В каких случаях теплопередача может происходить путем конвекции?

8 ответов на вопрос “В каких случаях теплопередача может происходить путем конвекции?”

  1. Agamaris Ответить

    Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

    Теплопроводность

    Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.
    Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

    Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.
    Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

    Конвекция

    Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.
    Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.
    Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.  Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

    Излучение

    Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.
    Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

    Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

    Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».
    Следующая тема: «Количество теплоты. Удельная теплоёмкость».

  2. Mowyn Ответить

    1.1.Теплопроводность
    Механизм теплообмена теплопроводностью обусловлен движением микрочастиц вещества. В газах перенос энергии осуществляется путем диффузии молекул и атомов, в жидкостях и твердых телах (диалектриках) – за счет упругих волн, в металлах – путем диффузии свободных электронов и упругих колебаний кристаллической решетки.
    Процесс теплопроводности неразрывно связан с распределением температуры внутри тела. Поэтому при изучении процесса прежде всего необходимо установить понятия температурного поля и градиента температуры.
    1.1.1.Температурное поле
    Температура характеризует тепловое состояние тела и определяет степень его нагретости. Теплопроводность может иметь место только при условии, что в различных точках тела (или системы тел) температура неодинакова. В общем случае процесс передачи теплоты теплопроводностью в твердом теле сопровождается изменением температуры как в пространстве, так и во времени. Основной задачей теории теплопроводности и является изучение пространственно – временного изменения температуры, т.е. нахождение зависимости
    , (1.1)
    где –координаты точек тела; – временная координата.
    Уравнение (1.1) представляет собой математическое выражение температурного поля. Таким образом, температурным полем называется совокупность значений температуры во всех точках изучаемого пространства и для каждого момента времени.
    Различают стационарное и нестационарное температурное поле. Уравнение (1.1) является записью наиболее общего вида температурного поля, когда температура изменяется с течением времени и от одной точки к другой. Такое поле отвечает неустановившемуся тепловому режиму теплопроводности и носит название нестационарного температурного поля.
    Если тепловой режим является установившимся, то температура в каждой точке тела с течением времени остается неизменной, и такое температурное поле называют стационарным. В этом случае температура является функцией только координат
    ; . (1.2)
    Температурное поле, соответствующее уравнениям (1.1) и (1.2) является пространственным, так как температура – это функция трех координат. Если температура есть функция двух координат, то поле называют двухмерным:
    ; . (1.3)
    Если температура является функцией одной координаты, то поле называют однородным:
    . (1.4)
    Наиболее простой вид имеет уравнение одномерного стационарного температурного поля:
    и . (1.5)
    Одномерной, например, является задача о переносе теплоты в стенке, у которой длину и ширину можно считать бесконечно большими по сравнению с толщиной.
    1.1.2.Температурный градиент
    При любом температурном поле в теле всегда имеются точки с одинаковой температурой. Если эти точки мысленно соединить, то можно получить изотермические поверхности, которые либо оканчиваются на поверхности тела, либо целиком располагаются внутри самого тела. Следовательно, температура в теле изменяется в направлении, пересекающем изотермы. При этом наибольший перепад температуры на единицу длины происходит в направлении нормали к изотермической поверхности (рис.1.1).
    Предел отношения изменения температуры между соседними изотермами к расстоянию между ними по нормали называется температурным градиентом и обозначается одним из следующих символов:
    . (1.6)
    Это есть вектор, направленый по нормали к изотермической поверхности.
    Положительным направлением температурного градиента считается направление в сторону возрастания температуры. Его значение, взятое с обратным знаком, называется падением температуры.
    1.1.3.Тепловой поток. Закон Фурье
    Теплота самопроизвольно переносится только в сторону убывания температуры. Количество теплоты, переносимой через какую–либо поверхность в единицу времени, называется тепловым потоком . Тепловой поток, отнесенный к единице поверхности, называется плотностью теплового потока, или же удельным тепловым потоком, или же тепловой нагрузкой поверхности нагрева, т.е.
    (1.7)
    Если тепловой поток отнесен к единице изотермической поверхности, то величина является вектором, направление которого совпадает с направлением распространения теплоты в данной точке и противоположно направлению вектора температурного градиента (рис. 1.2).
    Изучая процесс теплопроводности в твердых телах, Фурье экспериментально установил, что количество переданной теплоты пропорционально температурному градиенту и площади сечения, перпендикулярного направлению распространения теплоты.
    . (1.8)
    Если количество переданной теплоты отнести к единице сечения и единице времени, то установленную зависимость можно записать в виде
    (1.9)
    Уравнение (1.9) является математическим выражением основного закона теплопроводности – закона Фурье, который лежит в основе всех теоретических и экспериментальных исследований процессов теплопроводности.
    1.1.4.Коэффициент теплопроводности
    Коэффициент пропорциональности в уравнениях (1.8) и (1.9) является физическим параметром вещества, характеризующим способность тел проводить теплоту и называемым коэффициентом теплопроводности. Размерность – Вт/(м оС).
    Определяет собой количество теплоты, которое проходит в единицу времени через один квадратный метр изотермической поверхности при температурном градиенте равном единице.
    На величину коэффициента влияет много факторов: температура, давление, структура, влажность, агрегатное состояние тела, механизм переноса теплоты и т.д.
    Обычно определяют экспериментальным путем. Большинство методов основано на измерении теплового потока и градиента температур в заданном веществе.

    Лучше определять из выражения:
    ,
    где – коэффициент температуропроводности, м2/с; с – теплоемкость, Дж/ (кг оС); – плотность, кг/м3.
    Так как температура в теле распределена неравномерно, то в первую очередь важно знать зависимость от температуры. Для большого числа материалов эта зависимость оказывается почти линейной, т.е.
    ,
    где коэффициент теплопроводности при температуре , Вт/(м оС); – температура, оС; – температурный коэффициент, определяемый опытным путем.
    Лучшими проводниками теплоты являются металлы, у которых изменяется от 3 до 458 Вт/(м оС). Самым теплопроводным металлом является чистое серебро (=458 Вт/(м оС)).
    Коэффициенты теплопроводности теплоизоляционных и строительных материалов, имеющих пористую структуру, при повышении температуры возрастают по линейному закону и изменяются в пределах от 0,02 до 3,0 Вт/(м оС). Для газов изменяется в пределах от 0,006 до 0,6 Вт/(м оС).
    Для капельных жидкостей изменяется в пределах от 0,07 до 0,7 Вт/(м оС).
    1.1.5.Общее дифференциальное уравнение теплопроводности
    Для определения количества переданной теплоты необходимо знать коэффициент и значение температурного градиента, а следовательно, и распределение температуру. Последнее относительно просто можно определить только для тел простой конфигурации – пластины, цилиндра, шара, куба и параллелепипеда. В общем же случае это распределение можно получить лишь в результате решения специального дифференциального уравнения теплопроводности.
    Это уравнение выводится на основании закона сохранения энергии, сочетаемого с законом Фурье,
    Согласно закону сохранения энергии количество теплоты , выделенное внутренними источниками, за вычетом количества теплоты , вытекшего сквозь поверхность наружу, идет на приращение внутренней энергии вещества в выделенном объеме:
    =. (1.10)
    Выделим в теле элементарный параллелепипед со сторонами (рис. 1.3)
    Если объемную мощность тепловыделения, т.е. количество теплоты, выделяющейся в единице объема вещества за единицу времени обозначить через , Вт/м3, то за время получим:
    =. (1.11)
    Для вычисления рассмотрим направление, определяемое осью х.
    В этом направлении через левую грань поступает внутрь выделенного объема количество теплоты
    .
    Через противоположную грань за тот же промежуток времени вытекает из объема количество теплоты
    .
    Результативное количество вытекающей теплоты
    .
    Полное количество вытекающей из параллелепипеда теплоты во всех трех направлениях составит
    . (1.12)
    Приращение внутренней энергии вычисляется через теплоемкость и изменение температуры:
    . (1.13)
    Здесь с в Дж/(кг оС), а в кг/м3.
    Подставив выражения (1.11), (1.12) и (1.13) в (1.10), получим
    . (1.14)
    Введем в рассмотрение новую физическую характеристику вещества – коэффициент температуропроводности а, м2/с, определяемый из выражения
    а
    Он существенен для нестационарных тепловых процессов и характеризует скорость изменения температуры и является мерой теплоинерционных свойств тела. Скорость изменения температуры в любой точке тела будет, тем больше, чем больше коэффициент температуропрводности. При прочих равных условиях выравнивание температур происходит быстрее в том теле, которое обладает большим коэффициентом температуропроводности.
    Уравнению (1.14) можно придать вид
    .
    Физический смысл уравнения Фурье заключается в том, что им связывается пространственное распределение температуры с изменением ее во времени. Зная вблизи той или иной точки тела зависимость температуры от координат, можно предсказать, как быстро будет возрастать (или спадать) температура в этой точке при переходе к следующему моменту времени. Наиболее простое соотношение получается тогда, когда =0, т.е. когда внутреннее тепловыделение отсутствует. При этом, чем больше коэффициент а, тем пропорционально быстрее меняется во времени температура.
    Применительно к пространственным задачам стационарной теплопроводности /=0 и при =0 уравнение Фурье приобретает вид
    = 0; .
    В цилиндрических координатах уравнение (1.15) записывается в виде:
    , (1.16)
    где – радиус вектор;– полярный угол, – аппликата.
    1.1.6.Условия однозначности решения
    Полученное дифференциальное уравнение Фурье описывает явление передачи теплоты теплопроводностью в самом общем виде. Для того, чтобы применить его к конкретному случаю, необходимо знать распределение температур в теле в начальный момент времени (начальные условия). Кроме того, должны быть известны геометрическая форма и размеры тела, физические параметры среды и тела, граничные условия, характеризующие распределение температуры на поверхности тела, или взаимодействие изучаемого тела с окружающей средой.
    Все эти частные особенности совместно с дифференциальным уравнением дают полное математическое описание конкретного процесса теплопроводности и называются условиями однозначности или краевыми условиями,
    Начальные условия необходимы при рассмотрении нестационарных процессов и состоят в задании закона распределения температуры внутри тела в начальный момент времени. В общем случае начальное условие аналитически может быть записано в виде
    При =0 .
    При =0
    Граничные условия, характеризуют взаимодействие рассматриваемого тела с окружающей средой. Задаются несколькими способами.
    Граничные условия первого рода . Задается распределение температуры на поверхности тела для каждого момента времени


    К ним относятся задачи разогрева и охлаждения системы при заданном изменении температуры на границе и т.д.
    Граничные условия второго рода. Задаются величины теплового потока для каждой точки поверхности тела и любого момента времени
    =
    =.
    К ним относятся задачи нагрева системы внешним источником – нагревателем.
    Граничные условия третьего рода. Задается температура окружающей среды и закон теплообмена между поверхностью тела и окружающей средой. Для описания процесса теплообмена между поверхностью тела и средой используется закон Ньютона-Рихмана. Согласно этому закону количество теплоты, отводимое единицей поверхности тела в единицу времени, пропорционально разности температур между поверхностью тела C и окружающей средой (>).
    =(), (1.17)
    где – коэффициент пропорциональности, называемый коэффициентом теплоотдачи, Вт/(м2 оС).
    Коэффициент теплоотдачи характеризует интенсивность теплообмена между поверхностью тела и окружающей средой. Численно он равен количеству теплоты, отдаваемой (или воспринимаемой) единицей поверхности в единицу времени при разности температур между поверхностью тела и окружающей средой в 1 оС.
    Согласно закону сохранения энергии количество теплоты, которое отводится с единицы поверхности в единицу времени вследствие теплоотдачи (1.17), должно равняться количеству теплоты, подводимой к единице поверхности в единицу времени вследствие теплопроводности из внутренних объемов тела (1.9)¸т.е.
    ,
    где n – нормаль к поверхности тела; с – индекс указывает на то, что температура и температурный градиент относятся к поверхности тела при n=0.
    Окончательно граничные условия третьего рода можно записать в виде
    . (1.18)
    Граничные условия четвертого рода . Их задание определяется условиями теплообмена системы тел или тела с окружающей средой по закону теплопроводности. Предполагается, что между телами осуществляется идеальный контакт и температуры соприкасающихся поверхностей одинаковы.
    При этом имеет место равенство тепловых потоков, проходящих через поверхность соприкосновения, т.е.
    . (1.19)

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *