой, экономичный и надежный двигатель переменного тока, получил широкое распространение и послужил стимулом для развития техники переменных токов и электроэнергетики в целом. В России фирма AEG в конце 90-х гг. XIX в. развернула сеть агентств в Москве, Санкт-Петербурге, Ростове и других городах, занимавшихся реализацией изделий своих германских предприятий. Генеральное представительство этой фирмы располагалось в Москве, в Лубянском проезде, рядом с Политехническим музеем.

    Трехфазный асинхронный электродвигатель типа “DR8O” мощностью 6 л.с. (4 кВт) выпуска 90-х гг. XIX в. из собрания Политехнического музея является одним из первых серийных трехфазных двигателей фирмы AEG. Об этом свидетельствует наличие кольцевой обмотки на статоре. Впоследствии от таких обмоток отказались, перейдя на более совершенные – барабанные.

    Заключение

    Основные элементы двигателя – трехфазная обмотка статора, шихтованный ротор с короткозамкнутой обмоткой типа “беличья клетка” – предложены и разработаны Доливо-Добровольским. Работа асинхронного двигателя основана на электромагнитном взаимодействии между статором и ротором. Токи статорных обмоток создают вращающееся магнитное поле, которое, в свою очередь, индуцируют токи в короткозамкнутой обмотке ротора. В результате взаимодействия токов ротора с магнитным полем статора создается вращающий момент.

    Связанное оборудование (products tags):


    Электромоторы

    Общепромышленные

    Однофазные электродвигатели

    C электромагнитным тормозом

    Частотные преобразователи

  6. kurt1889 Ответить

    01 марта 1873

    Первая печатная машинка Ремингтон

    Начало производства

    01 марта 1912

    Борис Евсеевич Черток

    выдающийся учёный-конструктор советской и российской космонавтики

    02 марта 1983

    Первый компакт-диск

    продемонстрирован Sony и Philips и Polygram

    03 марта 1847

    Александр Грейам Белл

    ученый, основоположник телефонии

    04 марта 1877

    Создан микрофон

    американским изобретателем Э.Берлинером

    04 марта 1928

    Василий Петрович Грязев

    российский конструктор вооружения

    05 марта 1910

    Андо Мамофуки

    японский бизнесмен, изобретатель лапши быстрого приготовления

    07 марта 1876

    Первый телефонный аппарат

    запатентован Александром Беллом

    10 марта 1889

    Первая АТС

    запатентована Алмондом Строуджером

    12 марта 1863

    Владимир Иванович Вернадский

    российский естествоиспытатель

    13 марта 1781

    Планета Уран

    открыта Уильямом Гершелем

    14 марта 1797

    Машина для очистки хлопка

    запатентована Эли Уитни

    14 марта 1854

    Пауль Эрлих

    немецкий бактериолог, основоположник химиотерапии

    14 марта 1879

    Альберт Эйнштейн

    немецкий физик

    16 марта 1787

    Ом Георг Симон

    немецкий физик-экспериментатор

    16 марта 1859

    Александр Степанович Попов

    русский физик и электротехник

    16 марта 1884

    Александр Романович Беляев

    русский писатель-фантаст

    18 марта 1858

    Рудольф Дизель

    немецкий инженер и изобретатель

    18 марта 1931

    Первая электрическая бритва

    началось производство

    19 марта 1922

    Башня на Шаболовке

    сдана в эксплуатацию

    24 марта 1802

    Первый паровоз

    запатентован Ричардом Тревитиком

    24 марта 1822

    Типографская наборная машинка

    запатентована Уильямом Черчем

    24 марта 1891

    Сергей Иванович Вавилов

    российский физик

    26 марта 2006

    Соцсети “Одноклассники”

    начала работу

    27 марта 1845

    Вильгельм Конрад Рентген

    немецкий физик

    28 марта 1797

    Первая стиральная машина

    запатентована Натаниэлем Бриггсом

    30 марта 1894

    Сергей Владимирович Ильюшин

    советский авиаконструктор

    31 марта 1893

    Застежка “Молния”

    изобретена Уиткомбом Джадсоном

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *