При каких условиях дифракция волн проявляется особенно отчетливо?

10 ответов на вопрос “При каких условиях дифракция волн проявляется особенно отчетливо?”

  1. Клястиц Ответить

    Подробности
    Категория: Оптика

    ДИФРАКЦИЯ

    Часто волна встречает на своем пути небольшие (по сравнению с ее длиной) препятствия. Соотношение между длиной волны и размером препятствий определяет в основном поведение волны.

    Волны способны огибать края препятствий. Когда размеры препятствий малы, волны, огибая края препятствий, смыкаются за ними. Так, морские волны свободно огибают выступающий из воды камень, если его размеры меньше длины волны или сравнимы с ней. За камнем волны распространяются так, как если бы его не было совсем (маленькие камни на рис. 127). Точно так же волна от брошенного в пруд камня огибает торчащий из воды прутик. Только за препятствием большого по сравнению с длиной волны размера (большой камень на рис. 127) образуется «тень»: волны за него не проникают.
    Способностью огибать препятствия обладают и звуковые волны. Вы можете слышать сигнал машины за углом дома, когда самой машины не видно. В лесу деревья заслоняют ваших товарищей. Чтобы их не потерять, вы начинаете кричать. Звуковые волны в отличие от света свободно огибают стволы деревьев и доносят ваш голос до товарищей. Отклонение от прямолинейного распространения волн, огибание волнами препятствий, называется дифракцией. Дифракция присуща любому волновому процессу в той же мере, как и интерференция. При дифракции происходит искривление волновых поверхностей у краев препятствий.

    Дифракция волн проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней.
    Явление дифракции волн на поверхности воды можно наблюдать, если поставить на пути волн экран с узкой щелью, размеры которой меньше длины волны (рис. 128). Хорошо будет видно, что за экраном распространяется круговая волна, как если бы в отверстии экрана располагалось колеблющееся тело -источник волн. Согласно принципу Гюйгенса так и должно быть. Вторичные источники в узкой щели располагаются столь близко друг к другу, что их можно рассматривать как один точечный источник.

    Если размеры щели велики по сравнению с длиной волны, то картина распространения волн за экраном совершенно иная (рис. 129). Волна проходит сквозь щель, почти не меняя своей формы. Только по краям можно заметить небольшие искривления волновой поверхности, благодаря которым волна частично проникает и в пространство за экраном. Принцип Гюйгенса позволяет понять, почему происходит дифракция. Вторичные волны, испускаемые участками среды, проникают за края препятствия, расположенного на пути распространения волны.

    ДИФРАКЦИЯ СВЕТА

    Если свет представляет собой волновой процесс, то, кроме интерференции, должна наблюдаться и дифракция света. Ведь дифракция — огибание волнами препятствий — присуща любому волновому движению. Но наблюдать дифракцию света нелегко. Дело в том, что волны заметным образом огибают препятствия, размеры которых сравнимы с длиной волны, а длина световой волны очень мала.
    Пропуская тонкий пучок света через маленькое отверстие, можно наблюдать нарушение закона прямолинейного распространения света. Светлое пятно против отверстия будет большего размера, чем это следует ожидать при прямолинейном распространении света.
    Опыт Юнга. В 1802 г. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (рис. 203). В непрозрачной ширме он проколол булавкой два маленьких отверстия В и С на небольшом расстоянии друг от друга.

    Эти отверстия освещались узким световым пучком, прошедшим в свою очередь через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. Вследствие дифракции из отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий, Юнг обнаруживал, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем весьма точно.
    Теория Френеля. Исследование дифракции получило свое завершение в работах Френеля. Френель не только более детально исследовал различные случаи дифракции на опыте, но и построил количественную теорию дифракции, позволяющую в принципе рассчитать дифракционную картину, возникающую при огибании светом любых препятствий. Им же было впервые объяснено прямолинейное распространение света в однородной среде на основе волновой теории.
    Этих успехов Френель добился, объединив принцип Гюйгенса с идеей интерференции вторичных волн. Об этом кратко уже упоминалось в четвертой главе.
    Для того чтобы вычислить амплитуду световой волны в любой точке пространства, надо мысленно окружить источник света замкнутой поверхностью. Интерференция волн от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке пространства.
    Такого рода расчеты позволили понять, каким образом свет от точечного источника S, испускающего сферические волны, достигает произвольной точки пространства В (рис. 204).

    Если рассмотреть вторичные источники на сферической волновой поверхности радиусе R. то результат интерференции вторичных волн от этих источников в точке В оказывается таким, как если бы лишь вторичные источники на малом сферическом сегменте ab посылали свет в точку В. Вторичные волны, испущенные источниками, расположенными на остальной части поверхности, гасят друг друга в(результате интерференции. Поэтому все происходит так, как если бы свет распространялся лишь вдоль прямой SB, т. е. прямолинейно.
    Одновременно Френель рассмотрел количественно дифракцию на различного рода препятствиях.
    Любопытный случай произошел на заседании Французской Академии наук в 1818 г. Один из ученых, присутствовавших на заседании, обратил внимание на то, что теории Френеля вытекают факты, явно противоречащие здравому смыслу. При определенных размерах отверстия и определенных расстояниях от отверстия до источника света и экрана в центре светлого пятна должно находиться темное пятнышко. За маленьким непрозрачным диском, наоборот, должно находиться светлое пятно в центре тени. Каково же было удивление ученых, когда поставленные эксперименты доказали, что так и есть на самом деле.
    Дифракционные картины от различных препятствий. Из-за того, что длина световой волны очень мала, угол отклонения света от направления прямолинейного распространения невелик. Поэтому для отчетливого наблюдения дифракции (в частности, в тех случаях, о которых только что говорилось) расстояние между препятствием, которое огибается светом, и экраном должно быть велико.
    На рисунке 205 показано, как выглядят на фотографиях дифракционные картины от различных препятствий: а) тонкой проволочки; б) круглого отверстия; в) круглого экрана.

    Зоны Френеля для трехсантиметровой волны 

  2. Heisen_Berg Ответить

    Нередко волна встречает на своем пути небольшие (по сравнению с длиной волны) препятствия, которые она способна огибать. Когда размеры препятствий малы, волны, огибая края препятствий, смыкаются за ними. Так, морские волны свободно огибают выступающий из воды камень, если его размеры меньше длины волны или сравнимы с ней. За камнем волны распространяются так, как если бы его не было совсем. Точно так же волна от брошенного в пруд камня огибает торчащий из воды прутик. Только за препятствием большого по сравнению с длиной волны размера (большой камень на рисунке 8.52) образуется «тень»: волны за него не проникают.

    Способностью огибать препятствия обладают и звуковые волны. Вы можете слышать сигнал машины за углом дома, когда самой машины не видно. В лесу деревья заслоняют ваших товарищей. Чтобы их не потерять или не потеряться самому, вы начинаете кричать. Звуковые волны в отличие от света свободно огибают стволы деревьев и доносят ваш голос до товарищей. Отклонение от прямолинейного распространения волн, или огибание волнами препятствий — называется дифракцией1. Дифракция присуща любому волновому процессу, так же как и интерференция. При дифракции происходит искривление волновых поверхностей у краев препятствий.
    1 От латинского слова difractus — разломанный.
    Дифракция волн проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней.
    Явление дифракции волн на поверхности воды можно наблюдать, если, например, поставить на пути волн экран с узкой щелью, размеры которой меньше длины волны (рис. 8.53). В этом опыте хорошо бывает видно, что за экраном распространяется круговая волна, как если бы в отверстии экрана находилось колеблющееся тело — источник волн. Согласно принципу Гюйгенса так и должно быть. Вторичные источники в узкой щели располагаются столь близко друг к другу, что их можно рассматривать как один точечный источник.

    Если же размеры щели велики по сравнению с длиной волны, то картина распространения волн за экраном совершенно иная (рис. 8.54). Волна проходит сквозь щель, почти не меняя своей формы. По краям можно заметить искривления волновой поверхности, в результате чего волна частично проникает и в пространство за экраном.
    Принцип Гюйгенса позволяет понять, почему происходит дифракция. Вторичные волны, испускаемые участками среды, проникают за края препятствия, расположенного на пути распространения волны.
    Вопросы к параграфу
    1. Приведите примеры дифракции волн, не упомянутые в тексте.
    2. При каких условиях дифракция волн проявляется особенно отчетливо?

  3. Saithilbine Ответить

    О. Фре­нель от­ка­зал­ся от ло­каль­но­го юн­гов­ско­го под­хо­да и пред­ло­жил свой инте­граль­ный ме­тод, опи­раю­щий­ся на сфор­му­ли­ро­ван­ный ра­нее (1690) прин­цип Гюй­ген­са (см. Гюй­ген­са – Фре­не­ля прин­цип). Со­глас­но Фре­не­лю, ди­фрак­ци­он­ное по­ле мо­жет быть пред­став­ле­но как ре­зуль­тат ин­тер­фе­рен­ции по­лей фик­тив­ных вто­рич­ных ис­точ­ни­ков, рас­пре­де­лён­ных по всей не за­кры­той пре­пят­ст­ви­ем час­ти фрон­та па­даю­щей вол­ны (рис. 2) и имею­щих ам­пли­ту­ду и фа­зу, про­пор­цио­наль­ные та­ко­вым у этой вол­ны. Фре­нель раз­бил по­верх­ность, за­ня­тую вто­рич­ны­ми ис­точ­ни­ка­ми, на по­лувол­но­вые зо­ны (т. н. Фре­не­ля зо­ны, рис. 3). Ха­рак­тер Д. в. за­ви­сит от то­го, сколь­ко зон ук­ла­ды­ва­ет­ся в от­вер­стии, или от зна­че­ния фре­не­лев­ско­го (вол­но­во­го) па­ра­мет­ра $p$, рав­но­го от­но­ше­нию раз­ме­ра пер­вой зо­ны Фре­не­ля к ра­диу­су $a$ от­вер­стия, $p=\sqrt {?z}/a$ ($z$ – ко­ор­ди­на­та точ­ки на­блю­де­ния, $?$ – дли­на вол­ны). В за­ви­си­мо­сти от ве­ли­чи­ны $p$ раз­ли­ча­ют сле­дую­щие об­лас­ти Д. в.: гео­мет­ро­оп­ти­че­скую, или про­жек­тор­ную, об­ласть, $p?1$; об­ласть ди­фрак­ции Фре­не­ля, $p$ по­ряд­ка 1; об­ласть ди­фрак­ции Фра­ун­го­фе­ра, $p?1$. При фик­си­ро­ван­ных $a$ и $?$ эти об­лас­ти рас­по­ло­же­ны по­сле­до­ва­тель­но, по ме­ре уда­ле­ния точ­ки на­блю­де­ния от от­вер­стия (т. е. с уве­ли­че­ни­ем $z$). В пер­вой, при­ле­гаю­щей к от­вер­стию об­лас­ти $(z?a^2/?)$ по­пе­реч­ное рас­пре­де­ле­ние ам­пли­ту­ды по­вто­ря­ет рас­пре­де­ле­ние ам­пли­ту­ды на са­мом от­вер­стии и от­ве­ча­ет при­бли­же­нию гео­мет­рич. оп­ти­ки. Во вто­рой зо­не ($z$ по­ряд­ка $a^2/?$) по­пе­реч­ное рас­пре­де­ле­ние ам­пли­ту­ды су­ще­ст­вен­но ис­ка­жа­ет­ся. На­чи­ная с этих рас­стоя­ний, вол­но­вой пу­чок от­но­си­тель­но бы­ст­ро рас­ши­ря­ет­ся из-за ди­фрак­ции. В треть­ей, уда­лён­ной об­лас­ти $(z?a^2/?)$ ди­фрак­ци­он­ное по­ле пред­став­ля­ет со­бой рас­хо­дя­щую­ся сфе­рич. вол­ну с ло­каль­но пло­ской струк­ту­рой, об­ла­даю­щую оп­ре­де­лён­ной на­прав­лен­но­стью. Т. о., наи­бо­лее от­чёт­ли­во Д. в. про­яв­ля­ет­ся во фре­не­лев­ской об­лас­ти, т. е. с рас­стоя­ний $z$ по­ряд­ка $a^2/?$. Имен­но по­это­му Д. в. на во­де ($?$ по­ряд­ка 1 м) или диф­рак­ция зву­ка в воз­ду­хе ($?$ по­ряд­ка 0,1 м) мо­жет на­блю­дать­ся прак­ти­че­ски все­гда, ди­фрак­ция све­та ($?$ по­ряд­ка 10–3–10–4 м) тре­бу­ет вы­пол­не­ния осо­бых ус­ло­вий (иголь­ча­тое от­вер­стие, ост­рый край брит­вы и т. п.), а для ди­фрак­ции рент­ге­нов­ских лу­чей ($?$ по­ряд­ка 10–6–10–8 м) ис­поль­зу­ют кри­стал­лич. ре­шёт­ки.

  4. Gavigrinn Ответить

    Подробности
    Категория: Оптика

    ДИФРАКЦИЯ

    Часто волна встречает на своем пути небольшие (по сравнению с ее длиной) препятствия. Соотношение между длиной волны и размером препятствий определяет в основном поведение волны.

    Волны способны огибать края препятствий. Когда размеры препятствий малы, волны, огибая края препятствий, смыкаются за ними. Так, морские волны свободно огибают выступающий из воды камень, если его размеры меньше длины волны или сравнимы с ней. За камнем волны распространяются так, как если бы его не было совсем (маленькие камни на рис. 127). Точно так же волна от брошенного в пруд камня огибает торчащий из воды прутик. Только за препятствием большого по сравнению с длиной волны размера (большой камень на рис. 127) образуется «тень»: волны за него не проникают.
    Способностью огибать препятствия обладают и звуковые волны. Вы можете слышать сигнал машины за углом дома, когда самой машины не видно. В лесу деревья заслоняют ваших товарищей. Чтобы их не потерять, вы начинаете кричать. Звуковые волны в отличие от света свободно огибают стволы деревьев и доносят ваш голос до товарищей. Отклонение от прямолинейного распространения волн, огибание волнами препятствий, называется дифракцией. Дифракция присуща любому волновому процессу в той же мере, как и интерференция. При дифракции происходит искривление волновых поверхностей у краев препятствий.

    Дифракция волн проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней.
    Явление дифракции волн на поверхности воды можно наблюдать, если поставить на пути волн экран с узкой щелью, размеры которой меньше длины волны (рис. 128). Хорошо будет видно, что за экраном распространяется круговая волна, как если бы в отверстии экрана располагалось колеблющееся тело -источник волн. Согласно принципу Гюйгенса так и должно быть. Вторичные источники в узкой щели располагаются столь близко друг к другу, что их можно рассматривать как один точечный источник.

    Если размеры щели велики по сравнению с длиной волны, то картина распространения волн за экраном совершенно иная (рис. 129). Волна проходит сквозь щель, почти не меняя своей формы. Только по краям можно заметить небольшие искривления волновой поверхности, благодаря которым волна частично проникает и в пространство за экраном. Принцип Гюйгенса позволяет понять, почему происходит дифракция. Вторичные волны, испускаемые участками среды, проникают за края препятствия, расположенного на пути распространения волны.

    ДИФРАКЦИЯ СВЕТА

    Если свет представляет собой волновой процесс, то, кроме интерференции, должна наблюдаться и дифракция света. Ведь дифракция — огибание волнами препятствий — присуща любому волновому движению. Но наблюдать дифракцию света нелегко. Дело в том, что волны заметным образом огибают препятствия, размеры которых сравнимы с длиной волны, а длина световой волны очень мала.
    Пропуская тонкий пучок света через маленькое отверстие, можно наблюдать нарушение закона прямолинейного распространения света. Светлое пятно против отверстия будет большего размера, чем это следует ожидать при прямолинейном распространении света.
    Опыт Юнга. В 1802 г. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (рис. 203). В непрозрачной ширме он проколол булавкой два маленьких отверстия В и С на небольшом расстоянии друг от друга.

    Эти отверстия освещались узким световым пучком, прошедшим в свою очередь через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. Вследствие дифракции из отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий, Юнг обнаруживал, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем весьма точно.
    Теория Френеля. Исследование дифракции получило свое завершение в работах Френеля. Френель не только более детально исследовал различные случаи дифракции на опыте, но и построил количественную теорию дифракции, позволяющую в принципе рассчитать дифракционную картину, возникающую при огибании светом любых препятствий. Им же было впервые объяснено прямолинейное распространение света в однородной среде на основе волновой теории.
    Этих успехов Френель добился, объединив принцип Гюйгенса с идеей интерференции вторичных волн. Об этом кратко уже упоминалось в четвертой главе.
    Для того чтобы вычислить амплитуду световой волны в любой точке пространства, надо мысленно окружить источник света замкнутой поверхностью. Интерференция волн от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке пространства.
    Такого рода расчеты позволили понять, каким образом свет от точечного источника S, испускающего сферические волны, достигает произвольной точки пространства В (рис. 204).

    Если рассмотреть вторичные источники на сферической волновой поверхности радиусе R. то результат интерференции вторичных волн от этих источников в точке В оказывается таким, как если бы лишь вторичные источники на малом сферическом сегменте ab посылали свет в точку В. Вторичные волны, испущенные источниками, расположенными на остальной части поверхности, гасят друг друга в(результате интерференции. Поэтому все происходит так, как если бы свет распространялся лишь вдоль прямой SB, т. е. прямолинейно.
    Одновременно Френель рассмотрел количественно дифракцию на различного рода препятствиях.
    Любопытный случай произошел на заседании Французской Академии наук в 1818 г. Один из ученых, присутствовавших на заседании, обратил внимание на то, что теории Френеля вытекают факты, явно противоречащие здравому смыслу. При определенных размерах отверстия и определенных расстояниях от отверстия до источника света и экрана в центре светлого пятна должно находиться темное пятнышко. За маленьким непрозрачным диском, наоборот, должно находиться светлое пятно в центре тени. Каково же было удивление ученых, когда поставленные эксперименты доказали, что так и есть на самом деле.
    Дифракционные картины от различных препятствий. Из-за того, что длина световой волны очень мала, угол отклонения света от направления прямолинейного распространения невелик. Поэтому для отчетливого наблюдения дифракции (в частности, в тех случаях, о которых только что говорилось) расстояние между препятствием, которое огибается светом, и экраном должно быть велико.
    На рисунке 205 показано, как выглядят на фотографиях дифракционные картины от различных препятствий: а) тонкой проволочки; б) круглого отверстия; в) круглого экрана.

    Зоны Френеля для трехсантиметровой волны 

  5. Arashim Ответить

    В геометрической оптике широко пользуются понятием светового луча, т.е. узкого пучка света, распространяющегося прямолинейно. Границы тени на эк­ране за непрозрачным препятствием определяются лучами света, ко­торые проходят мимо препятствия, касаясь краев его поверхности.
    В то же время прямолинейность распространения света не столь очевидна с позиций волновой теории Гюйгенса. Иначе говоря, волны должны огибать препятствия. Это происходит при освещении небольших непрозрачных препятствий или при прохождении света сквозь достаточно узкие щели и отверстия. В этом случае на экране, установленном позади препятствий или от­верстий, вместо четко разграниченных областей света и тени на­блюдается система максимумов и минимумов осве­щенности.
    Все явления, связанные с огибанием световыми волнами пре­пятствий и проникновением света в область геометрической тени, носят название дифракции света. Слово дифракция происходит от латинского слова diffractus ? преломленный.
    В более широком смысле дифракцией называют совокупность яв­лений, наблюдаемых при распространении света в среде с резкими неоднородностями и связанных с отклонениями его распространения от законов геометрической оптики.
    Дифракционные явления присущи всем волновым процессам, но особенно отчетливо проявляются лишь в тех случаях, когда длины волн излучений сопоставимы с размерами препятствий. Так, звуко­вые волны хорошо слышны за углом дома, т.е. звуковая волна его огибает. Для наблюдения же дифракции световых волн необходимо создание специальных условий. Это обусловлено малостью длин све­товых волн (?<1мкм).
    Как объяснить огибание световыми волнами препятствий и появление системы максимумов и минимумов осве­щенности вместо размытого изображения препятствия на экране? По принципу Гюйгенса каждая точка волновой поверхности является источником вторичных волн, распространяющихся вперед по всем направлениям, в том числе и в область геометрической тени препятствия. По идее Френеля появление максимумов и минимумов интенсивности является ре­зультатом интерференции лучей от большого числа вторичных (когерентных) источ­ников (принципа Гюйгенса – Френеля).
    Более подробно сущность принципа Гюйгенса – Френеля можно изложить так. Всю волновую поверхность S, возбуждаемую каким-либо источником S0 , можно разбить на малые участки с равными площа­дями ?S , которые являются системой вторичных источников, даю­щих вторичные волны. Эти участки волновой поверхности конечных размеров, играющие роль самостоятельных вторичных источников, получили название зон Френеля. Поэтому, поставив на пути волн непрозрачную преграду с малым отверстием, получим в отверстии фиктивный источник, излучающий вторичную волну, распространяющуюся также и в область геометрической тени. Вторичные источники когерентны между собой и могут интерферировать. Мощности излучения всех вторичных источников ? участков волновой поверхности с одинаковыми площадями — одинаковы. Каждый вторичный источник (с площадью ?S) излучает пре­имущественно в направлении внешней нормали  к волновой поверх­ности в этой точке. Амплитуда вторичных волн уменьшается с увеличением угла ? между направлением на интересующую нас точку и нормалью к?S . Амплитуда равна нулю при ? = ?/2. Чем больше расстояние от вторичного источника до точки (в которой наблюдают результат дифракции), тем меньше амплитуда.
    Учет амплитуд и фаз вторичных волн позволяет найти амплитуду результирующей волны в лю­бой точке пространства.

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *