Чем отличается днк эукариот от днк прокариот?

18 ответов на вопрос “Чем отличается днк эукариот от днк прокариот?”

  1. Forcebrand Ответить

    Все живые организмы на Земле делятся на две группы: прокариот и эукариот.
    Эукариоты – это растения, животные и грибы.
    Прокариоты – это бактерии (в том числе цианобактерии, они же “сине-зеленые водоросли”).

    Главное отличие

    У прокариот нет ядра, кольцевая ДНК (кольцевая хромосома) расположена прямо в цитоплазме (этот участок цитоплазмы называется нуклеоид).
    У эукариот есть оформленное ядро (наследственная информация [ДНК] отделена от цитоплазмы ядерной оболочкой).

    Дополнительные отличия

    1) Раз у прокариот нет ядра, то нет и митоза/мейоза. Бактерии размножаются делением надвое (“прямым” делением, в отличие от “непрямого” – митоза).
    2) У прокариот рибосомы мелкие (70S), а у эукариот – крупные (80S).
    3) У эукариот
    имеется множество органоидов: митохондрии, эндоплазматическая сеть, клеточный центр, и т.д.
    Вместо мембранных органоидов у прокариот есть мезосомы – выросты плазматической мембраны, похожие на кристы митохондрий.
    4) Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.

    Сходство

    Клетки всех живых организмов (всех царств живой природы) содержат плазматическую мембрану, цитоплазму и рибосомы.

  2. BrainTor Ответить

    У эукариот ДНК находится в хромосомах. В клетках человека 46 хромосом (хроматид), которые организованы в 23 пары. Каждая хромосома эукариотической клетки содержит одну очень большую молекулу двухцепочечной ДНК, несущую набор генов. Совокупность генов клетки составляет ее геном. Гены – это участки ДНК, которые кодируют полипептидные цепи и РНК.
    Молекулы ДНК в 46 хромосомах человека не одинаковы по размеру. Средняя длина хромосомы составляет 130 млн. пар оснований и имеет длину 5 см. Понятно, что уместить такую ДНК в ядре возможно только путем ее определенной упаковки. При образовании третичной структуры ДНК человека происходит в среднем уменьшение ее размеров в 100 тысяч раз.
    Упаковка ДНК в эукариотических хромосомах отличается от ее упаковки в прокариотических хромосомах. Эукариотические ДНК имеют не кольцевую, а линейную двухцепочечную структуру. Кроме того, третичная структура ДНК у эукариотических клеток отличается тем, что многократная спирализация ДНК сопровождается образованием комплексов с белками. ДНК эукариот содержит экзоны – участки, кодирующие полипептидные цепи, и интроны – некодирующие участки (выполняют регуляторную функцию).
    Эукариотические хромосомы состоят из хроматиновых волокон. Эукариотические хромосомы выглядят как резко очерченные структуры только непосредственно до и во время митоза- процесса деления ядра в соматических клетках. В покоящихся, неделящихся эукариотических клетках хромосомный материал, называемый хроматином, выглядит нечетко и как бы беспорядочно распределен по всему ядру. Однако, когда клетка готовится к делению, хроматин уплотняется и собирается в хромосомы.
    Хроматин состоит из очень тонких волокон, которые содержат ~ 60 % белка, ~ 35 % ДНК, и, вероятно, ~ 5 % РНК. Хроматиновые волокна в хромосоме свернуты и образуют множество узелков и петель. ДНК в хроматине прочно связана с белками-гистонами, функция которых состоит в упаковке и упорядочении ДНК в структурные единицы – нуклеосомы. В хроматине содержится также ряд негистоновых белков. Хроматиновые волокна напоминают по внешнему виду нитки бус. Бусинки – это нуклеосомы.
    Нуклеосома состоит из белков-гистонов. Каждая нуклеосома содержит 8 молекул гистонов – по 2 молекулы Н2А. Н2В, Н3, Н4. Двухцепочечная ДНК обвивает нуклеосому дважды (рис. 3).

    А Б
    Рис. 3 Схематическое изображение нуклеосомы (А) и хроматина (Б)
    Нить ДНК намотана на гистоновое ядро нуклеосомы снаружи. В промежутках между нуклеосомами расположена соединительная нить ДНК, с которой связывается гистон Н1. Таким образом, нуклеосомы – это структурные единицы хроматина, выполняют функцию плотной упаковки ДНК. ДНК укорачивается за счет того, что она обвивает гистоны. Хроматин связан также с негистоновыми белками ядра, которые образуют ядерный матрикс (рис. 4).

    Рис. 4 Упаковка ДНК в хромосоме
    Эукариотические клетки содержат также цитоплазматическую ДНК.
    Кроме ДНК в ядре у эукариот есть ДНК в митохондриях. Хлоропласты фотосинтезирующих клеток также содержат ДНК. Обычно ДНК в цитоплазме составляет » 0, 1 % всей клеточной ДНК.
    Митохондриальные ДНК – это двухцепочечные кольцевые молекулы малого размера. Молекулы ДНК в хлоропластах значительно больше, чем в митохондриях. ДНК митохондрий и хлоропластов не связана с гистонами.

  3. Siragelv Ответить

    Плазмиды – это автономные кольцевые молекулы двунитевой ДНК с молекулярной массой меньше, чем у нуклеоида (размеры варьируют от 1,5 до 200 mD=103-106 пар нуклеотидов), способные к саморепликации.
    Спонтанная/индуцированная утрата плазмид называется элиминацией.
    Особенности:
    v саморегулируемая репликация;
    v явление поверхностного исключения (не позволяют проникать в клетку, уже содержащую плазмиду, другой родственной ей плазмиде);
    v явление несовместимости (две близкородственные плазмиды не могут стабильно сосуществовать в одной  клетке);
    v контроль числа копий плазмиды на хромосому клетки (реализуется собственными плазмидными генами репликации);
    v контроль стабильного сохранения плазмид в клетке;
    v контроль равномерного распределения дочерних плазмид в дочерние бактериальные клетки;
    v способность к самопереносу у конъюгативных плазмид;
    v способность к мобилизации на перенос у неконъюгативных плазмид (способность к передаче только в присутствии трансмиссивных плазмид, используя их аппарат конъюгации);
    v способность наделять клетку дополнительными важными для нее биологическими свойствами, способствующими выживанию бактерий.
    Функции:
    v регуляторная (компенсируют нарушения метаболизма ДНК бактериальной клетки, регулируют саморепликацию, контролируют самоперенос или мобилизацию на самоперенос и другие функции самой плазмиды);
    v кодирующая (внесение в бактериальную клетку новой информации, наделяя ее дополнительными свойствами).
    Классификация плазмид:
    O По молекулярной массе:
    v крупные (1-2 на клетку);
    v мелкие (до 30).
    O По способности передаваться от одной клетки к другой:
    v конъюгативные (трансмиссивные);
    v неконъюгативные (мобилизуемые).
    O По совместимости в одной клетке:
    v совместимые;
    v несовместимые (близкородственные).
    O По фенотипическому проявлению признака:
    v криптические (скрытые);
    v некриптические.
    O По детерминированному признаку:
    v R-плазмиды (от англ. resistance – противодействие, содержат гены – r-гены, ответственные за устойчивость к лекарственным препаратам).
    Обусловленная R -плазмидами лекарственная устойчивость связана:
    § с изменением проницаемости поверхностных структур бактериальной клетки для антибиотиков;
    § с синтезом ферментов, разрушающих или модифицирующих антибиотики (?-лактамазы, ацетилирование хлорамфеникола).
    v Плазмиды патогенности – Ent и Hly (содержат tox-гены, ответственные за синтез токсинов – энтеротоксинов и гемолизинов соответственно);
    v Бактериоциногенные плазмиды (например, Col-плазмида у E. coli содержат гены, ответственные за синтез бактериоцинов).
    Бактериоцины – антибиотические вещества белковой природы, синтезируемые бактериями и подавляющие рост и размножение близкородственных микроорганизмов, не лизирую последних. Синтез бактерицинов является для клетки-продуцента летальным, но потенциальные бактерии-продуценты, не продуцирующие их в данный момент, устойчивы к воздействию бактериоцинов. Обозначение бактериоцина определяется видовым название микроорганизма-продуцента:
    Бактерия-продуцент
    Бактериоцин
    E. coli
    колицин
    St. aureus
    стафилоцин
    Y. pestis
    пестицин
    Kl. pneumoniae
    пневмоцин
    В отличии от других плазмид, факторы бактериоциногенности реже интегрируются в хромосому, редко элиминируются, многие не обладают конъюгативностью.
    v F-плазмида (половой фактор/фактор фертильности, содержит гены, контролирующие конъюгацию).
    Варианты F -плазмид:
    Состояние F-плазмиды в клетке
    Обозначение бактериалной клетки
    в автономном состоянии
    F+-донор
    в интегрированном в хромосому
    Hfr-донор
    в автономном состоянии с фрагментами хромосомной ДНК
    F’-донор
    отсутствует в клетке
    F–-реципиент
    v Плазмиды биодеградации (несут информацию об утилизации некоторых органических соединений, которые бактерии используют в качестве источников углеводов и энергии, например урологические штаммы E. coli содержат плазмиду гидролизации мочевины).
    Мигрирующие генетические элементы – отдельные участки ДНК, способные осуществлять собственный перенос (транспозицию) внутри генома. Их транспозиция связана со способностью кодировать специфический фермент рекомбинации – транспозазу. В настоящее время к мигрирующим элементам относят: Is-элементы, транспозоны (Tn), конъюгативные транспозоны (CTn), интегроны (In), генные острова (ГО) и бактериофаги.
    Транспозоны ( Tn -элементы) – нуклеотидные посдедовательности, включающие 2000-20500 пар нуклеотидов. Состав – фрагмент ДНК (специфический, несущий гены) и два концевых Is-элемента. Могут находиться в свободном состоянии в виде кольцевой молекулы.
    Особенности:
    v не способны к самостоятельной репликации (воспроизведению), только в составе хромосом;
    v несут генетическую информацию, необходимую для транспозиции (перемещение);
    v каждый транспозон содержит гены, привносящие важные для бактерий характеристики (устойчивость к антибиотикам, токсинообразование и т.д.);
    v содержат гены, определяющие фенотипические признаки (легче выявить).
    Функции:
    v способны к перемещению с одного репликона (хромосомная ДНК) на другой (плазмиды, хромосома другой бактерии, бактериофаг) и наоборот: при включении в ДНК вызывают дупликации, а при перемещении – делеции и инверсии;
    v регуляторная;
    v кодирующая.
    Is -элементы (от англ. insertion – вставка, sequenc – последовательность) – вставочные (инсерционные) последовательности,величиной до 1500 (800-1400) пар оснований.
    Особенности:
    v самостоятельно не реплицируются;
    v не кодируют распознаваемых фенотипических признаков;
    v содержат гены, обеспечивающие их перемещение из одного участка ДНК в другой (транспозицию).
    Функции:
    v регуляция активности генов бактериальной клетки;
    v индукция мутаций типа делеции (выпадение нуклеотидов) или инверсии (поворот участка ДНК на 1800) при перемещении и дупликации (повтор участка ДНК) при встраивании в хромосому;
    v координация взаимодействий плазмид, транспозонов и профагов (между собой и бактериальной хромосомой).
    Бактериофаги (умеренные и дефектные) – мигрирующие генетические элементы, могут захватывать участки ДНК и переносить от одной бактериальной клетки к другой, вызывая ее лизогенизацию (приобретение новых свойств).

  4. Cмит в Трусах Ответить

    1. У прокариот отсутствуют мембраны, ограничивающие органеллы бактериальной клетки(ядро. митохондрии, рибосомы) от цитоплазмы. Из мембран имеется только цитоплазматическая мембрана.
    2. Ядро прокариот (нуклеоид) фибриальной структуры, ядерная оболочка отсутствует.
    3. У прокариот отсутствуют митохондрии, хлоропласты, КГ. ЭПС.
    4. Окислительно-восстановительные фрагменты локализованы в мезосомах (производных цитоплазматической мембраны)
    5. У прокариот отсутствует митоз, размножаются путем бинарного деления.
    6. Прокариоты имеют гаплоидный геном.
    7. Отсутствует клеточный центр
    8. Внутриклеточные перемещения цитоплазмы и амебоидное движение для прокариот нетипичны.
    Специфические черты М/О
    1. Малые размеры, масса, объем и относительная простота строения.
    2. Чрезвычайно высокие темпы размножения
    3. Большое разнообразие способов получения энергии и путём обмена веществ, широкий спектр конечных продуктов метаболизма.
    4. Способность к биодеструкции практически всех естественных и искусственных веществ.
    5. Чрезвычайно высокая степень адоптации как результат высоких темпов изменчивости.
    6. Массовая популяция и повсеместное распространение.
    6. Структура и функции поверхностных образований бактериальной клетки. Капсула. Методы выяв­ления.
    Бактериальная клетка окружена внешней оболочкой (рис. 3.2), которая состоит из капсулы, капсулоподобной оболочки и клеточной стенки. От их состава зависит способность клетки воспринимать анилиновые красители (тинкториальные свойства). Капсулы в зависимости от степени выраженности подразделяют на микро- и мак­рокапсулы. Первые обнаруживаются только при электронно-микро­скопическом исследовании в виде микрофибрилл из мукополисаха-ридов, которые тесно прилегают к клеточной стенке. Макрокапсулы представляют собой выраженный слизистый слой, снаружи покрыва ющий клеточную стенку. Он состоит из полисахаридов и редко из полипептидов (например, у сибиреязвенных бактерий). Как правило макрокапсулу образуют немногие виды патогенных бактерий (пнев мококки и др.) при неблагоприятных условиях среды, например в организме животных или человека. Однако у некоторых видов (клебсиеллы пневмонии) макрокапсула обнаруживается постоянно.
    Капсулоподобная оболочка — липидо-полисахаридное образование, сравнительно непрочно связанное с поверхнос­тью клетки, вследствие чего в отличие от капсулы может выделяться в окружающую среду.
    Капсула или капсулоподобная оболочка может быть покрыта экзополисахаридами, которые образуются из углеводов окружающей среды под действием бактериальных ферментов. При этом глюканы и леваны обеспечивают прилипание бактерий к разным поверхностям, часто гладким.
    Капсула несет различные функции:
    1. Защитная, предохраняя клетку от неблагоприятных условий среды обитания,
    2. адгезивная, способствуя «прилипанию» к поверхносш (рецепюрам) клетки хозяина.
    3. Часто патогенные и антигенные свойства. Непатогенные бактерии также могут образовывать макрокапсулу, выполняющую, по-видимому, только за­щитную функцию.
    7. Структура и функции клеточной стенки грамположительных и грамотрицательных бактерий. Фор­мы бактерий с дефектами клеточной стенки.
    Клеточная стенка (КС)-биогетерополимер сложною химического состава, покрывающий всю поверхность прокариотической клетки.
    Основа клеточной стенки- пептидогликан, обеспечивающий ригидность и эластичность КС. Структура пептидогликана паралелльные полисахаридные(гликановые ) цепи состоящие из чередующихся звеньев [\’-ацетил1 лнжозаминаи N-ацетилмурамовой к-тыС каждым остатком N-ацетидмурамовой к-ты ковалентно связан трипептид
    Различии между Грам+ и Грам- бактериями.
    Группа
    1’рамм -*-_^____________________
    Грамм –
    Окраска по Граму
    фиолетовые
    розовые
    Толщина КС
    20-60 нм
    10-20 нм
    % содержание липидов
    1,6%
    22,6%
    Структура пептидогликана
    Пептиды пептидогликанов связаны через пептидильный мостик из 5 , остатков глицина
    Ацетилмурамовые к-ты каждой гликановой цепи связаны через два однотипных тетрапептида
    % содержание пептидогликана
    40-90%
    Многослойный
    5-10%
    Однослойный
    Наличие тейхоевых кислот
    Имеются
    Отсутствуют
    Особеность выделения ферментов
    Ферменты выделяются непоследственно в окружающую
    среду
    Ферменты выделяются в периплазматическое пространство, находящееся между КС и ЦМ
    Представители
    Все болезнетворные кокки, кроме гонокка и менингококка, бациллы, иклострпдии
    Энтеробактерии, вибрионы, трепонемы
    Функции КС:
    1. Придает клетке определенную форму.
    2. Защищает её от воздействия окружающей среды
    3. Несет на поверхности разнообразные рецепторы, к которым прикрепляются некоторые фаги, колишины и химические соединения.
    4. Через КС в клетку поступают питательные вещества и выделяются продукты обмена
    5. Сдерживает высокое внутриклеточное осмотическое давление.
    КС грам- бакт. представлена трехслойной внешней мембраной (пептидогликан + липополисахарид + липопротеиды). Некоторые белки (норины), пронизывая внешнююмембрану,образуют поры, через которую проходят гидрофильные в-ва с низкой молекулярной массой.
    Пептидогликан- мишень действия некоторых антибиотиков (пенициллина) и ферментов (лизоцима). Пенициллин нарушает образование тетрапепдидных связей, лизоцим разрушает гликозидные связи между мурамовой к-той и ацетилглюкозамином.
    При действии пенициллина на на растущую бак. культуру образуются безоболочечные формы бактерий:
    1 Пртопласты- полностью лишены КС.
    2.Сферопласты- частично лишены КС
    И протопласты, и сферопласты подвергаются плазмолизу в изотонической среде, н в пшерюнической среде проявляютслабую метаболическую активность, ! утрачивают способность к размножению.
    3.L- формы- полностью или частично лишены КС, сохраняют способность к размножению.
    а) стабильные- способны к реверсии в исходный вид.
    б) нестабильный-не способны к реверсии
    8. Цитоппазматические структуры бактерий, функции, методы выявления. Кислотоустойчивые мик­робы. Метод окраски.
    Жгутики. На поверхности ряда бактериальных клеток распо­лагаются жгутики (рис. 3.5). В их состав входит белок флагелин, который по своей структуре относится к сократимым белкам типа Миозина. Жгутики прикрепляются к базальному телу, состоящему из системы нескольких дисков, вмонтированных в цитоплазматическую мембрану и КС. Количество и расположение жгутиков у разных бак­терий неодинаково.

  5. Buzaghma Ответить

    Эукариоты-это клетки, которые сождержат едро, а у прокариотов ядро отсутствует. Важнейшая, основополагающая особенность эукариотических клеток связана с расположением генетического аппарата в клетке. Генетический аппарат всех эукариот находится в ядре и защищён ядерной оболочкой (по-гречески «эукариот» значит имеющий ядро) . ДНК эукариот линейная (у прокариот ДНК кольцевая и находится в особой области клетки — нуклеоиде, который не отделён мембраной от остальной цитоплазмы) . Она связана с белками-гистонами и другими белками хромосом, которых нет у бактерий.
    В жизненном цикле эукариот обычно присутствуют две ядерные фазы (гаплофаза и диплофаза) . Первая фаза характеризуется гаплоидным (одинарным) набором хромосом, далее, сливаясь, две гаплоидные клетки (или два ядра) образуют диплоидную клетку (ядро) , содержащую двойной (диплоидный) набор хромосом. Иногда при следующем делении, а чаще спустя несколько делений клетка вновь становится гаплоидной. Такой жизненный цикл и в целом диплоидность для прокариот не характерны.
    Третье, пожалуй, самое интересное отличие, — это наличие у эукариотических клеток особых органелл, имеющих свой генетический аппарат, размножающихся делением и окружённых мембраной. Эти органеллы — митохондрии и пластиды. По своему строению и жизнедеятельности они поразительно похожи на бактерий. Это обстоятельство натолкнуло современных учёных на мысль, что подобные организмы являются потомками бактерий, вступившими в симбиотические отношения с эукариотами. Прокариоты характеризуются малым количеством органелл, и ни одна из них не окружена двойной мембраной. В клетках прокариот нет эндоплазматического ретикулума, аппарата Гольджи, лизосом.
    Ещё одно важное различие между прокариотами и эукариотами — наличие у эукариот эндоцитоза, в том числе у многих групп — фагоцитоза. Фагоцитозом (дословно «поедание клеткой» ) называют способность эукариотических клеток захватывать, заключая в мембранный пузырёк, и переваривать самые разные твёрдые частицы. Этот процесс обеспечивает в организме важную защитную функцию. Впервые он был открыт И. И. Мечниковым у морских звезд. Появление фагоцитоза у эукариот скорее всего связано со средними размерами (далее о размерных различиях написано подробнее) . Размеры прокариотических клеток несоизмеримо меньше, и поэтому в процессе эволюционного развития эукариот у них возникла проблема снабжения организма большим количеством пищи. Как следствие среди эукариот появляются первые настоящие, подвижные хищники.

  6. Opigar Ответить


    Рис. 3.35. Обобщенная схема процесса экспрессии генетической информации
    в эукариотической клетке
    Кроме указанных различий на каждом этапе экспрессии генетической информации можно отметить некоторые особенности течения этих процессов у про- и эукариот.
    Транскрипция у про- и эукариот. Транскрипция — это синтез РНК на матрице ДНК. У прокариот синтез всех трех видов РНК катализируется одним сложным белковым комплексом — РНК-полимеразой.
    Транскрипционный аппарат эукариотических клеток включает три ядерные РНК-полимеразы, а также РНК-полимеразы митохондрий и пластид. РНК-полимераза I обнаруживается в ядрышках клеток и отвечает за транскрипцию генов рРНК. РНК-полимераза II локализуется в ядерном соке и отвечает за синтез предшественника мРНК. РНК-полимераза III —небольшая фракция, находящаяся в ядерном соке и осуществляющая синтез малых рРНК и тРНК. Каждый из этих ферментов имеет две большие субъединицы и до 10 малых. РНК-полимеразы митохондрий и пластид отличаются от ядерных.
    Ферментный комплекс РНК-полимеразы специфически узнает некую нуклеотидную последовательность (часто не одну), расположенную на определенном расстоянии от стартовой точки транскрипции, — промотор. Стартовой точкой считают нуклеотид ДНК, которому соответствует первый нуклеотид, включаемый ферментом в РНК-транскрипт.
    У прокариот обычно недалеко от стартовой точки против хода транскрипции располагается последовательность из шести нуклеотидов — ТАТААТ, называемая блоком Прибнова. Это среднестатистическая последовательность, состоящая из наиболее часто встречаемых оснований, самыми консервативными из которых являются 1,2 и 6-е основания. Наличие в этой последовательности оснований, преимущественно соединенных двойными водородными связями с комплементарными основаниями другой цепи, очевидно, облегчает локальное плавление двойной спирали ДНК и образование двух ее одноцепочечных участков при контакте с РНК-полимеразой. Блок Прибнова располагается в положении от —11 до —5 или от —14 до —8, т.е. за несколько нуклеотидов перед стартовой точкой транскрипции (рис. 3.36). Обнаруживая эту последовательность, РНК-полимераза прочно связывается с ней и начинает синтез РНК.
    Столь же важная роль в установлении контакта РНК-полимеразы с ДНК принадлежит другой нуклеотидной последовательности, центр которой находится в положении —35. Ее называют областью узнавания —ТТГАЦА. Между двумя указанными участками расстояние достаточно постоянно и составляет от 16 до 19 пар нуклеотидов (п.н.).
    Промоторы эукариотических генов также включают по меньшей мере две специфические нуклеотидные последовательности, центры которых находятся в положении —25 и —75 п.н. На расстоянии 19—27 нуклеотидов от стартовой точки против хода транскрипции у многих генов эукариот обнаружена среднестатистическая последовательность ТАТАТААТ (ТАТА-блок, или блок Хогнесса), в которой, так же как в блоке Прибнова у прокариот, преобладают основания, образующие более слабые связи.
    Вторую последовательность, встречаемую во многих промоторах эукариот и состоящую из ГГЦТЦААТЦТ, обозначают как ЦААТ-блок. Она занимает положение между —70 и —80 нуклеотидами и также является областью, узнаваемой полимеразой.
    В некоторых генах обнаружены многокомпонентные промоторы. Так, в отдельных генах вируса герпеса для эффективной инициации транскрипции необходимы три последовательности ДНК, расположенные между —19 и —27, между —47 и —61, а также между —80 и —105 нуклеотидами.

    Рис. 3.36. Точки контакта для РНК-полимеразы,
    находящиеся в верхней цепи ДНК (промотор)
    Особенности промоторных участков свидетельствуют о том, что для инициации транскрипции имеет значение не только сочетание оснований в определенных областях промотора, но и взаимное расположение в молекуле ДНК этих областей, с которыми связывается ферментный комплекс РНК-полимеразы.
    После установления контакта между РНК-полимеразой и промоторным участком начинается сборка молекулы РНК, в которую первым чаще всего включается нуклеотид, несущий пуриновое основание (как правило, аденин) и содержащий три 5′-фосфатных остатка. Далее, по мере продвижения РНК-полимеразы вдоль молекулы ДНК происходит постепенное удлинение цепи РНК, которое продолжается до встречи фермента с областью терминатора (см. разд. 3.4.3.1). Терминатор — это участок, где прекращается дальнейший рост цепи РНК и происходит ее освобождение от матрицы ДНК. РНК-полимераза также отделяется от ДНК, которая восстанавливает свою двухцепочечную структуру.

    Рис. 3.37. Область ДНК с двойной симметрией —палиндром:
    I — палиндром, в котором имеется последовательность, одинаковая при чтении в противоположных направлениях;
    II — палиндром, в котором заштрихованный инвертированный повтор находится на расстоянии от оси симметрии
    В прокариотических клетках терминаторы обязательно содержат палиндромы — двухцепочечные последовательности нуклеотидов ДНК, которые одинаково читаются в обоих направлениях (рис. 3.37). Участок РНК, транскрибированный с такой последовательности, способен образовывать двухцепочечные шпильки за счет комплементарного спаривания нуклеотидов палиндрома. Возможно, это и является сигналом для завершения транскрипции, узнаваемым РНК-полимеразой (рис. 3.38). Возникающие шпильки, видимо, останавливают полимеразу на терминаторе. Следом за шпилькой в молекулу РНК включается последовательность из нуклеотидов, содержащих урацил (полиУ), которая, вероятно, принимает участие в высвобождении РНК от матрицы ДНК. Действительно, полиУ-последовательность РНК, соединенная с полиадениловой (полиА) последовательностью ДНК, характеризуется слабым взаимодействием. Обращает на себя внимание тот факт, что участок ДНК, богатый парами А-Т, встречается не только в месте инициации транскрипции (блок Прибнова), но и в терминаторной области.
    Бактериальные терминаторы значительно различаются по своей эффективности. Некоторые из них как бы не замечаются РНК-полимеразой, и она продолжает транскрипцию за пределами терминатора. Такое прочитывание терминатора при транскрипции бактериальных генов наблюдается в результате предотвращения терминации специфическими белками — факторами антитерминацш. Следствием антитерминации является синтез полицистронной мРНК, включающей в себя информацию, списанную с нескольких последовательно расположенных структурных генов.
    Терминаторы эукарйогических генов изучены в меньшей степени, чем у проскариот, но в них также обнаружены районы, богатые Г-Ц парами, соединенными тройными водородными связями, в которых располагается, участок с А-Т парами. На этом участке в транскрипт включается полиУ-последовательность, слабо взаимодействующая с матричной полиА-областыо ДНК.
    Возможно, область терминатора, богатая Г-Ц парами, играет определенную роль в остановке РНК-полимеразы, а участок РНК, содержащий УУУУ обеспечивает отделение транскрипта от матрицы ДНК.
    У эукариот не обнаружено образования структур, подобных шпилькам в прокариотических РНК. Поэтому, каким образом у них осуществляется терминация транскрипции, остается неясным.
    В составе всех мРНК можно выделить кодирующие участки, представляющие набор кодонов, которые шифруют последовательность аминокислот в пептиде. Как правило, эти участки начинаются стартовым кодоном АУГ, но иногда у бактерий используется кодон ГУТ. На конце кодирующей последовательности располагается терминирующий кодон. Помимо кодирующих участков в мРНК на обоих концах могут располагаться дополнительные последовательности. На 5′-конце это лидерный участок, расположенный перед стартовым кодоном. На 3′-конце — трейлер, следующий за кодоном-терминатором.

    Рис. 3.38. Образование шпильки участком РНК
    при терминации транскрипции у прокариот
    Область РНК, несущая палиндром, образует комплементарно спаривающуюся структуру — шпильку (инвертированные повторы заштрихованы)
    В полицистронной мРНК прокариот между кодирующими участками имеются межцистронные области, варьирующие по размерам (рис. 3.39).

    Рис. 3.39. Полицистронная матричная РНК прокариот:
    1 — некодирующие области, 2 — межцистронные области, 3 — кодирующие области, 4 — терминирующие кодоны
    В связи с тем что прокариотические гены целиком состоят из нуклеотидных последовательностей, участвующих в кодировании информации, транскрибированные с них РНК сразу после их синтеза способны выполнять функцию матриц для трансляции. Лишь в исключительных случаях требуется их предварительное созревание — процессинг.
    В отличие от прокариотических генов большинство генов эукариотических клеток прерывисты, так как несут в своем составе неинформативные нуклеотидные последовательности — интроны, не участвующие в кодировании информации. В связи с этим первичные транскрипты, синтезированные РНК-полимеразой II, обладают большими, чем необходимо для трансляции, размерами и оказываются менее стабильными. В совокупности они образуют так называемую гетерогенную ядерную РНК(тяРНК), которая прежде чем выйти из ядра и начать активно функционировать в цитоплазме, подвергается процессингу и превращается в зрелые мРНК.
    Процессинг эукариотических мРНК. Созревание, или процессинг, мРНК предполагает модифицирование первичного транскрипта и удаление из него некодирующих интронных участков с последующим соединением (сплайсингом) кодирующих последовательностей — экзонов. Модифицирование первичного транскрипта эукариотической мРНК начинается вскоре после синтеза его 5′-конца, содержащего одно из пуриновых оснований (аденин или гуанин). На этом конце образуется колпачок — кэп, который блокирует 5′-конец мРНК путем присоединения к первому нуклеотиду транскрипта трифосфонуклео-зида, содержащего гуанин, связью 5’—5′
    Гффф + фффАфN… > ГфффАфN..+ фф +ф
    В результате образуется последовательность ГфффАфЧМ…, в которой остаток туанина находится в обратной ориентации по отношению к другим нуклеотидам мРНК. Модификация 5′-конца мРНК предполагает также метилирование присоединенного гуанина и первых двух-трех оснований первичного транскрипта (рис. 3.40). Образуемые на 5′ -концах мРНК кэпы обеспечивают узнавание молекул мРНК малыми субчастицами рибосом в цитоплазме. Кэширование осуществляется еще до окончания синтеза первичного транскрипта.

    Рис. 3.40. Образование зрелой мРНК эукариот в ходе процессинга:
    1 — некодирующие последовательности, 2 — экзоны, 3 — интроны, 4 — кодон-терминатор
    После завершения транскрипции происходит удаление части нуклеотидов на 3′-конце первичного транскрипта и присоединение к нему последовательности, состоящей из 100—200 остатков адениловой кислоты (полиА) (рис. 3.40). Считают, что эта последовательность способствует дальнейшему процессингу и транспорту зрелой мРНК из ядра. После выхода мРНК в цитоплазму ее полиА-последовательность постепенно укорачивается под действием ферментов, отщепляющих нуклеотиды на 3′-конце. Таким образом, по длине полиА-последовательности можно косвенно судить о времени пребывания мРНК в цитоплазме. Возможно, добавление полиА-последовательности в ходе процессинга повышает стабильность мРНК. Однако около трети мРНК вообще не содержат полиА-участка. К ним относятся, например, гистоновые мРНК.
    Образование кэпа на 5′-конце и полиА-последовательности на 3′-конце характерно только для процессинга РНК, синтезируемых РНК-полимеразой II. Кроме метилирования при формировании кэпов в мРНК высших эукариот происходит метилирование небольшой части внутренних нуклеотидов с частотой приблизительно одно на тысячу оснований мРНК.
    Наряду с модифицированием мРНК эукариот процессинг предполагает удаление из первичных транскриптов неинформативных для данного белка интронных участков, размер которых варьирует от 100 до 10 000 нуклеотидов и более. На долю интронов приходится около 80% всей гяРНК. Удаление интронов с последующим соединением экзонных участков называют сплайсингом (рис. 3.40).
    Сплайсинг представляет собой механизм, который должен обеспечивать удаление из первичного транскрипта строго определенных интронных участков. Нарушение этого процесса может привести к сдвигу рамки считывания при трансляции и невозможности синтеза нормального пептида. Закономерность вырезания интронов, очевидно, обеспечивается благодаря наличию на их концах специфических нуклеотидных последовательностей, служащих сигналами для сплайсинга.
    В настоящее время описано несколько вероятных механизмов сплайсинга, обеспечивающих точность этого процесса. Возможно, она достигается действием каких-то ферментов, специфически узнающих концевые участки интронов и катализирующих разрыв фосфодиэфирных связей на границе экзон — интрон, а затем образование связей между двумя экзонами.
    Установлено активное участие в сплайсинге особых малых, ядерных РНК (мяРНК), образующих комплексы с белками (мяРНП). Очевидно, мяРНК своими нуклеотидными последовательностями комплементарно взаимодействуют с концевыми участками интронов, которые образуют при этом замкнутые петли. Расщепление РНК в устье интронной петли приводит к удалению неинформативной последовательности и соединению (сплайсингу) сближенных концов экзонов.
    Обсуждается также автокаталитическая способность РНК-транскрипта к сплайсингу. Описанные способы сплайсинга свидетельствуют об отсутствии универсального механизма этого процесса, однако во всех случаях достигается точное удаление интронов с образованием определенной мРНК, обеспечивающей синтез необходимого клетке белка.
    В настоящее время доказана возможность альтернативного (взаимоисключающего) сплайсинга, при котором из одного и того же первичного транскрипта могут удаляться разные нуклеотидные последовательности и образовываться разные зрелые мРНК. В результате одна и та же последовательность нуклеотидов ДНК может служить информацией для синтеза разных пептидов. Альтернативный сплайсинг, вероятно, очень характерен в системе генов иммуноглобулинов у млекопитающих, где он позволяет формировать на основе одного транскрипта мРНК для синтеза разных видов антител.
    Благодаря преобразованиям, происходящим с РНК-транскриптом в ходе процессинга, зрелые мРНК эукариот характеризуются большей стабильностью по сравнению с прокариотическими мРНК.
    По завершении процессинга зрелая мРНК проходит отбор перед выходом в цитоплазму, куда попадает всего 5% гяРНК. Остальная часть расщепляется, не покидая ядра.
    Таким образом, преобразования первичных транскриптов эукариотических генов, обусловленные их экзон-итронной организацией и необходимостью перехода мРНК из ядра в цитоплазму, определяют особенности реализации генетической информации в эукариотической клетке.
    Трансляция у про- и эукариот. В прокариотических клетках процесс трансляции сопряжен с синтезом мРНК: они происходят практически одновременно. В значительной степени это связано с недолговечностью бактериальной мРНК, которая достаточно быстро подвергается распаду. Взаимосвязанность транскрипции и трансляции у бактерии проявляется в согласованности скоростей этих процессов. При 37°С транскрипция идет со скоростью 2500 нуклеотидов/мин (14 кодонов/с), а трансляция осуществляется со скоростью 15 аминокислот/с.
    Трансляция у прокариот начинается вскоре после образования 5′-конца мРНК, раньше, чем заканчивается ее синтез. В результате вслед за РНК-полимеразой по мРНК движутся рибосомы, осуществляющие сборку пептидных цепей (рис. 3.41). Через некоторое время после начала транскрипции (около 1 мин) и до завершения трансляции 3′-конца матрицы начинается деградация ее 5′-конца. Ввиду того что время жизни разных мРНК не одинаково, количество белка, синтезированного на разных матрицах, различно.
    Одной из особенностей трансляции у прокариот является включение в пептидную цепь в качестве первой аминокислоты модифицированного метионина — формилметионина, с которого начинаются все вновь синтезированные пептиды. Даже в том случае, когда роль стартового кодона выполняет кодом ГУГ, в обычных условиях шифрующий валин, в первом положении пептида оказывается формилметионин. Стартовый кодон АУГ или ГУГ следует за лидерным участком, который экранируется рибосомой в момент инициации трансляции.
    Соединение рибосомы с мРНК обусловлено комплементарным взаимодействием нуклеотидов одной из рРНК с нуклеотидной последовательностью лидера мРНК.
    Эта последовательность (Шайна—Дальгарно) располагается на расстоянии 4—7 оснований перед кодоном АУГ и обнаруживается повсеместно в лидерных участках у прокариот.
    При соединении 5′-конца мРНК с малой субчастицей рибосомы стартовый кодон обычно оказывается почти в середине экранированного рибосомой фрагмента мРНК, в области, соответствующей ее П-участку.
    У эукариот трансляция осуществляется в цитоплазме, куда попадает из ядра зрелая мРНК. Копированный конец мРНК распознается малой субчастицей рибосомы, затем лидирующая последовательность, содержащая до 100 нуклеотидов, взаимодействует с рРНК. При этом стартовый кодон АУГ оказывается в недостроенном П-участке рибосомы. После присоединения к стартовому кодону аминоацил-тРНК, несущей метионин, происходит воссоединение двух субчастиц рибосомы и формируются ее А- и П-участки. Синтез белка в эукариотической клетке, осуществляемый на моноцистронной мРНК, завершается после прохождения рибосомой по всей мРНК, вплоть до узнавания ею кодона-терминатора, прекращающего образование пептидных связей.
    Посттрансляционные преобразования белков. Синтезированные в ходе трансляции пептидные цепи на основе своей первичной структуры приобретают вторичную и третичную, а многие—и четвертичную организацию, образуемую несколькими пептидными цепями. В зависимости от функций, выполняемых белками, их аминокислотные последовательности могут претерпевать различные преобразования, формируя функционально активные молекулы белка.
    Многие мембранные белки синтезируются в виде пре-белков, имеющих на N-конце лидерную последовательность, которая обеспечивает him узнавание мембраны. Эта последовательность отщепляется при созревании и встраивании белка в мембрану. Секреторные белки также имеют на N-конце лидерную последовательность, которая обеспечивает их транспорт через мембрану.
    Некоторые белки сразу после трансляции несут дополнительные аминокислотные про-последовательности, определяющие стабильность предшественников активных белков. При созревании белка они удаляются, обеспечивая переход неактивного пробелка в активный белок. Например, инсулин вначале синтезируется как пре-проинсулин. Во время секреции пре-последовательность отщепляется, а затем проинсулин подвергается модификации, при которой из него удаляется часть цепи и он превращается в зрелый инсулин.

    Рис. 3.41. Транскрипция, трансляция и деградация мРНК у прокариот:
    I — РНК-полимераза связывается с ДНК и начинает синтезировать мРНК в направлении 5′ > 3′;
    II — по мере продвижения РНК-полимеразы к 5′-концу мРНК прикрепляются рибосомы, начинающие синтез белка;
    III — группа рибосом следует за РНК-полимеразой, на 5′-конце мРНК начинается ее деградация;
    IV —процесс деградации протекает медленнее, чем транскрипция и трансляция;
    V — после окончания транскрипции мРНК освобождается от ДНК, на ней продолжается трансляция и деградация на 5′-конце
    Формируя третичную и четвертичную организацию в ходе посттрансляционных преобразований, белки приобретают способность активно функционировать, включаясь в определенные клеточные структуры и осуществляя ферментативные и другие функции.
    Рассмотренные особенности реализации генетической информации в про- и эукариотических клетках обнаруживают принципиальное сходство этих процессов. Следовательно, механизм экспрессии генов, связанный с транскрипцией и последующей трансляцией информации, которая зашифрована с помощью биологического кода, сложился в целом еще до того, как были сформированы эти два типа клеточной организации. Дивергентная эволюция геномов про- и эукариот привела к возникновению различий в организации их наследственного материала, что не могло не отразиться и на механизмах его экспресии.
    Постоянное совершенствование наших знаний об организации и функционировании материала наследственности и изменчивости обусловливает эволюцию представлений о гене как функциональной единице этого материала.

  7. А СбоКу БанТик Ответить

    ^ 2. Геном эукариот
    Для клеток эукариот характерно наличие оформленного ядра. Информационной макромолекулой их генома является ДНК, ко­торая неравномерно распределена по нескольким хромосомам в виде комплексов с многочисленными белками. Однако генетиче­скую информацию в клетках содержат не только хромосомы ядра. Жизненно важная генетическая информация заключена и во внехромосомных молекулах ДНК. У эукариот — это ДНК хлоропластов, митохондрий и других пластид. Под геномом эукариотического организма в настоящее время понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных ге­нетических элементов, содержащуюся в отдельной клетке заро­дышевой линии многоклеточного организма.
    Геном эукариот существенно отличается от генома прокариот по ряду признаков, среди которых необходимо отметить его избы­точность. Эукариотическая клетка содержит во много раз больше генов, чем прокариотическая. Повышенное содержание ДНК в геноме эукариот нельзя объяснить лишь увеличением потребно­сти этих организмов в дополнительной генетической информа­ции в связи с усложнением организации, поскольку большая часть их геномной ДНК, как правило, представлена некодирующими пос­ледовательностями нуклеотидов. Феномен значительной избыточ­ности генома эукариот в отношении некодирующих последова­тельностей нуклеотидов известен под названием «парадокса С».
    Эукариотический ген можно рассматривать как совокуп­ность сегментов ДНК, которые вместе составляют экспрессируемую единицу, ответственную за образование специфического функ­ционального продукта — либо молекулы РНК, либо полипептида.
    К сегментам ДНК, составляющим ген, относятся следующие элементы:
    1.
    Единица транскрипции – это участок ДНК, кодирующий
    первичный транскрипт. Он включает: а) последовательность, ко­торая обнаруживается в зрелых функциональных молекулах РНК; б) интроны (для мРНК); в) промежуточные последовательно­сти – спейсеры (для рРНК). Интроны и спейсеры удаляются в
    ходе процессинга первичных транскриптов; г) 5′- и 3′-нетранслируемые последовательности (5′-НТП и З’-НТП).
    2.
    Минимальные последовательности, необходимые для начала
    транскрипции (промотор) и конца транскрипции (терминатор).
    3.
    Последовательности, регулирующие частоту инициации транскрипции, ответственные за индуцибельность и репрессию транскрипции, а также клеточную, тканевую и временную спе­цифичность транскрипции. Они разнообразны по строению, по­ложению и функциям. К их числу относятсяэнхансеры
    и сайленсеры – это последовательности ДНК, расположенные в
    тысячах пар нуклеотидов от промотора эукариотического гена и
    оказывающие дистанционное влияние на его транскрипцию.
    В отличие от прокариотических генов, почти всегда коллинеарных своим РНК, многие гены эукариот имеют мозаичное стро­ение. Под мозаичностью в данном случае подразумевается чередо­вание кодирующих (экзоны) и некодирующих (вставочные после­довательности, или интроны) последовательностей в пределах единицы транскрипции. Интроны чаще всего встречаются в генах, кодирующих белки.
    Существенную часть генома эукариот (10 — 30%) составляют повторяющиеся последовательности, имеющие определенную структурную организацию и способные перемещаться в геноме как в пределах одной хромосомы, так и между хромосомами. Они получили название подвижных генетических элементов.
    Различают два основных класса подвижных генетических эле­ментов: транспозоны и ретротранспозоны. Такая классификация основана на молекулярных механизмах, с помощью которых пе­ремещаются эти элементы.
    ^ 3. Геномы органелл эукариот: ДНК митохондрий и хлоропластов
    Существуют два типа цитоплазматических ДНК: одни находят­ся в митохондриях эукариот, другие -в хлоропластах зеленых растений и водорослей. Как и все цитоплазматические элементы, они наследуются по материнской линии, а не по законам Менделя! Большая часть белков этих органелл, закодированная в ядерной ДНК, синтезируется в цитоплазме и затем переходит в органеллу. Однако некоторые белки митохондрий и хлоропластов и все их РНК кодируется в ДНК самих органелл и в них же синтезируют­ся. Таким образом, органеллы — это результат объединенных усилий двух геномов и двух трансляционных аппаратов. РНК-компо­ненты рибосом органелл, а также тРНК, использующиеся при трансляции, кодируются геномами митохондрий и хлоропластов.
    Размеры генома хлоропластов у всех исследованных организ­мов сходны, тогда как митохондриальные геномы у растений на­много больше, чем у животных.
    Все митохондрии и хлоропласты содержат по несколько копий собственной геномной ДНК. Эти молекулы ДНК обычно распре­делены в виде отдельных групп в матриксе митохондрий и в строме хлоропластов, где они прикреплены к внутренней мембране. Способ упаковки ДНК неизвестен. По структуре геном более схо­ден с бактериальным геномом: например, как и у бактерий, у них нет гистонов.

  8. Ballara Ответить

    Эти транскрипционные факторы ( c-Ets ,c-Jun, c-Myc ,c-Myb ,B-Myb ) активируют синтез циклинов и циклин-зависимых киназ, которые кодируются генами позднего ответа .
    Затем комплексы циклинов и циклин-зависимых киназ , фосфорилируют белок рRB , что оказывает положительный эффект на активность факторов E2F и приводит к переходу через точку рестрикции ( G1/S ). Факторы E2F функционируют координированно с другими важными регуляторами клеточного цикла. Уровень и активность этих факторов по существу отражает интегральный ответ клетки на совокупность принятых ею сигналов пролиферации и дифференцировки. Отрицательными регуляторами пролиферации являются супрессоры опухолей белки р53 и рRB, сходные по структуре белки р107 и р130 , а также ингибиторы циклин-киназных комплексов р15 , р16 , р21.
    Правильное функционирование циклин-киназных комплексов , фосфорилирующих белок рBR в строго определенных фазах, играет ключевую роль в регуляции клеточного цикла. Исследования показали, что фосфорлирование pRB в конечном счете , регулирует активность транскрипционных факторов семейства E2F и прохождение клеточного цикла в целом.
    Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.
    Еще одна особенность репликации у эукариот более низкая скорость (почти на порядок) работы ДНК-полимераз Однако хотя у человека количество ДНК на 3 порядка выше чем у E. сoli, время репликации всего генома у них соизмеримо. Это связано прежде всего с большим количеством ori . у эукариот. ( см рис).

    Принципы инициации репликации у про и эукариот.
    Во время S фазы кластеры репликационных вилок активируются одновременно во всех хромосомах. Среднее расстояние между местами начала репликации сравнимо со средним расстоянием между соседними петлями хроматина, что позволяет предположить, что в каждой петле имеется лишь один участок начала репликации.
    При расхождении двух репликационных вилок от одной точки начала репликации по разные стороны от этой точки родительские нуклеосомы будут попадать в разные дочерние спирали ДНК. В этом случае от точного расположения места начала репликации в транскрипционной единице (гене) будет зависеть распределение предсуществующих родительских гистонов между двуми дочерними генами. Не все нуклеосомы абсолютно одинаковы – в разных областях генетического материала структура хроматина различна. Точное положение места начала репликации в гене могло бы поэтому иметь важное биологическое значение, так как определяло бы структуру хроматина этого гена в следующем поколении клеток. По мере прохождения клетками фазы S активируются все новые и новые точки начала репликации . Так как соседние точки в каждой репликативной единице разделены расстояниями от 30 000 до 300 000 пар оснований, время, необходимое для завершения синтеза, начатого в любой из точек, составляет от 5 до 50 минут. Поскольку обычно фаза S продолжается 8 часов, уже где-то в середине этой фазы возникает сложная задача, связанная с тем, что некоторые точки начала репликации к этому времени будут полностью реплицированы и, по-видимому, идентичны (по крайней мере в отношении последовательностей ДНК) другим точкам начала репликации, которые еще не использовались. Тем не менее, каждая такая точка должна быть использована в фазе S только один раз.

  9. Arashizragore Ответить

    Днк прокариот
    Прокариот – одноклеточный организм, который не имеет связанного с мембраной ядра (клеточном ядре), митохондрий или любых другие мембранных органелл. Слово прокариот происходит от греческого ???- (про-) «до» и ?????? (клеточном ядре) «орех или ядро». Все внутриклеточные растворимые в воде компоненты (белки, ДНК и метаболиты) расположены вместе в том же объеме прилагаемой к клеточной мембране, а не в виде отдельных клеточных компартментов.
    Прокариотические клетки могут быть разделены на две группы: археи и бактерии. Молекулярные исследования позволили заглянуть в эволюцию и взаимосвязь этих групп. Разделение междупрокариот и эукариот свидетельствует о наличии двух очень разных уровней клеточной организации. Отличительные черты прокариот включают экстремофилы и метаногены; они распространены в некоторых экстремальных условиях.
    Последние исследования днк прокариот показывают, что все прокариоты на самом деле обладают цитоскелетом, хотя и более примитивным, чем у эукариот. Кроме гомологов актина и тубулина (MreB и FtsZ), в прокариотах есть спирально расположеные флагеллины, которые является одним из наиболее важных белков цитоскелета бактерий, так как обеспечивают структурные фоны хемотаксиса.
    Размеры большинство прокариот варьируются между 1 мкм и 10 мкм, но они могут различаться по размеру от 0,2 мкм до 750 мкм (Thiomargarita namibiensis).
    Прокариоты ,эукариоты и археи

  10. Dourr Ответить

    Теперь мы совершим большой скачок и перейдем от прокариотических клеток к гораздо более сложным – эукариотическим. Эукариоты содержат значительно больше ДНК, чем прокариоты. Отдельная клетка миксомицета, одного из самых примитивных эукариот, более чем в 10 раз превосходит по содержанию ДНК клетку Е. coli. В клетках плодовой мушки Drosophila, используемой в классических генетических исследованиях, количество ДНК более чем в 25 раз превышает ее количество в клетках Е. coli. А клетки человека и многих других млекопитающих содержат приблизительно в 600 раз больше ДНК, чем Е. coli.
    Общая физическая длина всей ДНК в одной единственной клетке человека составляет (для сравнения длина ДНК Е. coli равна 1,4 мм). Поскольку в организме взрослого человека находится клеток, общая длина всей ДНК человека составляет или Сравните эту величину с окружностью земного шара (4-104 км) или расстоянием от Земли до Солнца (1,44-108 км)!
    При наблюдении в микроскоп за ядром делящихся эукариотических клеток было обнаружено, что их генетический материал распределен по хромосомам, число которых зависит от вида организма (табл. 27-5). В клетке человека, например, содержится 46 хромосом. В настоящее время установлено, что каждая хромосома эукариотической клетки типа показанной на рис. 27-21 содержит одну очень большую молекулу двухцепочечной ДНК, длина которой может в 4-100 раз превышать длину ДНК Е. coli. Например, физическая длина молекулы ДНК одной из наиболее мелких хромосом человека составляет ~ 30 мм, что почти в 15 раз больше длины молекулы ДНК Е. coli. Молекулы ДНК в сорока шести хромосомах человека не одинаковы по размеру: они могут различаться между собой более чем в 25 раз. Эукариотические ДНК имеют не кольцевую структуру, а линейную.

    Рис. 27-21. Электронная микрофотография хромосомы 12 человека.

  11. Mojas Ответить

    Полученные так называемые нуклеоиды обрабатывали ингибиторами ДНК-топоизомеразы II . Так нам удалось разрезать весь геном на отдельные петли и их олигомеры. В — в петлях ДНК, обработанных рестриктазой Sfi I, появляются разрывы. Напомним, что на такой карте показаны реальные расстояния вдоль молекулы ДНК между теми или иными маркерами.

    Рис. 6. Упаковка молекулы ДНК в хромосоме

    В качестве маркеров при создании таких карт обычно используются участки расщепления ДНК ферментами рестриктазами. Установить позиции участка прикрепления петли ДНК к ядерному матриксу на физической карте — значит определить расстояние от места прикрепления до места расщепления ДНК той или иной рестриктазой.
    Мы с успехом использовали вышеописанный метод для картирования границ петель в ряде областей генома человека и дрозофилы. После этого была поставлена масштабная задача — построить карту организации в петли-домены самого протяженного из известных генов — гена дистрофина человека. Экспериментальный подход, использованный нами для картировании петель ДНК, основан на ряде логических предпосылок, вытекающих из радиально-петлевой модели строения хромосомы.

    Среди множества переплетающихся петель ДНК, наблюдаемых под электронным микроскопом, практически невозможно идентифицировать петлю как фрагмент генома, интересующий исследователя. Однако это возможно при анализе петель с более низким разрешением. Чтобы увидеть их, надо воспользоваться методом гибридизации in situ (в данном случае препаратов иммобилизованных на стекле ядерных гало) с интересующим фрагментом генома.

    Рис. 7. Поры в ядерной мембране

    В ходе реализации программы по секвенированию генома человека в разных лабораториях клонировали тысячи протяженных (100-300 тыс. нуклеотидных пар) фрагментов ДНК человека. Большинство клонов систематизировали соответственно позициям клонированных фрагментов ДНК в геноме человека. Имеющиеся в нашей пробе повторы гибридизуются со всеми комплементарными последовательностями.

    Рис. 5. Структура хроматина: 1 – нуклеосома, 2 – ДНК

    Впервые в мире мы показали, что биохимический метод, основанный на радиальной модели строения хромосомы, действительно позволяет картировать петли ДНК, наблюдаемые на цитологических препаратах. Это подтверждает и радиальную модель строения хромосомы, на основании которой разработан наш метод вырезания петель.

    Читайте также:

  12. Zuluzahn Ответить

    ЦПМ – Основу плазмалеммы, как и других мембран в клетках, составляет слой липидов, имеющий два ряда молекул. Поскольку молекулы липидов, гидрофильные концы молекул одного слоя направлены в сторону водной среды — в цитоплазму клетки, а другого слоя — наружу от клетки — в сторону межклеточного вещества (у многоклеточных) или водной среды (у одноклеточных).
    Выделяют периферические белки, интегральные. Функции мембранных белков: рецепторная, структурная, ферментативная, адгезивная, антигенная, транспортная.
    Молекулы белков мозаично встроены в бимолекулярный слой липидов. С внешней стороны животной клетки к липидам и молекулам белков плазмалеммы присоединяются молекулы полисахаридов, образуя гликолипиды и гликопротеины.
    Эта совокупность формирует слой гликокаликса. С ним связана рецепторная функция плазмалеммы; также в нем могут накапливаться различные вещества, используемые клеткой. Кроме того, гликокаликс усиливает механическую устойчивость плазмалеммы.
    Важнейшая функция мембраны: способствует компартментации — подразделению содержимого клетки на отдельные ячейки, отличающиеся деталями химического или ферментного состава. Отдельный компартмент (ячейка) представлен какой-либо мембранной органеллой (например, лизосомой) или ее частью (кристами, отграниченными внутренней мембраной митохондрий).
    Другие функции:
    1) барьерная
    2) структурная
    3) защитная
    4) регуляторная
    5) адгезивная функция
    6) рецепторная
    7) электрогенная
    8) антигенная:
    Цитопла?зма (от греч. ????? «клетка» и ?????? зд. «содержимое») — внутренняя среда живой клетки, ограниченная плазматической мембраной. Включает в себя гиалоплазму — основное прозрачное вещество цитоплазмы(вода, минер.в-ва, ферменты, белки,РНК, рибосомы), находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения.
    Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур (компонентов) и обеспечении их химического взаимодействия.
    Рибосома — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром от 15—20 нанометров (прокариоты) до 25—30нанометров (эукариоты), состоящий из большой(50S) и малой(30S) субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.
    Мезосомы –выпячивания ЦПМ в виде сложно закрученнх мембранных структур- связаны с нуклеоидом.
    Роль: деление, синтез клет. Стенки, секреция в-в, спорообразование.
    Генофор(нулеотид) –бактериальная хромосома содержит до 4000 отдельных генов.
    4) Особенности строения клеточной стенки Г+ бактерии:
    -пептидогликан – 40 слоев, 50 нм и более, до 90% сухой массы КС. Каркас.
    -тейхоновые и липотейхоновые кислоты (Тейхоевые кислоты — основные поверхностные Аг многих бактерий)- рибиттейхоновые, глицеринтейхоновые, эритролтейхоновые
    —>адгезин, антигены, репелленты фагоцитоза, токсины
    -белки 1)минорные(А,М,Т,R) –антифагины, репелленты фагоцитоза, протеин А у стафилококка – аналог рецептора для антител.
    2)мажорные(порины 1 и 3) – транспорт метаболитов- белки массой до 700, окаймляют гидрофильные поры, обеспечивают диффузию хим. В-в в микробную клетку
    Ф-ии: метаболизм, коньюгация
    Принцип окраски по Граму:генциановый, метиловый фиолетовый. Грамположительные Грам (+) микроорганизмы дают прочное соединение с указанными красителями и йодом. При этом они не обесцвечиваются при воздействии на них спиртом, вследствие чего при дополнительной окраске фуксином Грам (+) микроорганизмы не изменяют первоначально принятый фиолетовый цвет.
    5) Г – бактерии:
    -пептидогликан – 1-2 слоя 15-20нм, около 10%КС
    Наружная мембрана:
    -липополисахарид(ЛПС)
    1)липид А – эндотоксин
    2)ядро(базис) – полисахарид
    3)О-специфическая цель олигосахаридных последовательностей – О-антиген
    -Мажорные белки(порины 1 и 2)- транспорт метаболитов
    Грамотрицательные Грам (?) микроорганизмы образуют с основными красителями и йодом легко разрушающееся под действием спирта соединение. В результате микробы обесцвечиваются, а затем окрашиваются фуксином, приобретая красный цвет.

  13. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *