Что такое аллотропия какой тип химической связи?

18 ответов на вопрос “Что такое аллотропия какой тип химической связи?”

  1. polina_sed Ответить

    Аллотропия – способность одного химического элемента образовывать несколько простых веществ, различных по строению и свойствам.
    а) S8 образована ковалентной неполярной связью, т. к. соединение образовано атомами одного химического элемента. б) H2S образована ковалентной полярной связью, т. к. соединение образовано атомами разных химических элементов, имеющие разные значения электроотрицательности.
    Ромбическая сера – хрупкое вещество жёлтого цвета, нерастворимое в воде, гидрофобное.
    а) S + 2Na ⟶ Na2S
    S0 + 2ē ⟶ S-2
    1
    окислитель (восстановление)
    Na0 – 1ē ⟶ Na+
    2
    восстановитель (окисление)
    б) S + Ca ⟶ CaS
    S0 + 2ē ⟶ S-2
    1
    окислитель (восстановление)
    Ca0 – 2ē ⟶ Ca+2
    1
    восстановитель (окисление)
    в) 3S + 2Al ⟶ Al2S3
    S0 + 2ē ⟶ S-2
    3
    окислитель (восстановление)
    Al0 – 3ē ⟶ Al+3
    2
    восстановитель (окисление)
    г) S + O2 ⇄ SO2
    O20 + 4ē ⟶ 2O-2
    1
    окислитель (восстановление)
    S0 – 4ē ⟶ S+4
    1
    восстановитель (окисление)
    д) S + H2 ⟶ H2S
    S0 + 2ē ⟶ S-2
    1
    окислитель (восстановление)
    H20 – 2ē ⟶ 2H+
    1
    восстановитель (окисление)
    г) S + 3F2 ⟶ SF6
    F20 + 2ē ⟶ 2F-
    3
    окислитель (восстановление)
    S0 – 6ē ⟶ S+6
    1
    восстановитель (окисление)

  2. Doberman_32 Ответить

    Упражнение: 1

    Дайте характеристику элементов: а) фосфора; б) калия.


    а)
    1. P – фосфор порядковый номер:
    Z = N(p+) = N(e) = 15,
    A = 31, N(n0) = A – Z = 31 – 15 = 16
    Фосфор P находится в III периоде, V группе главной подгруппе. +15P 2e, 8e, 5e
    2. P – неметалл
    3. Неметаллические свойства N > P > As
    4. Неметаллические свойства Si < P < S
    5. Высший оксид P2O5 – кислотный
    6.Высший гидроксид H4PO4 – кислотный
    7.Летучее водородное соединение PH3 – фосфин

    б)
    1. K – калий порядковый номер:
    Z = N(p+) = N(e) = 19,
    A = 39, N(n0) = A – Z = 39 – 19 = 20
    Калий K находится в IV периоде, I группе главной подгруппе. +19K 2e, 8e, 8e, 1e
    2. K – металл
    3. Металлические свойства Na < K < Rb
    4. Металлические свойства K > Ca
    5. Высший оксид K2O – основный
    6.Высший гидроксид KOH – основный
    7.Летучего водородного соединения нет.
    Упражнение: 2

    Запишите уравнения химических реакций, характеризующие свойства: а) MgO и SO2; б)Mg(OH)2 и H2SO4. Уравнения реакций с участием электролитов запишите также в ионной форме.





    Упражнение: 3

    Дайте характеристику магния простого вещества. Какой тип связи наблюдается в нем? Запишите уравнения реакций магния со следующими веществами: а) кислородом; б) хлором4 в) серой; г) азотом N2; д) соляной кислотой.


    Для магния (Mg) простого вещества характерна металлическая кристаллическая решетка и металлическая химическая связь, а отсюда типичные для металлов свойства: металлический блеск, тепло- и электропроводность, пластичность.



    Упражнение: 4

    Что такое аллотропия? Какой тип химической связи реализуется в молекулах состава: а) S8; б) H2S? Какие физические свойства имеет наиболее устойчивая модификация серы – ромбическая сера? Запишите уравнения реакций серы со следующими веществами: а) натрием; б) кальцием; в) алюминием; г) кислородом; д) водородом; е) фтором F2.
    Рассмотрите их с позиций процессов окисления-восстановления.


    Аллотропия – это способность атомов одного химического вещества образовывать несколько простых веществ, а эти простые вещества называют аллотропными модификациями.
    а) S8 – ковалентная неполярная
    б) H2S – ковалентная полярная
    S8 – ромбическая сера, молекулярная кристаллическая решетка. Лимонно-желтый цвет, Тпл. 112,80С, не растворима в воде, мало растворима в этиловом спирте, хорошо растворима в сероуглероде. Кристаллы серы в воде тонут, а порошок плавает на поверхности воды, так как мелкие кристаллики серы не смачиваются водой и поддерживаются на плаву мелкими пузырьками воздуха (процесс наз. флотация см. стр. 131 учебника)


    Упражнение: 5

    Сравните свойства простого вещества кремния со свойствами простых веществ, образованных химическими элементами – соседями кремния по периоду.


    Неметаллические свойства Al < Si < P
    Неметаллические свойства кремния выражены сильнее, чем у алюминия, но слабее, чем у фосфора.
    Потому что число внешних электронных оболочек у алюминия, кремния и фосфора одинаковое: 3, а число внешних электронов у кремния (4) меньше, чем у фосфора (5), но больше чем у алюминия (3).
    Упражнение: 6

    У высшего оксида какого химического элемента наиболее выражены кислотные свойства: а) азота или фосфора, б) фосфора или серы?


    а) Кислотные свойства N2O5 > P2O5
    б) Кислотные свойства P2O5 < SO3
    Упражнение: 7

    Вычислите объем воздуха (примите объемную долю кислорода в нем равной 0,2), который потребуется для сжигания 120 мг образца магния, содержащего 2% негорючих примесей.

  3. yulya.kva Ответить

    Аллотропия — явление существования химического эле­мента в виде нескольких простых веществ, различных по строению и свойствам (так называемых аллотропных форм).
    а) В молекулах состава S8 реализуется ковалентно-­неполярный тип связи (т.е. не происходит смещения элек­тронной пары, образующей связь).
    б) В молекулах состава H2S реализуется ковалентно­-полярный тип связи, т.к. происходит смещение электронной пары к более электроотрицательному атому — сере (S).
    H → S ← H
    Физические свойства ромбической серы (S8)
    Ромбическая сера — вещество желтого цвета, плотностью 2,07 г/см3, температура плавления 112,8°С, температура кипения 444,6°С. При на­гревании при 95,4°С переходит в моноклинную. В воде сера нерастворима, растворяется в органи­ческих растворителях, например в сероуглероде, скипидаре, бензоле, феноле.
    а)
    2Na + S = Na2S
    Na0 − 1ē = Na+ | 2 восстановитель
    S0 + 2ē = S−2 | 1 окислитель
    б)
    Ca + S = CaS
    Ca0 − 2ē = Ca+2 | 1 восстановитель
    S0 + 2ē = S−2 | 1 окислитель
    в)
    2Al + 3S = Al2S3
    Al0 − 3ē = Ca+3 | 2 восстановитель
    S0 + 2ē = S−2 | 3 окислитель
    г)
    O2 + S = SO2
    S0 − 4ē = S+4 | 1 восстановитель
    O20 + 4ē = 2O−2 | 1 окислитель
    д)
    S + Н2 = H2S
    H20 − 2ē = 2H+ | 1 восстановитель
    S0 + 2ē = S−2 | 1 окислитель
    e)
    S + 3F2 = SF6
    S0 − 6ē = S+6 | 1 восстановитель
    F20 + 2ē = 2F− | 3 окислитель

  4. bagnetvet Ответить

    4. Что такое аллотропия? Какой тип химической связи реализуется в молекулах состава: a) S8; б) H2S? Какие физические свойства имеет наиболее устойчивая модификация серы — ромбическая сера? Запишите уравнения реакций серы со следующими веществами: а) натрием; б) кальцием; в) алюминием; г) кислородом; д) водородом; е) фтором F2. Рассмотрите их с позиций процессов окисления-восстановления.
    Аллотропия — явление существования химического элемента в виде нескольких простых веществ, различных по строению и свойствам (так называемых аллотропных форм).

    5. Сравните свойства простого вещества кремния со свойства-ми простых веществ, образованных химическими элементами — соседями кремния по периоду.
    Неметаллические свойства кремния выражены слабее, чем у фосфора, но сильнее, чем у алюминия.
    6. У высшего оксида какого химического элемента наиболее выражены кислотные свойства: а) азота или фосфора, б) фосфора или серы?
    а) У азота кислотные свойства выражены сильнее, чем у фосфора, т. к. в группах сверху вниз происходит усиление основных и ослабление кислотных свойств.
    б) У серы кислотные свойства выражены сильнее, чем у фосфора, т. к. в периодах слева направо происходит усиление кислотных и ослабление основных свойств.

  5. Yzik Ответить

    Не все вещества способны преобразоваться из сложных в простые даже под действием температур или других воздействий. Это может происходить только с теми из них, у которых есть способность к образованию гомоцепных структур или хорошо окисляющихся. Именно поэтому аллотропия веществ свойственна неметаллам. Хотя справедливости ради следует сказать, что есть металлы, способные преобразовываться в простые элементы, но это, скорее, полуметаллы.

    Примеры аллотропии

    Для понимания процесса существует ряд примеров преобразования вещества, причем оно бывает обратимым и необратимым. То есть вещество может после воздействия на него температуры или давления вернуться к первоначальному состоянию. Но бывает так, что оно остается в видоизмененном состоянии. Например, ромбическая сера – при нагревании ее до температуры 95,5 градуса по Цельсию она преобразуется в моноклинную форму. При снижении температуры до 95,5 градуса наступает обратное преобразование – из моноклинной формы в ромбическую.
    Другой пример аллотропии – это изменение белого фосфора в черный. В данном случае для проведения преобразования требуется температура в 200 градусов по Цельсию и давление в 1,25 г Па. При воздействии тех же температур и давления на преобразованный черный фосфор он не сможет вернуться к первоначальному состоянию.

  6. kluv4ikk Ответить

    АЛЛОТРО́ПИЯ (от алло… и греч. tropos — поворот, свойство), существование химических элементов в виде двух или более кристаллических фаз (см. ФАЗА). Аллотропия — частный случай полиморфизма (см. ПОЛИМОРФИЗМ (в минералогии)). В понятие аллотропия включают также существование некристаллических фаз, таких, как кислород и озон, орто- и параводород.
    Большинство простых веществ существуют в нескольких аллотропных модификациях. Например, для чистого железа при атмосферном давлении известны три модификации:
    a-железо « b-железо « d-железо
    ОЦК 910о С ГЦК 1400о С ОЦК
    Общеизвестен пример существования двух модификаций олова: серое a-олово — полупроводник со структурой алмаза и белое b-олово — типичный металл.
    Каждая полиморфная (аллотропная) модификация вещества стабильна лишь в своей области температур и давлений, но и в метастабильном, неустойчивом состоянии она может существовать достаточно долго.
    Полиморфизм олова является здесь хорошим примером. Белое олово может переохлаждаться ниже температуры перехода, равной 13,2 °С, и существовать в виде белого металла достаточно долго. Однако его состояние при температуре менее 13,2 °С неустойчиво, поэтому сотрясение, механическое повреждение, внесение стабильной затравки вызывает резкий скачкообразный переход, получивший название «оловянной чумы». Переход из b- в a-модификацию происходит с изменением типа связи от металлической к ковалентной и сопровождается резким изменением объема. Коэффициент линейного расширения у серого олова в четыре раза больше, чем у белого, поэтому белое олово, переходя в серое, рассыпается в порошок.
    Углерод существует в двух четко различающихся кристаллических аллотропных формах: в виде алмаза (см. АЛМАЗ (минерал)) и графита (см. ГРАФИТ). Раньше полагали, что так называемые аморфные формы углерода, древесный уголь и сажа, — тоже его аллотропные модификации, но оказалось, что они имеют такое же кристаллическое строение, что и графит. Полиморфное превращение кристаллов углерода — пример монотропного, т. е. необратимого, перехода. При температурах выше 1000 °С алмаз легко и быстро переходит в графит. В противоположность этому превратить графит в алмаз удается лишь при температурах более 3000 °С и давлениях до 100 Мпа, т. е. при условиях термодинамической устойчивости алмаза. Аналогичная картина наблюдается для фосфора (см. ФОСФОР). Белая его форма может превращаться в красную почти при любой температуре. При температурах ниже 200 °С процесс протекает очень медленно, но его можно ускорить с помощью катализатора, например йода. Обратный же переход красного фосфора в белый невозможен без образования промежуточной газовой фазы. Красная форма стабильна во всем диапазоне температур, где она находится в твердом состоянии, тогда как белая нестабильна при любой температуре (метастабильна). Переход из нестабильной формы в стабильную в принципе возможен при любой температуре, а обратный — нет, т. е. определенная точка перехода отсутствует. Здесь мы тоже имеем дело с монотропными модификациями элемента.
    В случае серы при обычной температуре стабильной является ромбическая модификация серы, которая при нагревании до 95,6 °С и давлении 1 атм переходит в моноклинную форму. Последняя при охлаждении ниже 95,6 °С вновь переходит в ромбическую форму. Таким образом, переход одной формы серы в другую происходит при одной и той же температуре, и сами формы называются энантиотропными. Две известные модификации олова энантиотропны.

  7. beg2012 Ответить

    Смотреть что такое “АЛЛОТРОПИЯ” в других словарях:

    аллотропия — аллотропия … Орфографический словарь-справочник
    АЛЛОТРОПИЯ — (от греч. allos иной, и trepein обращать). Свойство некоторых химических веществ принимать различные формы, вместе с различными свойствами; напр., углерод, являющийся в виде алмаза, графита, угля. Словарь иностранных слов, вошедших в состав… … Словарь иностранных слов русского языка
    АЛЛОТРОПИЯ — (от алло… и греч. tropos поворот свойство), существование химических элементов в виде двух или более простых веществ. Может быть обусловлена образованием молекул с различным числом атомов (напр., кислород O2 и озон O3) либо кристаллов различных … Большой Энциклопедический словарь
    АЛЛОТРОПИЯ — полиморфизм элементов (углерод, сера и др.). Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
    АЛЛОТРОПИЯ — (от греч. allos иной и tropos образ), свойство некоторых хим. элементов существовать в нескольких видоизменениях, различных по физ. и хим. свойствам. Причины А.: полимерия (см.) различное число атомов в молекуле (напр., у О, S, Р), различное… … Большая медицинская энциклопедия
    аллотропия — Существование одного и того же химич. элемента в виде двух или нескольких простых вещ в, разных по строению и свойствам, т.н. аллотропич. модификаций. А. м. б. результатом образования разных кристаллич. форм (напр., фа фит и алмаз, a Fe и y Fe)… … Справочник технического переводчика
    АЛЛОТРОПИЯ — свойство некоторых хим. элементов в свободном виде существовать в нескольких видоизменениях (модификациях), различных по строению кристаллической решетки, физ. и хим. свойствам, напр. углерод существует в виде угля, графита и алмаза … Большая политехническая энциклопедия
    Аллотропия — Алмаз и графит аллотропические формы углерода, отличающиеся строением кристаллической решётки Аллотропия (от др. греч … Википедия
    аллотропия — и; ж. [от греч. allos другой и tropos поворот, направление]. Существование одного и того же химического элемента в виде двух или нескольких простых веществ, различных по строению и свойствам. ◁ Аллотропический, ая, ое. Графит и алмаз являются… … Энциклопедический словарь
    АЛЛОТРОПИЯ — существование химических элементов в двух или более молекулярных либо кристаллических формах. Например, аллотропами являются обычный кислород O2 и озон O3; в этом случае аллотропия обусловлена образованием молекул с разным числом атомов. Чаще… … Энциклопедия Кольера

  8. biformis Ответить


    Начало

    Поиск по сайту

    ТОПы

    Учебные заведения

    Предметы

    Проверочные работы

    Обновления

    Новости

    Переменка
    Отправить отзыв

  9. OLBY Ответить


    Начало

    Поиск по сайту

    ТОПы

    Учебные заведения

    Предметы

    Проверочные работы

    Обновления

    Новости

    Переменка
    Отправить отзыв

  10. redmixxx7777 Ответить

    Понятие А. введено в науку Берцелиусом (“Jahresb.”, 1841, стр. 13. “L. A.”, 49, 247 [1844]; ср. Изомерия) для обозначения изомерных видоизменений элементов; одновременно он предполагал, по-видимому, применить его и к изомерии соединений, если судить по словам: “Может быть несколько причин того, что мы называем изомерией, а именно: 1) А., если… пример двух железных колчеданов обусловлен содержанием в одном Sα, а в другом Sβ [Знаками α и β Берцелиус отличил аллотропические видоизменения серы.]; 2) различное относительное положение атомов в соединении… и 3) в некоторых случаях и А., и неодинаковое положение атомов”. В настоящее время понятие А. большею частью прилагается к “изомерии” элементов; иногда, впрочем, говорят и об А. соединений, подразумевая при этом так называемую “физическую” изомерию, и наконец, только в самое последнее время в “твердых растворах” мы тоже возвратились к взгляду Берцелиуса и объясняем “изомерию”, напр. стали (при различных условиях закалки), предсуществованием в ней аллотропических форм железа.
    Число известных случаев А. громадно. Между элементами они главным образом наблюдены для металлоидов. Только для галоидов (F, Cl, Br и J) их неизвестно, если не принимать, однако, взгляда Лемана (см. ниже). Для металлоидов VI вертикальной группы периодической системы Менделеева известны явления А.: для кислорода (озон — см.), серы (см.) и селена (см.), но не теллура. Об А. металлоидов V группы см. Азот и Фосфор; для мышьяка известны теперь тоже три аллотропич. формы, а именно: 1) желтый прозрачный мышьяк, кристаллизующийся в правильной системе (в ромбических додекаэдрах), растворимый порядочно в сероуглероде и хуже в бензоле, глицерине и жирных маслах, быстро переходящий на свету и при нагревании во 2-е видоизменение (Schuller; Retgers, “Z. an. Gh.”, 1894; Mc. Leod, “Chem. News”, 70 и Linck, “Berl. Ber.”, 1899); 2) мышьяк, кристаллизующийся в гексагональных ромбоэдрах, просвечивающий, отвечающий красному фосфору, и 3) мышьяк, тоже кристаллизующийся в гексагональных ромбоэдрах, но не просвечивающий, с металлическим серебристо-белым блеском, отвечающий металлическому фосфору (см. Retgers, “Z. an. Ch.”, 1893 и XX, 287); для сурьмы аллотропич. форм неизвестно, и так назыв. “взрывчатая”, или аморфная, сурьма оказывается содержащей значительный количества треххлористой сурьмы (E. Cohen u. W. E. Ringer, “Z. ph. Ch.”, 1904). В IV группе аллотропические формы известны для углерода (см.), кремния (см.) и в III для бора (см.). Случаев А. металлов известно пока мало; наиболее изучены аллотропические формы олова (см.) и железа (см.; ср. Retgers, “Zeit. ph. Ch.”, 1894), но имеются еще указания на полиморфизм цинка, иридия, палладия, серебра (?) и золота (?) (Arzruni, “Beziehungen zw. Krystallform u. ch. Zusammensetzung”, 3 ч. 1-го т. Graham-Otto’s “Ausführl. Lehrb. d. Ch.”, стр. 36 [1898]; ср. еще M. И. Коновалов, “О видоизменениях (А.) простых тел или элементов”, “Речи и отчеты Моск. Сельскохоз. Инст.” за 1899 г. и E. Petersen, “Zeitsch. ph. Ch.”, 1891). — Что касается А. химически сложных тел, то вопрос и для них сводится обыкновенно на явления полиморфизма (см.), так как химических различий в большинстве случаев для них не известно [“Диморфные вещества, по моему мнению, — говорит Пастер, — изомерные вещества с очень мало различным расположением молекул; потому и химические свойства их мало изменены”.]. Более известные случаи полиморфизма неорганических веществ указаны в ст. Полиморфизм; из органических веществ полиморфизм наблюден на бензофеноне, уксуснокислом изогидробензоине (Цинке), дибромопропионовой кисл. (Толленс), толилфенилкетоне (фан Дорп, Цинке), метахлорнитробензоле, хлординитробензоле (1, 3, 4) (Лаубенгеймер), бромистом углероде (Леман) и мн. других (список у Arzruni. 1. с., 55—58; более новые данные у Tammann’a, “Kristallisieren u. Schmelzen”, Лпц., 1903). Никакой связи между полиморфизмом и составом пока не удалось установить, что, вероятно, находит объяснение в отрывочности имеющихся наблюдений (систематичны только работы Тамманна). Что касается общих условий полиморфизма (аллотропии), то достаточно указать, что явление это связано с твердым (кристаллическим) состоянием материи и неизвестно для аморфного (жидкого), и что потому пары (?), растворы и жидкости (?), полученные плавлением аллотропных форм, тождественны; что из двух аллотропных форм одна обыкновенно находится в малоустойчивом состоянии по отношению к другой (метастабильное состояние Оствальда; оно может быть довольно постоянным благодаря пассивным сопротивлениям); только при температуре (и давлении) точки перехода обе формы одинаково устойчивы, но возможность осуществления этой последней (точки перехода) зависит от того, имеется ли случай “энантио”- или “монотропии” (см.). Исчерпывается ли возможное разнообразие только этими двумя типами, нельзя еще считать окончательно установленным, судя по многим опытным данным (ср. Энолизация); возможно, однако, что усложнение (сравнительно с теорией) кажущееся, обусловленное медленностью превращений (W. Bancroft, “Journ. Ph. Ch.”, 1898; P. Duhem, “Zeitschr. ph. Ch.”, 1897). В заключение замечу, что факторами, вызывающими то или другое аллотропическое превращение, являются, при данной природе превращающегося тела, изменения температуры и давления; все такие превращения подчинены правилу фаз (см.), и, смотря по тому, имеем ли мы дело с ин- или унивариантными системами, мы можем отождествить наблюдаемые явления или с плавлением системы из одного слагаемого (конденсированные системы фан’т Гоффа, системы инвариантные), или с испарением однородной жидкости в замкнутом пространстве (при сосуществовании жидкости и пара — система унивариантная). Едва ли есть потому необходимость, как это делает Леман (Lehmaon, “Molekularphysik”, I, 605—703), предполагать, что “твердое и жидкое состояние (одного и того же
    тела) представляют химически различные тела”, что “в сущности, плавление представляет химическое разложение, а застывание — обратное образование” первоначального твердого тела, что “ни одно тело не обладает более, чем одним агрегатным состоянием, а так называемые три агрегатных состояния одного тела фактически суть три химически различных тела, хотя порядка не атомных, а молекулярных изомеров”. Взгляд Лемана имеет, однако, сторонников между минералогами и изложен у Браунса (“Химическая минералогия”, пер. Белянкина. под ред. Левинсона-Лессинга, 175—180 [1904]; его критику см. К. Schaum, “Die Arten der Isomerie”, Марбург, 4—13 [1897]).

  11. Alligator20 Ответить

    Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь
    Внутримолекулярные химические связи
    Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными.
    Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов, в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.
    Ключевое понятие здесь – ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ. Именно она определяет тип химической связи между атомами и свойства этой связи.
    Электроотрицательность ? – это способность атома притягивать (удерживать) внешние (валентные) электроны. Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.
    Электроотрицательность сложно определить однозначно. Л.Полинг составил таблицу относительных электроотрицательностей (на основе энергий связей двухатомных молекул). Наиболее электроотрицательный элемент – фтор со значением 4.

    Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль разность электроотрицательностей атомов, а она примерно одинакова в любой системе.
    Если один из атомов в химической связи  А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.
    Если значения электроотрицательностей взаимодействующих атомов равны или примерно равны: ЭО(А)?ЭО(В), то общая электронная пара не смещается ни к одному из атомов: А : В. Такая связь называется ковалентной неполярной.
    Если электроотрицательности взаимодействующих атомов отличаются, но не сильно (разница электроотрицательностей примерно от 0,4 до 2: 0,4< ?ЭО<2), то электронная пара смещается к одному из атомов. Такая связь называется ковалентная полярная.
    Если электроотрицательности взаимодействующих атомов отличаются существенно (разница электроотрицательностей больше 2: ?ЭО>2), то один из электронов практически полностью  переходит к другому атому, с образованием ионов. Такая связь называется ионная.
    Основные типы химических связей — ковалентная, ионная и металлическая связи. Рассмотрим их подробнее.

    Ковалентная химическая связь


    Ковалентная связь – это химическая связь, образованная за счет образования общей электронной пары А:В. При этом у двух атомов перекрываются атомные орбитали. Ковалентная связь образуется при взаимодействии атомов с небольшой разницей электроотрицательностей (как правило, между двумя неметаллами) или атомов одного элемента.

    Основные свойства ковалентных связей

    направленность,
    насыщаемость,
    полярность,
    поляризуемость.
    Эти свойства связи влияют на химические и физические свойства веществ.
    Направленность связи характеризует химическое строение и форму веществ. Углы между двумя связями называются валентными. Например, в молекуле воды валентный угол H-O-H равен 104,45о, поэтому молекула воды — полярная, а в молекуле метана валентный угол Н-С-Н 108о28?.

    Насыщаемость — это спосбность атомов образовывать ограниченное число ковалентных химических связей. Количество связей, которые способен образовывать атом, называется валентностью.
    Полярность связи возникает из-за неравномерного распределения электронной плотности между двумя атомами с различной электроотрицательностью. Ковалентные связи делят на полярные и неполярные.
    Поляризуемость связи — это способность электронов связи смещаться под действием внешнего электрического поля (в частности, электрического поля другой частицы). Поляризуемость зависит от подвижности электронов. Чем дальше электрон находится от ядра, тем он более подвижен, соответственно и молекула более поляризуема.

    Ковалентная неполярная химическая связь

    Существует 2 вида ковалентного связывания – ПОЛЯРНЫЙ и НЕПОЛЯРНЫЙ.
    Пример. Рассмотрим строение молекулы водорода H2. Каждый атом водорода на внешнем энергетическом уровне несет 1 неспаренный электрон. Для отображения атома используем структуру Льюиса – это схема строения внешнего энергетического уровня атома, когда электроны обозначаются точками. Модели точечных структур Люьиса неплохо помогают при работе с элементами второго периода.

    H. + .H = H:H 

    Таким образом, в молекуле водорода одна общая электронная пара и одна химическая связь H–H. Эта электронная пара не смещается ни к одному из атомов водорода, т.к. электроотрицательность у атомов водорода одинаковая. Такая связь называется ковалентной неполярной.

    Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.

    Дипольный момент неполярных связей равен 0.
    Примеры: H2 (H-H), O2 (O=O), S8.

    Ковалентная полярная химическая связь

    Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).
    Электронная плотность смещена к более электроотрицательному атому – следовательно, на нем возникает частичный отрицательный заряд (?-), а на менее электроотрицательном атоме возникает частичный положительный заряд (?+, дельта +).

    Чем больше различие в электроотрицательностях атомов, тем выше полярность связи и тем больше дипольный момент. Между соседними молекулами и противоположными по знаку зарядами действуют дополнительные силы притяжения, что увеличивает прочность связи.
    Полярность связи влияет на физические и химические свойства соединений. От полярности связи зависят механизмы реакций и даже реакционная способность соседних связей. Полярность связи зачастую определяет полярность молекулы и, таким образом, непосредственно влияет на такие физические свойства как температуре кипения и температура плавления, растворимость в полярных растворителях.
    Примеры: HCl, CO2, NH3.

    Механизмы образования ковалентной связи

    Ковалентная химическая связь может возникать по 2 механизмам:
    1. Обменный механизм образования ковалентной химической связи – это когда каждая частица предоставляет для образования общей электронной пары один неспаренный электрон:

    А. + .В= А:В

    2. Донорно-акцепторный механизм образования ковалентной связи – это такой механизм, при котором одна из частиц предоставляет неподеленную электронную пару, а другая частица предоставляет вакантную орбиталь для этой электронной пары:

    А: +  B= А:В


    При этом один из атомов предоставляет неподеленную электронную пару (донор), а другой атом предоставляет вакантную орбиталь для этой пары (акцептор). В результате образования связи оба энергия электронов уменьшается, т.е. это выгодно для атомов.
    Ковалентная связь, образованная по донорно-акцепторному механизму, не отличается по свойствам от других ковалентных связей, образованных по обменному механизму. Образование ковалентной связи по донорно-акцепторному механизму характерно для атомов либо с большим числом электронов на внешнем энергетическом уровне (доноры электронов), либо наоборот, с очень малым числом электронов (акцепторы электронов). Более подробно валентные возможности атомов рассмотрены в соответствующей статье.
    Ковалентная связь по донорно-акцепторному механизму образуется:
    – в молекуле угарного газа CO (связь в молекуле – тройная, 2 связи образованы по обменному механизму, одна – по донорно-акцепторному): C?O;
    – в ионе аммония NH4+, в ионах органических аминов, например, в ионе метиламмония CH3-NH2+;
    – в комплексных соединениях, химическая связь между центральным атомом и группами лигандов, например, в тетрагидроксоалюминате натрия Na[Al(OH)4] связь между алюминием и гидроксид-ионами;
    – в азотной кислоте и ее солях — нитратах: HNO3, NaNO3, в некоторых других соединениях азота;

    – в молекуле озона O3.

    Основные характеристики ковалентной связи

    Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия, кратность и направленность.
    Кратность химической связи
    Кратность химической связи — это число общих электронных пар между двумя атомами в соединении. Кратность связи достаточно легко можно определить из значения валентности атомов, образующих молекулу.
    Например, в молекуле водорода H2 кратность связи равна 1, т.к. у каждого водорода только 1 неспаренный электрон на внешнем энергетическом уровне, следовательно, образуется одна общая электронная пара.
    В молекуле кислорода O2 кратность связи равна 2, т.к. у каждого атома на внешнем энергетическом уровне есть по 2 неспаренных электрона: O=O.

    В молекуле азота N2 кратность связи равна 3, т.к. между у каждого атома по 3 неспаренных электрона на внешнем энергетическом уровне, и атомы образуют 3 общие электронные пары N?N.

    Длина ковалентной связи
    Длина химической связи – это расстояние между центрами ядер атомов, образующих связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно примерно, по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А2 и В2:

    Длину химической связи можно примерно оценить по радиусам атомов, образующих связь, или по кратности связи, если радиусы атомов не сильно отличаются.
    При увеличении радиусов атомов, образующих связь, длина связи увеличится.
    Например.  В ряду: C–C, C=C, C?C  длина связи уменьшается.
    Связь
    Длина связи, нм
    H-F
    0,092
    H-Cl
    0,128
    H-Br
    0,142
    H-I
    0,162
    При увеличении кратности связи между атомами (атомные радиусы которых не отличаются, либо отличаются незначительно) длина связи уменьшится.
    Например.  В ряду: C–C, C=C, C?C  длина связи уменьшается.
    Связь
    Длина связи, нм
    С–С
    0,154
    С=С
    0,133
    С?С
    0,120
    Энергия связи
    Мерой прочности химической  связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга.
    Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Чем больше энергия связи, тем больше прочность связи, и наоборот.
    Прочность химической связи зависит от длины связи, полярности связи и кратности связи. Чем длиннее химическая связь, тем легче ее разорвать, и тем меньше энергия связи, тем ниже ее  прочность. Чем короче химическая связь, тем она прочнее, и тем больше энергия связи.
    Например, в ряду соединений HF, HCl, HBr слева направо прочность химической связи уменьшается, т.к. увеличивается длина связи.

    Ионная химическая связь


    Ионная связь — это химическая связь, основанная на электростатическом притяжении ионов.
    Ионы образуются в процессе принятия или отдачи электронов атомами. Например, атомы всех металлов слабо удерживают электроны внешнего энергетического уровня. Поэтому для атомов металлов характерны восстановительные свойства — способность отдавать электроны.

    Пример. Атом натрия содержит на 3 энергетическом уровне 1 электрон. Легко отдавая его, атом натрия образует гораздо более устойчивый ион Na+, с электронной конфигурацией благородного газа неона Ne. В ионе натрия содержится 11 протонов и только 10 электронов, поэтому суммарный заряд иона -10+11 = +1:

    +11Na )2)8)1 — 1e = +11Na+ )2)8

    Пример. Атом хлора на внешнем энергетическом уровне содержит 7 электронов. Чтобы приобрести конфигурацию стабильного инертного атома аргона Ar, хлору необходимо присоединить 1 электрон. После присоединения электрона образуется стабильный ион хлора, состоящий из электронов. Суммарный заряд иона равен -1:

    +17Cl )2 )8 )7 + 1e = +17Cl— )2 )8 )8

    Обратите внимание:

    Свойства ионов отличаются от свойств атомов!
    Устойчивые ионы могут образовывать не только атомы, но и группы атомов. Например: ион аммония NH4+, сульфат-ион SO42- и др. Химические связи, образованные такими ионами, также считаются ионными;
    Ионную связь, как правило, образуют между собой металлы и неметаллы (группы неметаллов);
    Образовавшиеся ионы притягиваются за счет электрического притяжения: Na+Cl—, Na2+ SO42-.
    Наглядно обобщим различие между ковалентными и ионным типами связи:

    Металлическая химическая связь


    Металлическая связь — это связь, которую образуют относительно свободные электроны между ионами металлов, образующих кристаллическую решетку.
    У атомов металлов на внешнем энергетическом уровне обычно расположены от одного до трех электронов. Радиусы у атомов металлов, как правило, большие — следовательно, атомы металлов, в отличие от неметаллов, достаточно легко отдают наружные электроны, т.е. являются сильными восстановителями.
    Отдавая электроны, атомы металлов превращаются в положительно заряженные ионы. Оторвавшиеся электроны относительно свободно перемещаются между положительно заряженными ионами металлов. Между этими частицами возникает связь, т.к. общие электроны удерживают катионы металлов, расположенные слоями,  вместе, создавая таким образом достаточно прочную  металлическую  кристаллическую решетку. При этом электроны непрерывно хаотично двигаются, т.е. постоянно возникают новые нейтральные атомы и новые катионы.

    Межмолекулярные взаимо-действия
    Отдельно стоит рассмотреть взаимодействия, возникающие между отдельными молекулами в веществе — межмолекулярные взаимодействия. Межмолекулярные взаимодействия — это такой вид взаимодействия между нейтральными атомами, при котором не появляеются новые ковалентные связи. Силы взаимодействия между молекулами обнаружены Ван-дер Ваальсом в 1869 году, и названы в честь него Ван-дар-Ваальсовыми силами. Силы Ван-дер-Ваальса делятся на ориентационные, индукционные и дисперсионные. Энергия межмолекулярных взаимодейстий намного меньше энергии химической связи.
    Ориентационные силы притяжения возникают между полярными молекулами (диполь-диполь взаимодействие). Эти силы возникают между полярными молекулами. Индукционные взаимодействия — это взаимодействие между полярной молекулой и неполярной. Неполярная молекула поляризуется из-за действия полярной, что и порождает дополнительное электростатическое притяжение.
    Особый вид межмолекулярного взаимодействия — водородные связи. Водородные связи — это межмолекулярные (или внутримолекулярные) химические связи, возникающие между молекулами, в которых есть сильно полярные ковалентные связи — H-F, H-O или H-N. Если в молекуле есть такие связи, то между молекулами будут возникать дополнительные силы притяжения.
    Механизм образования водородной связи частично электростатический, а частично — донорно–акцепторный. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором — атомы водорода, соединенные с этими атомами. Для водородной связи характерны направленность в пространстве и насыщаемость.
    Водородную связь можно обозначать точками: Н ··· O. Чем больше электроотрицательность атома, соединенного с водородом, и чем меньше его размеры, тем крепче водородная связь. Она характерна прежде всего для соединений фтора с водородом, а также кислорода с водородом, в меньшей степени азота с водородом.

    Водородные связи возникают между следующими веществами:
    фтороводород HF (газ, раствор фтороводорода в воде — плавиковая кислота), вода H2O (пар, лед, жидкая вода):
    раствор аммиака и органических аминов — между молекулами аммиака и воды;
    органические соединения, в которых связи O-H или N-H: спирты, карбоновые кислоты, амины, аминокислоты, фенолы, анилин и его производные, белки, растворы углеводов — моносахаридов и дисахаридов.
    Водородная связь оказывает влияние на физические и химические свойства веществ. Так, дополнительное притяжение между молекулами затрудняет кипение веществ. У веществ с водородными связями наблюдается аномальное повышение тепературы кипения.
    Например, как правило, при повышении молекулярной массы наблюдается повышение температуры кипения веществ. Однако в ряду веществ H2O-H2S-H2Se-H2Te мы не наблюдаем линейное изменение температур кипения.

    А именно, у воды температура кипения аномально высокая — не меньше -61оС, как показывает нам прямая линия, а намного больше, +100 оС. Эта аномалия объясняется наличием водородных связей между молекулами воды. Следовательно, при обычных условиях (0-20оС) вода является жидкостью по фазовому состоянию.

  12. hitmanbobo Ответить

    АЛЛОТРОПИЯ
    существование химических элементов в двух или более молекулярных либо кристаллических формах. Например, аллотропами являются обычный кислород O2 и озон O3; в этом случае аллотропия обусловлена образованием молекул с разным числом атомов. Чаще всего аллотропия связана с образованием кристаллов различных модификаций. Углерод существует в двух четко различающихся кристаллических аллотропных формах: в виде алмаза и графита. Раньше полагали, что т.н. аморфные формы углерода, древесный уголь и сажа, – тоже его аллотропные модификации, но оказалось, что они имеют такое же кристаллическое строение, что и графит. Сера встречается в двух кристаллических модификациях: ромбической (a-S) и моноклинной (b-S); известны по крайней мере три ее некристаллические формы: l-S, m-S и фиолетовая.
    Для фосфора хорошо изучены белая и красная модификации, описан также черный фосфор; при температуре ниже -77° С существует еще одна разновидность белого фосфора. Обнаружены аллотропные модификации As, Sn, Sb, Se, а при высоких температурах – железа и многих других элементов.
    Энантиотропные и монотропные формы. Кристаллические модификации химического элемента могут переходить одна в другую по-разному, что можно проиллюстрировать на примерах серы и фосфора. При обычной температуре стабильной является ромбическая модификация серы, которая при нагревании до 95,6° С и давлении 1 атм переходит в моноклинную форму. Последняя при охлаждении ниже 95,6° С вновь переходит в ромбическую форму. Таким образом, переход одной формы серы в другую происходит при одной и той же температуре, и сами формы называются энантиотропными. Другая картина наблюдается для фосфора. Белая его форма может превращаться в красную почти при любой температуре. При температурах ниже 200° С процесс протекает очень медленно, но его можно ускорить с помощью катализатора, например иода. Обратный же переход красного фосфора в белый невозможен без образования промежуточной газовой фазы. Красная форма стабильна во всем диапазоне температур, где она находится в твердом состоянии, тогда как белая нестабильна при любой температуре (метастабильна). Переход из нестабильной формы в стабильную в принципе возможен при любой температуре, а обратный – нет, т.е. определенная точка перехода отсутствует. Здесь мы имеем дело с монотропными модификациями элемента. Две известные модификации олова энантиотропны. Модификации углерода – графит и алмаз – монотропны, причем стабильной является форма графита. Красная и белая формы фосфора монотропны, а две белые его модификации энантиотропны, температура перехода равна -77° С при давлении 1 атм.
    ЛИТЕРАТУРА
    Эддисон У. Аллотропия химических элементов. М., 1966
    Энциклопедия Кольера. — Открытое общество.
    2000.

  13. Oleksandrtsyma@gmail.com Ответить

    Смотреть что такое “АЛЛОТРОПИЯ” в других словарях:

    аллотропия — аллотропия … Орфографический словарь-справочник
    АЛЛОТРОПИЯ — (от алло… и греч. tropos поворот свойство), существование химических элементов в виде двух или более простых веществ. Может быть обусловлена образованием молекул с различным числом атомов (напр., кислород O2 и озон O3) либо кристаллов различных … Большой Энциклопедический словарь
    АЛЛОТРОПИЯ — АЛЛОТРОПИЯ, свойство некоторых химических элементов, позволяющее им существовать в двух или более различных физических формах. Каждая форма (называемая аллотропом) может иметь различные химические свойства, но способна превратиться и в другой… … Научно-технический энциклопедический словарь
    АЛЛОТРОПИЯ — полиморфизм элементов (углерод, сера и др.). Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
    АЛЛОТРОПИЯ — (от греч. allos иной и tropos образ), свойство некоторых хим. элементов существовать в нескольких видоизменениях, различных по физ. и хим. свойствам. Причины А.: полимерия (см.) различное число атомов в молекуле (напр., у О, S, Р), различное… … Большая медицинская энциклопедия
    аллотропия — Существование одного и того же химич. элемента в виде двух или нескольких простых вещ в, разных по строению и свойствам, т.н. аллотропич. модификаций. А. м. б. результатом образования разных кристаллич. форм (напр., фа фит и алмаз, a Fe и y Fe)… … Справочник технического переводчика
    АЛЛОТРОПИЯ — свойство некоторых хим. элементов в свободном виде существовать в нескольких видоизменениях (модификациях), различных по строению кристаллической решетки, физ. и хим. свойствам, напр. углерод существует в виде угля, графита и алмаза … Большая политехническая энциклопедия
    Аллотропия — Алмаз и графит аллотропические формы углерода, отличающиеся строением кристаллической решётки Аллотропия (от др. греч … Википедия
    аллотропия — и; ж. [от греч. allos другой и tropos поворот, направление]. Существование одного и того же химического элемента в виде двух или нескольких простых веществ, различных по строению и свойствам. ◁ Аллотропический, ая, ое. Графит и алмаз являются… … Энциклопедический словарь
    АЛЛОТРОПИЯ — существование химических элементов в двух или более молекулярных либо кристаллических формах. Например, аллотропами являются обычный кислород O2 и озон O3; в этом случае аллотропия обусловлена образованием молекул с разным числом атомов. Чаще… … Энциклопедия Кольера

  14. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *