В каком диапазоне длин волн находятся радиоволны?

10 ответов на вопрос “В каком диапазоне длин волн находятся радиоволны?”

  1. karyshev97 Ответить


    Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
    Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
    Давайте ближе познакомимся с теорией радиоволн.
    Радиоволна

    Длина волны(λ) — это расстояние между соседними гребнями волны.
    Амплитуда(а) — максимальное отклонения от среднего значения при колебательном движении.
    Период(T) — время одного полного колебательного движения
    Частота(v) — количество полных периодов в секунду
    Существует формула, позволяющая определять длину волны по частоте:

    Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)
    «УКВ», «ДВ», «СВ»
    Сверхдлинные волны — v = 3—30 кГц (λ = 10—100 км).
    Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
    Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.
    Длинные волны(ДВ) v = 150—450 кГц (λ = 2000—670 м).

    Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.
    Средние волны (СВ) v = 500—1600 кГц (λ = 600—190 м).

    Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.
    Короткие волны (КВ) v= 3—30 МГц (λ = 100—10 м).

    Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.
    Ультракороткие Волны(УКВ) v = 30 МГц — 300 МГц (λ = 10—1 м).

    Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
    Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:

    Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.
    Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц — 3 ГГц (λ = 1—0,1 м).
    Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
    Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
    Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.
    Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц — 30 ГГц (λ = 0,1—0,01 м).
    Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.
    AM — FM
    Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:
    AM — амплитудная модуляция

    Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
    АМ — первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.
    FM — частотная модуляция

    Это изменение несущей частоты под воздействие кодирующего колебания.
    Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.
    На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.
    Еще термины
    Интерференция — в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
    Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.

    Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».
    Дифракция — явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
    Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
    Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.
    PS:
    Надеюсь, информация описанная мной будет полезна и принесет некоторое понимание по данной теме.

  2. Wise__Man Ответить

    Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.
    В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.
    Как распространяются радиоволны
    Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
    Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
    Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.
    Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.
    Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой. Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.
    Распространение длинных и коротких волн [2].

    Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.
    Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.
    Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.
    Отражательные слои ионосферы и распространение коротких волн
    в зависимости от частоты и времени суток [1].

    Распространение коротких и ультракоротких волн [2].

    Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ
    волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.
    Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно
    послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны). Возможность направленного излучения волн позволяет повысить эффективность системы связи.
    Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных
    направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящихся не в створе луча.
    При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.
    Параболические направленные антенны [1].

    Необходимо отметить, что с уменьшением длины волны возрастает их затухание и поглощение в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, сильно ограничивающей дальность связи.
    Мы выяснили, что волны радиодиапазона обладают различными свойствами распространения, и каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества.
    Иллюстрации: Britannica online, Britannica.com Inc., http://www.britannica.com/
    Диченко А.А., Фирма “Виол”, Узбекистан; http://www.viol.uz

  3. int86 Ответить

    Радиочастоты — частоты или полосы частот в диапазоне от 3 Гц до 3000 ГГц, которым присвоены условные наименования. Этот диапазон соответствует частоте переменного тока электрических сигналов для вырабатывания и обнаружения радиоволн. Так как большая часть диапазона лежит за границами волн, которые могут быть получены при механической вибрации, радиочастоты обычно относятся к электромагнитным колебаниям.
    Закон РФ «О связи» устанавливает следующие понятия, относящиеся к радиочастотам:
    радиочастотный спектр — совокупность радиочастот в установленных Международным союзом электросвязи пределах, которые могут быть использованы для функционирования радиоэлектронных средств или высокочастотных устройств;
    радиочастота — частота электромагнитных колебаний, устанавливаемая для обозначения единичной составляющей радиочастотного спектра;
    распределение полос радиочастот — определение предназначения полос радиочастот посредством записей в Таблице распределения полос радиочастот между радиослужбами Российской Федерации, на основании которых выдается разрешение на использование конкретной полосы радиочастот, а также устанавливаются условия такого использования.
    Использование диапазонов по радиослужбам регламентируется Регламентом радиосвязи Российской Федерации и международными соглашениями.
    По регламенту международного союза электросвязи радиоволны разделены на диапазоны от 0.3*10N Гц до 3*10N Гц, где N — номер диапазона. Российский ГОСТ 24375-80 почти полностью повторяет эту классификацию.
    Обозн-е МСЭ
    Длины волн
    Название волн
    Диапазон частот
    Название частот
    Энергия фотона, эВ, {\displaystyle E=h\nu }
    Применение
    ELF
    100 Мм — 10 Мм
    Декамегаметровые
    3—30 Гц
    Крайне низкие (КНЧ)
    12,4 фэВ — 124 фэВ
    Связь с подводными лодками, геофизические исследования
    SLF
    10 Мм — 1 Мм
    Мегаметровые
    30—300 Гц
    Сверхнизкие (СНЧ)
    124 фэВ — 1,24 пэВ
    Связь с подводными лодками, геофизические исследования
    ULF
    1000 км — 100 км
    Гектокилометровые
    300—3000 Гц
    Инфранизкие (ИНЧ)
    1,24 пэВ — 12,4 пэВ
    Связь с подводными лодками
    VLF
    100 км — 10 км
    Мириаметровые
    3—30 кГц
    Очень низкие (ОНЧ)
    12,4 пэВ — 124 пэВ
    Служба точного времени, радиосвязь с подводными лодками
    LF
    10 км — 1 км
    Километровые
    30—300 кГц
    Низкие (НЧ)
    124 пэВ — 1,24 нэВ
    Радиовещание, радиосвязь земной волной, навигация
    MF
    1000 м — 100 м
    Гектометровые
    300—3000 кГц
    Средние (СЧ)
    1,24 нэВ — 12,4 нэВ
    Радиовещание и радиосвязь земной волной и ионосферная
    HF
    100 м — 10 м
    Декаметровые
    3—30 МГц
    Высокие (ВЧ)
    12,4 нэВ — 124 нэВ
    Радиовещание и радиосвязь ионосферная, загоризонтная радиолокация, рации
    VHF
    10 м — 1 м
    Метровые волны
    30—300 МГц
    Очень высокие (ОВЧ)
    124 нэВ — 1,24 мкэВ
    Телевидение, радиовещание, радиосвязь тропосферная и прямой волной, рации
    UHF
    1000 мм — 100 мм
    Дециметровые
    300—3000 МГц
    Ультравысокие (УВЧ)
    1,24 мкэВ — 12,4 мкэВ
    Телевидение, радиосвязь тропосферная и прямой волной, мобильные телефоны, рации, УВЧ-терапия,
    микроволновые печи, спутниковая навигация.
    SHF
    100 мм — 10 мм
    Сантиметровые
    3—30 ГГц
    Сверхвысокие (СВЧ)
    12,4 мкэВ — 124 мкэВ
    Радиолокация, интернет, спутниковое телевещание, спутниковая- и радиосвязь прямой волной, беспроводные компьютерные сети.
    EHF
    10 мм — 1 мм
    Миллиметровые
    30—300 ГГц
    Крайне высокие (КВЧ)
    124 мкэВ — 1,24 мэВ
    Радиоастрономия, высокоскоростная радиорелейная связь, радиолокация (метеорологическая, управление вооружением), медицина, спутниковая радиосвязь.
    THF
    1 мм — 0,1 мм
    Децимиллиметровые
    300—3000 ГГц
    Гипервысокие частоты, длинноволновая область инфракрасного излучения
    1,24 мэВ — 12,4 мэВ
    Экспериментальная «терагерцовая камера», регистрирующая изображение в длинноволновом ИК (которое излучается теплокровными организмами, но, в отличие от более коротковолнового ИК, не задерживается диэлектрическими материалами).
    Классификация ГОСТ 24375-80 не получила широкого распространения и в ряде случаев вступает в противоречие с национальными стандартами (ГОСТ) в области радиоэлектроники. Традиционные обозначения радиочастотных диапазонов на Западе сложились в ходе Второй мировой войны. В настоящее время они закреплены в США стандартом IEEE, а также международным стандартом ITU.
    На практике под низкочастотным диапазоном часто подразумевают диапазон звуковых частот, под высокочастотным — весь радиодиапазон, от 30 кГц и выше, в том числе, диапазон ВЧ. В отечественной литературе диапазоном СВЧ в широком смысле иногда называют диапазоны УВЧ, СВЧ и КВЧ (от 0.3 до 300 ГГц), на Западе этому соответствует широко распространенный термин микроволны.
    Также в отечественной учебной и научной литературе сложилась классификация диапазонов, согласно которой мириаметровые волны называют сверхдлинными волнами (СДВ), километровые — длинными волнами (ДВ), гектометровые — средними волнами (СВ), декаметровые — короткими волнами (КВ), а все остальные, с длинами волн короче 10 м, относят к ультракоротким волнам (УКВ).

    Классификация по способу распространения.

    Прямые волны — радиоволны, распространяющиеся в свободном пространстве от одного объекта к другому, например, от одного космического аппарата к другому, в некоторых случаях, от земной станции к космическому аппарату и между атмосферными аппаратами или станциями. Для этих волн влиянием атмосферы, посторонних объектов и Земли можно пренебречь.
    Земные или поверхностные — радиоволны, распространяющиеся вдоль сферической поверхности Земли и частично огибающие ее вследствие явления дифракции. Способность волны огибать встречаемые препятствия и дифрагировать вокруг них, как известно, определяется соотношением между длиной волны и размерами препятствий. Чем короче длина волны, тем слабее проявляется дифракция. По этой причине волны диапазонов УВЧ и выше очень слабо дифрагируют вокруг поверхности земного шара и дальность их распространения в первом приближении определяется расстоянием прямой видимости (прямые волны).
    Тропосферные — радиоволны диапазонов ОВЧ и УВЧ, распространяющиеся за счет рассеяния на неоднородностях тропосферы на расстояние до 1000 км.
    Ионосферные или пространственные — радиоволны длиннее 10 м, распространяющиеся вокруг земного шара на сколь угодно большие расстояния за счет однократного или многократного отражения от ионосферы и поверхности Земли.
    Направляемые — радиоволны, распространяющиеся в направляющих системах (радиоволноводах)

    Примеры.

    Название
    Полоса частот
    Длины волн
    Энергия фотона, эВ, {\displaystyle E=h\nu }
    Диапазон средних волн (MW)
    530—1610 кГц
    565,65—186,21 м
    2,19—6,66 нэВ
    Диапазон коротких волн
    5,9—26,1 МГц
    50,8—11,49 м
    24,4—107,9 нэВ
    Гражданский диапазон
    26,965—27,405 МГц
    11,118—10,940 м
    111,5—113,3 нэВ
    Телевизионные каналы: с 1 по 5
    48—100 МГц
    6,25—3,00 м
    198,5—413,6 нэВ
    Кабельное телевидение
    100—174 МГц
    Телевизионные каналы: с 6 по 12
    174—230 МГц
    1,72—1,30 м
    719,6—951,2 нэВ
    Кабельное телевидение
    230—470 МГц
    Телевизионные каналы: с 21 по 39
    470—622 МГц
    6,38—4,82 дм
    1,94—2,57 мкэВ
    Диапазон ультракоротких волн (UKW)
    62—108 МГц (кроме 76—90 МГц в Японии)
    1 м
    256,42—446,65 нэВ (кроме 314,31—372,21 нэВ)
    ISM-диапазон
    Диапазоны военных частот
    29.50—31.75 МГц
    Диапазоны частот гражданской авиации
    108—136 МГц
    Морские и речные диапазоны
    Примеры выделенных радиодиапазонов.

    Диапазоны радиочастот в гражданской радиосвязи.

    В России для гражданской радиосвязи выделены три диапазона частот:
    Название
    Полоса частот
    Описание
    «11-метровый», Си-Би, Citizens’ Band — гражданский диапазон
    27 МГц
    С разрешённой выходной мощностью передатчика до 10 Вт
    «70 см», LPD, Low Power Device — маломощные устройства
    433 МГц
    Выделено 69 каналов для носимых радиостанций с выходной мощностью не более 0,01 Вт
    PMR, Personal Mobile Radio — персональные рации
    446 МГц
    Выделено 8 каналов для носимых радиостанций с выходной мощностью не более 0,5 Вт

    Некоторые диапазоны гражданской авиации.

    Полоса частот
    Описание
    2182 кГц
    Аварийная частота, используется только для передачи сигналов SOS (MAYDAY)
    74,8—75,2 МГц
    Маркерные радиомаяки
    108—117,975 МГц
    Радиосистемы навигации и посадки.
    118—135,975 МГц
    УКВ-радиосвязь (командная связь).
    121,5 МГц
    Аварийная частота, используется только для передачи сигналов SOS (MAYDAY)
    328,6—335,4 МГц
    Радиосистемы посадки (глиссадный канал)
    960—1215 МГц
    Радионавигационные системы

    Некоторые

    Полоса частот
    Длины волн
    Описание
    3—30 МГц
    HF, 100—10 м
    Радары береговой охраны, «загоризонтные» РЛС
    50—330 МГц
    VHF, 6—0,9 м
    Обнаружение на больших дальностях, исследования земли
    1—2 ГГц
    L, 30—15 см
    Наблюдение и контроль за воздушным движением
    2—4 ГГц
    S, 15—7,5 см
    Управление воздушным движением, метеорология, морские радары
    12—18 ГГц
    Ku, 2,5—1,67 см
    Картографирование высокого разрешения, спутниковая альтиметрия
    27—40 ГГц
    Ka, 1,11—0,75 см
    Картографирование, управление воздушным движением на коротких дистанциях, специальные радары, управляющие дорожными фотокамерами

  4. Zveromamont Ответить

    СВ. На этих волнах можно разместить без взаим. помех 150 РВ-ных станций. Приходится одну и ту же волну давать несколь. станциям, что приводит к взаим. помехам. Только в случае если станции, работающие на одинак. волнах, расположены на значит. расстоянии одна от другой, то взаим. помехи сказыв. слабо или их вовсе нет. В диапаз. СВ также раб. телеграф. радиостанции: морские, авиационные, военные.
    КВ. На КВ раб. ведомствен. телеграф. и телефон. радиостанции. В диапаз. КВ можно разместить без взаим. помех 3000 РВ-ных станций, а радиотелеграф. станций гораздо больше, т.к. для них треб. более узкая полоса частот. КВ дают огромную дальность действия по сравнению с др. волнами при относит. небольшой мощности передатчиков. Недостатком КВ явл. сильная зависим. их распростр. от времени суток и времени года. В наст. время на КВ раб. множество радиостанций всех стран мира, в частности, РВ-ные и радиолюбительские станции.
    УКВ волны занимают диапазоны метр., дециметр., сантиметр., миллиметр. и децимиллиметр. волн. УКВ, назыв. иначе УВЧ или СВЧ, прим. для связи наземных радиостанций при сравнит. небольших расстояниях. В УКВ диапаз. можно разместить очень много радиостанций без взаим. помех. УКВ можно излучать узким пучком, в определ. направлении, подобно лучам прожектора, что позволило успешно применить их в радиолокации. В наст. время УКВ широко использ. для связи, радиолокации, радионавигации и в др. обл. науки и техники.
    В диапаз. №4 с примен. АМ можно организ. только 3-х канальную ТЛФ радиолинию. В этом диапаз. нельзя организ. высококачествен. передачу даже 1-го канала вещания. Поэтому для этих целей использ. диапаз. волн с более высок. №. Для ТВ вещания №8, для РВ №5 и выше и т.д., а для организ. многоканаль. радиолинии обычно использ. диапаз. УКВ (8 диапаз.и выше). Поскольку РРЛ явл. многоканаль. радиолинией, то и несущие частоты выбирают в диапаз. УКВ.
    Принципы радиосвязи.
    Высокочастот. эл.маг. волна хорошо распростр. в пространстве, а низкочастот. сигналы голоса и музыки нет. Таким образом в радио сигналы голоса и музыки модулируют высокочастот. несущую в несколько сотен кГц, и этот модулирован. высокочастот. сигнал затем передается.
    Модуляция это процесс, при кот. высокочастот. волна использ. для переноса низкочастот. волны.
    На приемнике эта модулирован. высокочастот. волна демодулируется для получ. изначальных сигналов голоса и музыки. Сущест. 3 параметра несущей, которые можно изменять: амплитуда, частота и фаза. И, соответственно модуляции: амплитудная, фазовая, частотная.

    На 1 граф. представл. измен. давления воздуха Р1 около микрофона. На 2 граф. показыв. соответствующее изменение тока I1 в микрофоне. На 3 граф. показано измен. радиочастоты I2, который затем создает эл.маг. волны. Колебания радиочастоты в системах РС служат переносчиком сигнала и назыв. несущими колебаниями. Управление несущими колебаниями по закону передаваемого электрич. сигнала назыв. модуляцией. Получаемые при помощи модуляции радиочастот. колебания, несущие в себе сообщение назыв. модулирован. колебаниями (граф. 3). Модулирован. радиочастот. колебания назыв. радиосигналом. Радиосигнал преобразуется в эл.маг. волны, кот. излучаются передатчиком посредством передающей антенны. Радиоволны распростр. в пространстве и достигают пункта приема. Радиоволны воздейст. на прием. антенну, в результ. чего в радиоприемнике возникает ток радиочастоты I3 (граф. 4), подобный передаваемым колебаниям. Поскольку в место приема попадает очень малая часть излученной передатчиком энергии, ток I3 в сотни млн. раз слабее токов I2 и непосредственно использ. не может. Он должен быть усилен и подвергнут преобразованию. На граф. 5 показана сила тока I4. Этот ток пропускается ч/з телефон или громкоговоритель, в результ. чего он вызывает давление воздуха Р2. Получаются звук. колебания и воспроизвод. переданное сообщение. Обратная модуляция преобразования модулирован. колебаний в исходный электрич. сигнал назыв. детектирование (демодуляция).
    Фидеры и волноводы.
    Электрич. цепь и вспомогат. устройства, с помощью которых энергия радиочаст. канала подводится от радиоПРД к антенне или от антенны к радиоПР, назыв. фи­дером.
    Фидеры – это линии питания, которые передают энергию от генератора к антенне (в передающем режиме) или от антенны к ПР (в режиме приёма). Основ. требования к фидеру сводятся к его электрогерметичности (отсутствию излучения энергии из фидера) и малым тепловым потерям. В передающем режиме волновое сопротивление фидера должно быть согласовано с входным сопротивлением антенны (что обеспечивает в фидере режим бегущей волны) и с выходом ПРД-ка (для max-ой отдачи мощности). В приёмном режиме согласование входа ПР-ка с волновым сопротивлением фидера обеспечивает в последнем режиме бегущей волны, согласование же волнового сопротивления фидера с сопротивлением нагрузки – условие max-ой отдачи мощности в нагрузку ПР-ка. В зависим. от диапаз. радиоволн примен. различные типы фидеров: двух или много-проводные воздушные фидеры; волноводы прямоугольного, круглого или эллиптического сечений; линии с поверхностной волной и др. Конструкция фидера зависит от диапазона передаваемых по нему частот. При передаче эл.маг. энергии по линии стре­мятся уменьш. излучение самой линии. Для этого провода линии располаг. //-но и по возмож­. ближе друг к другу. При этом поля 2-х одинак. по значе­нию, но противоположно направленных токов взаимно компенсируют­ся и излучения энергии в окружающее пространство не происходит. При создании антенны ставится противоположная задача: получение возможно большего излучения. Для этого использ. те же длинные линии, устранив одну из причин, лишающих фидер излу­чающих св-тв. Можно, например, раздвинуть провода линии на не­который ے, в результате чего их поля не будут компенсировать друг друга. На этом основана раб. V-образных и ромбических ан­тенн, излучающие провода кот. располож. под острым ے один к другому, и симметричного вибратора, полу­чающегося при разведении проводов на 180°. Компенсирующее действие одного из проводов фидера можно устранить, исключив его из с-мы. Это приводит к по­луч. несимметрич. виб­ратора. Все антен­ны, использ. этот принцип работы, относятся к классу не­симметрич. антенн. К ним также принадл. Г-образные и Т-образные антенны. Фидер излучает, если соседние участки его двух проводов обтека­ются токами, совпадающими по фазе, поля которых усиливают друг друга. Для этого необходимо создать фазовый сдвиг в половину дли­ны волны, например за счет неизлучающего шлейфа. На таком принципе основаны синфазные антенны. Фидер будет излучать, если расс-ия м/у проводами по неко­торым направлениям приобретают значит. разность хода. Можно так подобрать расс-ие м/у проводами, что по некоторым направлениям произойдет сложение волн от обоих прово­дов. Это использ. в противофазных ан­теннах.
    Волновод – искусствен. или естествен. канал, способный поддерживать распространяющиеся вдоль него волны, поля которых сосредоточены внутри канала или в примыкающей к нему области. Типы волноводов:
    1) Экранированные. Различают экранир. волноводы с хорошо отражающими стенками, к кот. относят волноводы металлические, направляющие эл.маг. волны, а также коаксиальные и многожильные экранирован. кабели, хотя последние обычно относят к линиям передачи (длинным линиям). К экранир. волноводам относят также волноводы акустические с достаточно жёсткими стенками.
    2) Неэкранированные. В открытых (неэкранир.) волноводах локализация поля обычно обусловлена явлением полного внутрен. отражения от границ раздела 2-х сред (в волноводах диэлектрических и простейших световодах) либо от областей с плавно изменяющимися параметрами среды (ионосферный волновод, атмосферный волновод, подводный звук. канал). К открытым волноводам принадл. и с-мы с поверхност. волнами, направляемыми границами раздела сред.
    Основ. св-во волновода – существ. в нём дискретного (при не очень сильном поглощении) набора нормальных волн (мод), распространяющихся со своими фазовыми и групповыми скоростями. Почти все моды облад. дисперсией, т.е. их фазовые скорости зависят от частоты и отлич. от групповых скоростей. В экранир. волноводе фазовые скорости обычно превыш. скорость распространения плоской однородной волны в заполняющей среде (скорость света, скорость звука), эти волны назыв. быстрыми. При неполном экранировании они могут просачиваться сквозь стенки волновода, переизлучаясь в окружающее пространство. Эти волны назыв. утекающими. В открытых волноводах распростр. медленные волны, амплитуды кот. быстро убывают при удалении от направляющего канала.
    Звуковое радиовещание (ЗВ). Возникновение и развитие ЗВ в РФ.
    С-ма ЗВ представл. собой организа­ционно-технич. комплекс, обеспечивающий формирование и пе­редачу звук. информации общего назнач. широкому кругу тер­риториально рассредоточенных абонентов (слушателей).
    Первые опыты по передаче с помощью радио сигналов 3В проводились еще в начале XX столетия. С 1924г. началось регулярное AM звукового вещания и интенсивное строительство РВ станций AM вещания. Первые РВ станции раб. в диапаз. ДВ и использ. амплитудную модуляцию (АМ). Узкая полоса частот и взаимные помехи м/у станциями, использующими один и тот же частотный канал, не позвол. обеспеч.ь прием вещательных программ с высоким качеством. Устранить помехи можно было путем повыш. стабильности частоты РВ станций, сниж. уровней внеполосных излучений и улучш. избирательности ПР-ов. Для повыш. эффективности использования радиочастот. спектра в сетях AM вещания в начале 30-х гг. начал. исследования вопросов создания синхронных сетей 3В, в кот. все передающие станции сети, обслуживающие определ. терр-ию, работают на одной частоте с весьма высокой стабильностью и передают одну и ту же программу. В СССР синхрон. сети в диапаз. средних частот (СЧ) начали создав. в 1950г. Использование синхрон. сетей позволяло примен. в них маломощные ПРД-ки и исключить в темное время суток нелинейные и частотные искажения в зонах интерференции земного и пространст. луча. Заметно повышалась также и надежность вещания. В 1946г. начало развиваться частотно-модулированное (ЧМ) радиовещание в СССР, т.к. в сетях ЧМ вещания обеспечив. более высокое качество приема вещатель. сигналов и более просто решаются вопросы обеспечения их эл.маг. совместимости. В с-мах ЧМ вещания расширялась полоса частот передаваемых вещатель. сигналов. С 40-х гг. в диапаз. МВ (очень высокие частоты – ОВЧ) начинается создание сетей ЧМ вещания. Одним из путей повыш. качества РВ было создание стереофонич. с-м, в кот. достигается большая естественность звучания музыкальных программ. В стереос-мах для передачи по каналу связи формируются сигналы в двух разнесенных в пространстве микрофонах. Необходимая полоса частот канала связи для этих с-м шире, чем для AM вещания и поэтому организация стереовещания началась в сетях ОВЧ-ЧМ вещания. В 1955г. началась опытная передача стереофонич. программ по радио. В 1963г. была внедрена с-ма звукового стереофонич. вещания с полярной модуляцией. В конце 60-х гг. начинается внедрение цифровых методов передачи с помощью импульсно-кодовой модуляции (ИКМ) сигналов вещания по спутниковым трактам распределения программ 3В. В 70-х гг. началось внедрение синхронного вещания и азработка квадрафонических аналоговых с-м вещания. В 80-х гг. началась разработка и экспериментальные исследования с-мы наземного цифрового вещания. С конца XX в. совершенствование с-м вещания идет по пути разработки цифровых с-м, в которых может быть обеспечено весьма высокое качество воспроизведения речи и музыки. Цифровые РВ с-мы позволяют создавать сети вещания с высокой эффективностью использования радиочастотного спектра. В первом десятилетии XXI в. в сетях вещания во многих странах осуществлен переход от аналоговых с-м к цифровым.
    Структурные элементы с-мы ПВ. Узел ПВ (УПВ), радиотрансляционный узел (РТУ). Преимущества с-мы ПВ.
    ПВ – с-ма, сост.из ком­плекса аппаратуры и сооружений, с помощью кот.сигналы ЗВ распред.по проводным сетям и поступ.к слушателям. Основ.структур.элемент с-мы ПВ – УПВ или РТУ. УПВ содер­.комплекс оборуд-я для приема, преобразов., усиления и передачи по проводам программ ЗВ. Оборуд-е узла сост.из станцион.оборуд-я, ли­нейных сооруж. и абонент.устройств (АУ).
    Станц.оборуд-е обеспеч.получ.мощности, необход.для норм.работы всех АУ. Осн.элементами станц.оборуд-я узлов 1-програм.вещания явл.усилители звук.частоты, а узлов 3-хпрограм.вещания – еще и передатчики. К станц. оборуд-ю относ.аппаратура регулирования передаваемых сигналов, контроля, управления, коммутации и элек­тропитания.
    Совокупность линейных сооруж.образ.сеть ПВ или РТС. Она сост.из с-мы 2-хпроводных линий и вспомогат.устр-в, с помощью кот.энергия сигналов ЗВ перед.от усилите­лей и передатчиков к АУ.
    АУ явл.абонент.громкого­в-ли для 1-програм.сетей и 3-хпрограм.громкогов-ли для сетей 3-хпрограм.вещания. 3-хпрограм.громкогов-ль явл.комбинацией абонент.громкогов-ля с приемником высокочаст.сигналов 2-ой и 3-ей программ.
    С-ма ПВ в нашей стране развив.как 1-програм. При разраб. 3-хпрограм.с-мы ПВ прим.организация многопрограм.вещания с частотным раздел.каналов на базе сети 1-програм.ПВ. Одна программа передается сигналами в полосе звук.частот 50-10000Гц. Для передачи 2-х др.программ использ.токи высокой частоты. Многопрограм.ПВ можно организ.в спектре звук.частот или путем переноса спектра в высокочаст.область. В 1-ом случае сигналы программ перед.по многопарной линии в полосе звук.частот, во 2-ом – в многоканаль.с-­ме передачи использ. частотное раздел.каналов. Сущ.с-мы многопрограм. ПВ по телефон.сетям. Также с-му ПВ можно организ.и на базе ТВ-ой распределит.сети. Возможно дальней.развит. сетей ПВ будет основ.на созд.совмещенных с-м, в кот.будут использ.кабельные коммуникации ГТС и проводного ТВ.
    Преимущества с-мы ПВ:
    1)Отсут.по­мех, ухудшающих качество радиоприема в диапаз.ДВ, СВ, KB и MB. Это помехи атмосфер.и промыш.происхожд., помехи от др. станций, работающих в совмещенном частот.канале. В диапаз.МВ существенны помехи, вызван.отра­ж. радиоволн от многоэтажных зданий со стальным или желе­зобетонным каркасом.
    2)Экономические показатели ПВ ↑, чем РВ. Передача энергии сигналов с помощью линий ПВ уменьш.потери энергии. Расход материала на изготовл.АУ ПВ меньше расхода материалов на изготов­л.радиоприемника. Удель.капиталь.затра­ты на строительство усилителя ПВ, меньше удель.капиталь.затрат на строительство передающих радиовещат.центров, а удель.расход электроэнергии меньше аналогичного показателя для индивидуаль. радиоприемника, т.к. КПД оконечных усили­телей ПВ много больше КПД радиовещат.передатчиков.
    3)АУ ПВ проще в обращении, надежнее и дешевле радиоприемника. Расходы абонента ПВ на электропитание АУ незначит.или вообще отсут.
    4)Качество воспроизведения вещатель.программы абонент­.устройством ПВ выше, чем качество воспроиз­ведения массовым радиоприемником.
    5)Кол-во вещатель.программ, передаваемых в пределах заданной терр-ии, ограничено из-за недостатка радиоканалов. Использ.с-м ПВ позвол.увелич. число программ.
    6)С помощью с-мы ПВ легко организовать местное вещание в пределах одного нас.пункта.
    7)С-ма ПВ явл.хорошим средством оповещ. населения о стихийных бедствиях, т.к. она всегда готова к действию.
    Преимущества ПВ привели к тому, что оно продолжает успешно раз­виваться.
    Диапазоны радиоволн. Длина волны. Радиочастоты. Особенности распространения радиоволн различной длины.
    Радиоволны харак-тся длиной волны и частотой колебаний, используемых для их получения. Растоян., на кот. распростр. волна за время одного колебания тока в антенне, назыв. длиной волны.
    λ (длина волны) = с (скорость света 3*108) / f (частота)
    Длина волны зависит от частоты колебаний (или периода колебаний Т) тока в антенне. Чем больше частота тока в антенне, тем меньше длина излучаемых радиоволн, и наоборот. Зная длину волны, нетрудно вычислить частоту тока в антенне.
    f (частота) = с (скорость света) / λ (длина волны)
    В зависим. от длины радиоволн измен. особен. их распростр. и использ., поэтому весь спектр радиоволн разбивают на отдель. диапаз., имеющие неодинаковые св-ва.
    Радиочастоты – частоты или полосы частот в диапазоне 3кГц–3000ГГц, которым присвоены условные наименования. Этот диапазон соответ. частоте перемен. тока электрич. сигналов для вырабатывания и обнаруж. радиоволн. Ра­диоспектр подразд. на 9 диапаз.
    № диап
    Назв. волны
    Дл. волны
    Частота
    Назв. частоты
    Мириаметр. СДВ
    100км…10км
    3кГц…30кГц
    ОНЧ(оч.низ.част.)
    Километр. ДВ
    10км…1км
    30кГц…300кГц
    НЧ
    Гектометр. СВ
    1км…100м
    300кГц…3МГц
    СЧ(сред.)
    Декаметр.КВ
    100м…10м
    3МГц…30МГц
    ВЧ(высок.)
    Метр. УКВ
    10м…1м
    30МГц…300МГц
    ОВЧ(оч.выс.)
    Дециметр. УКВ
    1 м…10см
    300МГц…3ГГц
    УВЧ(ультравыс.)
    Сантиметр. УКВ
    10см…1см
    3ГГц…30ГГц
    СВЧ(сверхвыс.)
    Миллиметр. УКВ
    1см…1мм
    30ГГц…300ГГц
    КВЧ(крайневыс.)
    Децимиллиметр. УКВ
    1мм…0,1мм
    300ГГц…3ТГц
    Радиоволны, излучаемые антенной, распространяются вдоль земной поверхности (поверх. радиоволны) и под углом к горизонту (пространст. радиоволны).
    Распространение мириаметровых и километровых волн (сверх­длинных и длинных) хорошо огибают поверхности, значительно поглощается земной поверхностью. Недостаток: большой уровень атмосферных помех и невозможность размещения в этих диапазонах большого числа каналов связи.
    Распространение гектометровых (средних) волн Ограниченная дальность распространения, увеличивается в ночное время. Недостаток: большой уровень атмосферных и промышленных помех.
    Распространение декаметровых (коротких) волн Сильно погращаются поверхностью земли. Является экономичным способом дельней связи, позволяют осущетвлять связь на большие растояния. Недостаток: наличие замираний и образование зоны молчания.
    Распространение УКВ волн Не отражаются от ионосферы, явления дифракции практически не наблюдается. В нижних слоях атмосферы происходит сильное затухание УКВ (затух. ↑ с ↓ длины волны). Распростаняются значительно дельше прямой видимости
    С ↑ частоты ухудш. дифракция (огибание) радиоволнами препятствий. Хорошо огиб. землю СДВ и ДВ. Дифракция на КВ не играет заметной роли, т.к. эти волны поглощ. раньше, чем станет ощутимой кривизна земли. УКВ ди­фракция практич. не свойст. и они не могут огибать вы­пуклости земной поверх. СВ отлич. боль­шим уровнем атмосфер. и промыш. помех.

  5. gluh64 Ответить

    Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).
    Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
    Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны.
    Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. Кстати, на этом основано применение электромагнитных волн в радиолокации.
    Еще одним полезным свойством электромагнитных волн (впрочем, как и всяких других волн) является их способность огибать тела на своем пути. Но это возможно лишь в том случае, когда размеры тела меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить – вспомните американский самолет-невидимку «Stealth».
    Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.
    Например, поток энергии электромагнитного излучения Солнца на поверхность Земли достигает 1 киловатта на квадратный метр, а поток энергии средневолновой вещательной радиостанции – всего тысячные и даже миллионные доли ватта на квадратный метр.
    Распределение спектра
    Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой.
    Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются.
    Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

  6. teftel1608 Ответить

    ИЗЛУЧЕНИЯ
    31012..3,8 1014
    Гц
    Инфракрасное
    излучение
    100 … 0.78 мкм
    Тепловое излучение
    Пассивная локация, устройства самонаведения, волоконно-оптические системы связи, лазеры, охранные системы.
    3,8 1014…7,8 1014Гц
    Оптическое
    излучение
    0,78 … 0,38 мкм
    Видимый свет
    Оптическая локация, лазерные гироскопы и дальномеры, космические и лазерные системы связи, промышленная резка металла, медицинские лазеры, лазерное оружие, др.
    7,8 1014…3 1016 Гц
    Ультрафиолетовое
    излучение
    0,38 … 0,01 мкм
    Ультрафиолетовое излучениесолнца
    Охранные системы, медицина.
    3 1016… 3 1019Гц
    Рентгеновское
    излучение
    0,01 мкм … 0,00001 мкм
    Рентгеновское излучение солнца, радиоактивных материалов
    Приборы дефектовки металлов,
    медицина, рентгеновские приборы и др.
    В основу деления радиоволн на указанные диапазоны положен десятичный принцип, учитывающий в то же время различия в способах их генерации, приема и особенности распространения волн каждого диапазона.
    В оптическом диапазоне по мере уменьшения длины волны все в большей степени проявляется квантовый характер электромагнитного излучения и все меньше его волновые свойства. Поэтому при наименовании диапазонов обычно говорят о сантиметровых, миллиметровых волнах, но об инфракрасном и оптическомизлучении.
    Вспомним, чем же характеризуются радиоволны?
    Такие характеристики радиоволны, как амплитуда, Нм, Ем, ее длина λ видны из рисунка 5.2.

    Рисунок 5.2 – Вид электромагнитной волны в среде без потерь
    в фиксированный момент времени
    Длина волны связана с ее частотой простым соотношением
    (5.1)
    где с=3∙108 м/с – скорость распространения электромагнитных волн в свободном пространстве;
    f– частота радиоволны, Гц.
    Иначе, длина волны – это путь, проходимый волной за период ее колебания. Скорость распространения радиоволны зависит от свойств среды, в которой распространяется волна, т. е. ее диэлектрической Ɛ и магнитной µ проницаемостей:

    .(5.2)
    Если распространение волны происходит в среде с потерями, то амплитуда ее убывает по закону
    .
    где z – путь, пройденный волной в среде с потерями;
    α–икоэффициент затухания волны в конкретной среде.
    Уравнение волны для среды с потерями запишется
    . (5.3)
    где к=/ λ – волновое число.
    Другие параметры волны, например, ее поляризация, постоянная распространения, фаза, фронт и луч волны были подробно рассмотрены в части 1 главы 3 данного пособия.
    Говоря о свободно распространяющихся радиоволнах, отметим, что распределение поля в пространстве определяется только диаграммами направленности антенн, параметрами суши или моря и атмосферы Земли.



    Рисунок 5.3 – Способы (механизмы) распространения радиоволн
    В большинстве практических случаев передающий и приемный пункты радиолинии располагаются либо на Земле, либо близко от ее поверхности. Электромагнитные волны, излучаемые передающей антенной, приходят в приемный пункт разными путями, т. е. Земля и окружающая ее атмосфера существенно влияют на характер распространения радиоволн.
    Приведем классификацию способов (механизмов) распространения радиоволн в окружающем пространстве.
    Волны, распространяющиеся между передающим и приемным пунктами по прямолинейной траектории, называются прямыми, а распространяющиеся в непосредственной близости от поверхности Земли и частично огибающие выпуклость земного шара вследствие явления дифракции получили название поверхностных или земных волн.
    Например, радиосвязь между космическими объектами, высоколетящими самолетами, радиолокационное наблюдение за целями осуществляются прямыми радиоволнами (рис. 5.3, а). Распространение электромагнитной энергии прямыми волнами характерно для радиоволн всех диапазонов.
    Поверхностные волны также имеют место при распространении радиоволн всех диапазонов. Однако практическое значение поверхностные волны приобретают для длинноволновой части радиодиапазона (рис. 5.3, б).
    Радиоволны, распространяющиеся на большие расстояния (несколько тысяч километров) и способные огибать земной шар в результате отражений от ионизированных слоев атмосферы и поверхности Земли, называются пространственными волнами
    (
    рис. 5.3, в).
    Кроме того, к приемному пункту радиолинии могут приходить радиоволны (в диапазоне дециметровых, метровых волн) с расстояний примерно 1 000 км за счет рассеяния в нижнем слое атмосферы, называемом тропосферой. Такие волны получили название тропосферных волн(рис.5.3, г).

  7. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *