Как называется главный метод изучения внутреннего строения земли?

20 ответов на вопрос “Как называется главный метод изучения внутреннего строения земли?”

  1. Gravelweaver Ответить

    Геологические методы.
    Одним из главных геологических методов является метод непосредственного наблюдения и всестороннего исследования вещества слагающего земную кору. Он основан на изучении естественных обложениях горных пород на склонах, горах, равнин, морей, керно-буровых скважинах.
    Геофизические методы.
    + Возможность изучения больших глубин.
    – Являются косвенными (они дают представление о размещении внутри Земли не горных пород различного состава, а масс с различными физическими свойствами.
    Предназначены для выявления физических полей и не объясняют закономерности размещения вещества, так как одними и теми же физическими свойствами могут обладать разные горные породы, а расшифровка геофизических результатов неоднозначна.
    1. Сейсмический метод.
    – основан на изучении скорости распределения упругих волн, которые возникают при землетрясениях или искусственных взрывах.
    Используют 2 типа волн:
    Продольные. (Р-волны (первичные)) – самые быстрые. Возникают как реакциясреды на изменение объема. Распространены в жидких и теплых телах.
    Поперечные. (S-волны (вторичные)) – боле медленные, представляют собой реакцию среды на изменение формы. Распространяются в твёрдых телах.
    5,52 г/см3 – средняя плотность Земли.
    2,72 г/см3 – средняя плотность земной коры.
    2. Гравиметрический метод.
    – изучается поле силы тяжести, зависящее от расположения масс с различной плотностью внутри земного шара.
    3.  Магнитометрический метод.
    – исследуется магнитное поле Земли, зависящее от размещения масс с различными магнитными свойствами.
    4.  Геотермический метод.
    – основан на изучении теплового поля  Земли, степени и характера распределения температур с глубиной и величины теплового потока направления и внутренних частей Земли к поверхности.
    5.  Метод  актуализма.
    – один из методологических подходов в естественных науках. Он опирается на принцип однообразия, по которому геологические процессы, происходящие в прошлые геологические эпохи, и явления вызывавшиеся этими процессами, имеют много общего с современными

  2. Ludinnapa Ответить

    Всем хорошо известны эти методы, однако далеко не все представляют их возможности и масштабы. Скважины глубиной 3—7 км считаются глубокими, более 7 км — сверхглубокими. Практически все они пробурены в научных целях. Самая глубокая в мире Кольская сверхглубокая скважина глубиной 12 262 м была пробурена в Советском Союзе. Бурение было начато в 1970 г., прерывалось из-за аварий и прекращено в 1992 г. Первоначально предполагалось пробурить 15 км.
    Бурение глубоких скважин — очень дорогое и продолжительное мероприятие. Бурение в научных целях усложняется необходимостью постоянного отбора образцов пород, поэтому оно под силу только богатым странам с развитой экономикой.
    В мире сооружается довольно много (сотни в год) менее глубоких (от сотен метров до нескольких километров), но тоже довольно значительных скважин для поиска и добычи нефти, газа и других полезных ископаемых. В год сооружаются многие тысячи скважин для водоснабжения и изысканий. Изыскательские скважины имеют целью изучение разреза и отбор образцов для проектирования и строительства. Их глубина — от нескольких метров до нескольких десятков метров. Любые скважины весьма полезны для изучения глубинного строения Земли, особенно тем, что позволяют непосредственно получать образцы пород, но одного бурения явно недостаточно.
    Горные выработки — шахты и карьеры. Они дают очень много полезной информации, горные породы в них доступны для непосредственного наблюдения и изучения, но их глубина обычно составляет десятки-сотни метров и редко превышает 1 км.

    Схема Кольской сверхглубокой скважины


    0-7 км, PR – вулканические породы(диабазы) песчаники, доломиты ; после 7 км, AR – гнейсы, амфиболиты, стволы скважины разошлись на 300м.

    Обнажения горных пород на склонах

    Обнажением называется участок выхода на поверхность геологического тела, перекрытого в других местах вышележащими породами.
    При необходимости площадь обнажения можно увеличить, сделав расчистку. Обнажения позволяют подробно изучить горные породы, но глубина, на которую при этом можно заглянуть, определяется глубиной эрозионного вреза и лишь в редчайших случаях превышает 1 км.

    Геофизические методы

    Геофизика — раздел геологии, основанный на изучении физических свойств горных пород, геологических тел и Земли в целом. Геофизика имеет несколько направлений, весьма эффективных при поиске полезных ископаемых, — это электроразведка, магниторазведка, радиоразведка, гравиметрия, каротаж скважин и др. Методы являются косвенными, так как измеряются только физические параметры, а конкретные образцы горных пород на поверхность не извлекаются. При изучении глубинного строения Земли основным является вклад сейсморазведки. Глубинность методов составляет сотни и тысячи километров. Вкратце поясним суть сейсмических методов.

    Обнажения пород на склоне


    2 и 3 — открытые для наблюдения пласты; для изучения пластов 1, 4 и 5 требуются расчистки
    Если на поверхности Земли произвести взрыв или просто сильный механический удар, внутри геологической среды возникнет сейсмическая волна, которая будет распространяться в глубь горных пород. При достижении геологических границ, где одна порода сменяет другую, сейсмическая волна частично проходит дальше и частично отражается от каждой геологической границы и возвращается на поверхность.
    Если поставить соответствующее оборудование и измерить время, через которое сейсмическая волна вернется на поверхность, то, зная скорость прохождения сейсмической волны через горные породы различного состава, можно вычислить глубину залегания геологической границы. Зная положение геологических границ, можно вычислить скорости прохождения сейсмических волн через породы различного состава.
    За счет различных приемов удается определить положение не одной, а многих геологических границ, в том числе и очень глубоко залегающих, совершенно недоступных, например, для бурения. В целом разрез расчленяется на основе выделения пластов с различной скоростью прохождения сейсмических волн. Критерием правильности сейсмических методов является их эффективность при поиске нефтегазовых и других месторождений.

    Схема сейсмических методов в геофизике


    Приводимые в последующих главах схемы строения Земли и земной коры построены на основе сейсмических методов. Геофизические работы намного дешевле бурения, они выполняются быстрее, поэтому на практике те и другие работы обычно применяются в комплексе, дополняя друг друга. Полагают, что выводы, сделанные только на основе геофизических поисков, не могут считаться окончательно подтвержденными, однако для построений, касающихся глубин более 10 км, сейсмические источники являются единственными.

    Магматические породы и современная магма

    Считается, что магма приходит с глубин в сотни километров, однако не следует считать, что она точно представляет состав находящегося там вещества.

    Залегание магматических пород


    При движении вверх магма расплавляет находящиеся на ее пути породы, из-за этого сильно изменяется ее состав, поэтому соображения о ее начальном составе могут быть лишь примерными, однако полученные геологические данные безусловно используются в практике.

    Тектонически поднятый блок земной коры (на рисунке справа)


    слой 5 показывает амплитуду поднятия
    На рисунке показано залегание горных пород и поднятый по разлому тектонический блок. Амплитуда таких поднятий может составлять километры. В земной коре имеются регионы с подобным блоковым строением, сложенные очень древними породами и практически не перекрытые сверху более молодыми образованиями.

    Космические данные

    Материал горных пород, находящийся на глубинах, превышающих глубинность бурения или амплитуду поднятия блоков земной коры, недоступен для конкретного исследования. Стремясь как-то оценить химический состав Земли, геологи обращаются к; данным о составе метеоритов, лунного грунта и планет земной группы.
    Итак, при изучении строения Земли на глубины (несколько километров) используются различные источники информации, но чем больше глубина, тем информации становится меньше. Для глубин примерно от 10 км до центра Земли единственный источник информации — сейсмические данные геофизики. Иллюстрация внутреннего строения Земли представлена на рисунке ниже.
    Как можно видеть в ее строении выделяется несколько внутренних оболочек, называемых геосферами — земная кора, верхняя и нижняя мантия, внешнее и внутреннее ядро.

    Внутреннее строение земли

  3. Balladosius Ответить

    Сейсмический метод дает возможность «проникнуть» на большие глубины.
    В основе этого метода лежит представление о том, что сейсмические волны (от греческого сейсмос – волна, колебание) в средах разной плотности распространяются с неодинаковой скоростью: чем плотнее среда, тем больше скорость. На границе двух сред часть волн отражается и подобно кругам на воде идет обратно, а другая – распространяется дальше.
    Искусственно возбуждая волны на поверхности Земли путем взрывов, сейсмологи фиксируют время, за которое отраженные волны вернулись назад. Для этих целей применяется прибор-самописец – сейсмограф.
    Различают два вида сейсмических волн – продольные и поперечные. Продольные распространяются во всех средах – твердых, жидких и газообразных, а поперечные – только в твердой среде.
    Зная, с какой скоростью распространяются волны в песках, глинах, гранитах, базальтах и других породах, по времени их прохождения «туда и обратно» можно определить глубину залегания пород, различающихся по плотности.
    § 16. Внутреннее строение Земли
    Если бы Земля была однородным телом, то сейсмические волны распространялись бы с одинаковой скоростью, прямолинейно и не отражались.
    В действительности же скорость волн неодинакова и изменяется скачкообразно. Так, на глубине около 60 км их скорость «неожиданно» увеличивается с 5 до 8 км/с. На отметке 2900 км она возрастет до 13 км/с, затем вновь падает до 8 км/с. Ближе к центру Земли зафиксировано возрастание скорости продольных волн до 11 км/с. Поперечные волны глубже 2900 км не проникают.
    Резкое изменение скорости сейсмических волн на глубинах 60 и 2900 км позволило сделать вывод о скачкообразном увеличении плотности вещества Земли и выделить три ее части – литосферу, мантию и ядро.
    Поперечные волны проникают до глубины 4000 км и затухают, что свидетельствует о том, что ядро Земли неоднородно по плотности и внешняя его часть «жидкая», а внутренняя представляет собой твердое тело (рис. 18).
    Литосфера. Литосфера (от греческого литос – камень и сфера – шар) – верхняя, каменная оболочка твердой Земли, имеющая сферическую форму. Глубина литосферы достигает более 80 км, в нее включают и верхнюю мантию (с. 60) – астеносферу, служащую субстратом, на котором расположена основная часть литосферы. Вещество астеносферы находится в пластическом (переходном между твердыми телами и жидкостью) состоянии. В результате основание литосферы как бы плавает в субстрате верхней мантии.
    Земная кора. Верхнюю часть литосферы называют земной корой. Внешняя граница земной коры – поверхность ее соприкосновения с гидросферой и атмосферой, нижняя проходит на глубине 8-75 км и называется слоем или разделом Мохоровичича[1].
    Положение земной коры между мантией и внешними оболочками – атмосферой, гидросферой и биосферой – обусловливает воздействие на нее внешних и внутренних сил Земли.
    Строение земной коры неоднородно (рис. 19). Верхний слой, мощность которого колеблется от 0 до 20 км, сложен осадочными породами – песком, глиной, известняками и др. Это подтверждают данные, полученные при изучении обнажений и керна буровых скважин, а также результаты сейсмических исследований: породы эти рыхлые, скорость прохождения сейсмических волн невелика.
    Ниже, под материками, расположен гранитный слой, сложенный породами, плотность которых соответствует плотности гранита. Скорость прохождения сейсмических волн в этом слое, как и в гранитах, составляет 5,5–6 км/с.
    Под океанами гранитный слой отсутствует, а на материках в некоторых местах он выходит на дневную поверхность.
    Еще ниже расположен слой, в котором сейсмические волны распространяются со скоростью 6,5 км/с. Эта скорость характерна для базальтов, поэтому, несмотря на то что слой сложен разными породами, его называют базальтовым.
    Граница между гранитным и базальтовым слоями называется поверхностью Конрада[2]. Этому разделу соответствует скачок скорости сейсмических волн от 6 до 6,5 км/с.
    В зависимости от строения и мощности выделяют два вида коры – материковую и океаническую. Под материками кора содержит все три слоя – осадочный, гранитный и базальтовый. Ее мощность на равнинах достигает 15 км, а в горах увеличивается до 80 км, образуя «корни гор». Под океанами гранитный слой во многих местах вообще отсутствует, и базальты покрыты тонким чехлом осадочных пород. В глубоководных частях океана мощность коры не превышает 3–5 км, а ниже залегает верхняя мантия.
    Мантия. Это промежуточная оболочка, расположенная между литосферой и ядром Земли. Нижняя ее граница проходит предположительно на глубине 2900 км. На мантию приходится более половины объема Земли. Вещество мантии находится в перегретом состоянии и испытывает огромное давление вышележащей литосферы. Мантия оказывает большое влияние на процессы, происходящие на Земле. В верхней мантии возникают магматические очаги, образуются руды, алмазы и другие ископаемые. Отсюда же на поверхность Земли поступает внутреннее тепло. Вещество верхней мантии постоянно и активно перемещается, вызывая движение литосферы и земной коры.
    Ядро. В ядре различают две части: внешнюю, до глубины 5 тыс. км, и внутреннюю, до центра Земли. Внешнее ядро жидкое, так как через него не проходят поперечные волны, внутреннее – твердое. Вещество ядра, особенно внутреннего, сильно уплотнено и по плотности соответствует металлам, поэтому его и называют металлическим.
    § 17. Физические свойства и химический состав Земли
    К физическим свойствам Земли относят температурный режим (внутреннюю теплоту), плотность и давление.
    Внутренняя теплота Земли. По современным представлениям Земля после ее образования была холодным телом. Затем распад радиоактивных элементов постепенно разогревал ее. Однако в результате излучения тепла с поверхности в околоземное пространство происходило ее охлаждение. Образовались относительно холодная литосфера и земная кора. На большой глубине и сегодня высокие температуры. Рост температур с глубиной можно наблюдать непосредственно в глубоких шахтах и буровых скважинах, при извержении вулканов. Так, изливающаяся вулканическая лава имеет температуру 1200–1300 °C.
    На поверхности Земли температура постоянно изменяется и зависит от притока солнечного тепла. Суточные колебания температур распространяются до глубины 1–1,5 м, сезонные – до 30 м. Ниже этого слоя лежит зона постоянных температур, где они всегда остаются неизменными и соответствуют среднегодовым температурам данной местности на поверхности Земли.
    Глубина залегания зоны постоянных температур в разных местах неодинакова и зависит от климата и теплопроводности горных пород. Ниже этой зоны начинается повышение температур, в среднем на 30 °C через каждые 100 м. Однако величина эта непостоянна и зависит от состава горных пород, наличия вулканов, активности теплового излучения из недр Земли. Так, в России она колеблется от 1,4 м в Пятигорске до 180 м на Кольском полуострове.
    Зная радиус Земли, можно подсчитать, что в центре ее температура должна достигать 200 000 °C. Однако при такой температуре Земля превратилась бы в раскаленный газ. Принято считать, что постепенное повышение температур роисходит только в литосфере, а источником внутреннего тепла Земли служит верхняя мантия. Ниже рост температур замедляется, и в центре Земли она не превышает 50 000 °C.
    Плотность Земли. Чем плотнее тело, тем больше масса единицы его объема. Эталоном плотности принято считать воду, 1 см3 которой весит 1 г, т. е. плотность воды равна 1 г/с3. Плотность других тел определяется отношением их массы к массе воды такого же объема. Отсюда понятно, что все тела, имеющие плотность больше 1, тонут, меньше – плавают.
    Плотность Земли в разных местах неодинакова. Осадочные породы имеют плотность 1,5–2 г/см3, а базальты – более 2 г/см3. Средняя плотность Земли составляет 5,52 г/см3– это в 2 с лишним раза больше плотности гранита[3]. В центре Земли плотность слагающих ее пород возрастает и составляет 15–17 г/см3.
    Давление внутри Земли. Горные породы, находящиеся в центре Земли, испытывают огромное давление со стороны вышележащих слоев. Подсчитано, что на глубине всего лишь 1 км давление составляет 104гПа, а в верхней мантии оно превышает 6 * 104гПа. Лабораторные эксперименты показывают, что при таком давлении твердые тела, например мрамор, изгибаются и могут даже течь, т. е. приобретают свойства, промежуточные между твердым телом и жидкостью. Такое состояние веществ называют пластическим. Данный эксперимент позволяет утверждать, что в глубоких недрах Земли материя находится в пластическом состоянии.
    Химический состав Земли. В Земле можно найти все химические элементы таблицы Д. И. Менделеева. Однако количество их неодинаково, распределены они крайне неравномерно. Например, в земной коре кислород (О) составляет более 50 %, железо (Fе) – менее 5 % ее массы. Подсчитано, что базальтовый и гранитный слои состоят в основном из кислорода, кремния и алюминия, а в мантии возрастает доля кремния, магния и железа. В целом же принято считать, что на 8 элементов (кислород, кремний, алюминий, железо, кальций, магний, натрий, водород) приходится 99,5 % состава земной коры, а на все остальные – 0,5 %. Данные о составе мантии и ядра носят предположительный характер.

  4. OZATIDYSO Ответить

    Как правило, ученые производят визуальное наблюдение тех пород, что по каким-либо причинам обнажились. В первую очередь обращается внимание на структуру среза — какими породами представлены слои, их состав, порядок расположения и мощность. Изымаются образцы каждого слоя, которые впоследствии подлежат изучению в специальных лабораторных комплексах. Такой анализ чрезвычайно важен и позволяет определить ряд характеристик:
    возраст;
    химический состав;
    природу происхождения.
    Когда возникает необходимость исследования в определенном участке, то применяется бурение, в процессе которого изымаются пробы. Сопоставляя данные, что получены в результате анализа проб различной глубины, строятся геологические разрезы. Сопоставление ряда разрезов дает возможность определить характер залегания пород, а также составить соответствующую геологическую карту участка. Очевидно, что несмотря на ряд полученных данных, в масштабах планеты этого совершенно недостаточно. В этом случае применяется сейсмический метод, что дает возможность исследовать серьезные глубины.

    Сейсмический метод исследования

    Принцип метода состоит в следующем: вещества различной плотности по-разному проводят волны, а именно, чем выше плотность, тем и скорость прохождения волны будет выше. Что касается переходных областей вещества, то в этом случае часть энергии волны возвращается к источнику, а другая распространяется дальше.
    Таким образом, вызывая искусственные волны на поверхности, ученые отмечают время возврата волны при помощи специального прибора — сейсмографа. Существуют специальные таблицы, в которых указаны скорости распространения для всех известных типов пород. Сверяя полученные данные, ученые выясняют какова глубина и тип залегающей породы.

  5. Rainbourne Ответить

    Скорость распространения продольных волн зависит от плотности среды в данной точке ?, модуля сжатия Кcж и мо­дуля сдвига ?сдв выражается формулой, известной из курса общей физики
    (2.1)
    Скорость распространения поперечных волн vs, зависит только от плотности среды ? и модуля сдвига ?сдв, т.е.
    (2.2)
    Поскольку в жидких средах модуль сдвига ?сдв=0, то это означает, что в них скорость распространения продольных волн равна
    (2.3)
    а скорость поперечных волн Vs=0. Из этого следует, что по­перечные сейсмические волны, в отличие от продольных, мо­гут распространяться только в твердых средах; в жидкос­тях и газах они затухают.
    Поверхностные сейсмические волны. Поверхностные вол­ны (L-волны, от лат. longa–длинные) возникают на гра­нице разнородных сред у поверхности материков и океани­ческою дна. Они вызывают одновременно деформацию объема и сдвига. Они имеют большую длину, чем продольные и по­перечные волны, а скорость их меньше.
    Поверхностные волны широко используются для иссле­дования наружных слоев Земли. Как и объемные, они бы­вают двух типов: волны Рэлея и волны Лява. Теоретически изучены английским физиком Дж. Рэлеем в 1885 г. и Лявом в 1911 г.
    При землетрясениях в рэлеевской волне смещение частиц почвы происходит с вертикальной плоскости, а сами частицы описывают эллипс, двигаясь против часовой стрелки.
    В волнах Лява смещение частиц почвы происходит в гори­зонтальной плоскости перпендикулярно к направлению дви­жения волн.
    В поверхностных волнах величина смещения максимальна на поверхности и очень быстро (по экспотенциальному закону) убывает с ростом глубины и обратно пропорционально расстоянию от их источника. Длина поверхностных волн – от десятков до многих сотен километров. Поэтому с их помощью изучаются лишь наружные слои Земли толщиной не менее нескольких километров.
    Сейсмическая модель внутреннего строения Земли
    Среди различных моделей внутреннего строения Земли наибольшее признание получила классическая сейсмическая модель Джеффриса – Гутенберга, построенная в конце 30-х гг. нашего столетия на основе изменения по радиусу Земли скоростей распространения продольных и поперечных сейсмичес­ких волн.
    Если бы наша планета от поверхности до центра была однородным телом, т. е. плотность всюду оставалась посто­янной, то на всех глубинах скорость сейсмических волн была бы одинаковой, и путь их распространения был бы прямолинейным. В действительности пути пробега сейсмических волн имеют сложный криволинейный характер. Скачкообразно с глубиной изменяется и их скорость.
    Первая поверхность скачка скорости продольных и поперечных сейсмических волн находится на глубине в среднем около 60–70 км На этой глубине от земной поверхности скорость распространения продольных волн резко возрастает с 5 до 8 км/с, резко возрастает и скорость поперечных волн – с 1,5 до 4,5 км/с. В следующем слое скорость продольных волн постепенно увеличивается, достигая максимума в 13,6км/с на глубине около 2900 км, после чего резко падает до 8,1 км/с, а затем к цент­ру Земли медленно возрастает до 11,3км/с
    Скорость поперечных волн в слое от 70 до 2900 км так же, как и скорость продольных волн, постепенно нарастает до 7,5 км/с На глубине 2900км, как и у продольных, она резко снижается, но в отличие от них приближается к нулю. Это означает, что практически глубже 2900 км поперечные волны не приникают и, будучи отраженными на этой глубине, возвращаются к поверхности. Правда, последние более детальные данные свидетельствуют о том, что начиная с глубин около 5000 км поперечные волны распространяются с небольшой менее 0,5–1,0 км/с скоростью.
    Скачкообразное изменение с глубиной продольных и поперечных сейсмических волн отражает скачкообразное увеличение упругих свойств и плотности вещества земных недр с глубиной, что свидетельствует о расслоенности Земли. Резкое изменение скоростей сейсмических волн на глубинах 70 и 2900 км дает основание для выделения в ней трех основных частей, или трех внутренних геосфер наружной (земной коры), промежуточной (мантии) и внутренней (ядра).
    На границах сейсмических разделов первого порядка – между земной корой и верхней мантией и между нижней мантией и внешним ядром существенно изменяется и плотность вещества. Так, непосредственно ниже границы Мохо плотность пород значительно выше, чем в земной коре, и составляет 3,4 103 кг/м3 В основании нижней мантии на глубине 2900 км она равна 5,7 кг/м3. При переходе от мантии к ядру происходит резкое увеличение плотности до 10 кг/м3. Затем плотность повышается до 11,5 кг/м3,а во внутреннем ядре составляет примерно 13 кг/м3.
    Внутренние геосферы сильно различаются по толщине, объему и массе. Самой малой по толщине (33 км, или 0,5 % радиуса Земли), массе (5?1022 кг, или 0,8 % массы Земли) и по объему (1,7 1010 км3, или 1,6 % объема Земли) является земная кора, наибольшей по массе (405-1022 кг, или 67,8 %) и объему (89,1 1010 км3, или 82,2 %) – мантия, а по толщине–ядро (3573 км, или 55,2 %).
    2. Состав, строение и свойства внутренних геосфер Земли. Земная кора. Современное понятие о земной коре – верхней твердой оболочке Земли – в первую очередь ос­новано на сейсмических характеристиках горных пород и вязано с именем югославского сейсмолога А. Мохоровичича. Изучая сейсмограммы землетрясений, Мохоровичич в 1909 г. установил, что в верхнем слое Земли сейсмические волны распространяются с меньшей скоростью (около 6 км/с), чем на больших глубинах. Этот низкоскоростной слой рас­пространения сейсмических волн впоследствии был назван земной корой (слой А по К Буллену), а сейсмическая граница, отделяющая его от более глубоких горизонтов Земли (мантии), в честь ее первооткрывателя была названа поверхностью Мохоровичича (сокращенно Мохо).
    Поверхность Мохо практически зеркально повторяет земную поверхность. Мощность земной коры изменяется от 5–8 км под океанами до 30–40км в равнинных областях и до 70–75 км в ropныx районах континентальных областей. Максимум толщины отмечается на Памире, Гиндукуше, в Гималаях (около 75–80 км) и в Андах (75 км).
    Мощность земной коры не превышает 1 % длины земного радиуса, ее вклад в общую массу Земли мал – всего 0,8 % Поэтому при рассмотрении Земли в целом земную кору пред­ставляют в виде однородного слоя эффективной толщиной 33км. Средняя плотность земной коры составляет около 2,8 кг/м3.
    В силу своего пограничного положения земная кора является наиболее гетерогенной (неоднородной) по горизонтали и вертикали геосферой Земли.
    В зависимости от времени образования и механизма формирования земной коры и, следовательно, неодинакового ее строения на разных участках принято различать материковую и океаническую кору. Самые древние из найденных образцов пород континентальной земной коры существуют на Земле 3,8млрдлет (океани­ческой коры – не ранее 200 млн. лет).
    Сейсмическим зондированием материковой коры установлено, что она состоит из трех слоев, осадочного, гранитного и базальтового, различающихся сейсмическими скоростями продольных волн и своей плотностью. Верхний, наименее плотный (р = 2,2 кг/м3) осадочный слой имеет тол­щину от 2–З км в районах спокойного, почти горизонтального залегания горных пород (платформы) до 20–30 км в местах, где породы смяты в складки, пронизанные глубокими трещинами (геосинклинальные области). Само название го­ворит о том, что этот слой представлен осадочными горными порогами (глина, песок, песчаники, известняки, мергели). На этом слое залегает почвенный покров. Скорость продольных сейсмических волн в пределах осадочного слоя изменяется от 1,8 до 5,0 км/с.
    Средний, наиболее толстый гранитный слой имеет боль­шую плотность ?=(2,4–2,6) кг/м3 Скорость продоль­ных вoлн здесь возрастает от 5.0 до 6,2 км/с. Этот слой состоит из кристаллических горных пород (гранит, гнейс, риолиты и др.), сложенных из светло окрашенных силикатов и алюмосиликатов, бедных железом и марганцем и представляющих собой шлаки, легкие побочные продукты глубинных химических реакций, поднявшиеся в верхнюю часть из недр Земли. Во многих местах гранитный слой выходит на земную поверхность (в Карелии, Финляндии, на Кольском полуострове, в центральных частях горных хребтов Тянь-Шаня, Саян, Альп, Кавказа, Карпат и др.)
    Нижний базальтовый слой материковой коры имеет еще большую плотность p = (2,8–3,3)•103 кг/м3. Он cocтоит из изверженных и метаморфических горных пород темного цве­та (базальт, габбро, анортозиты), содержащих большое ко­личество железа и марганца. Его толщина находится в пределах 15–25км (местами до 40 км) и, в отличие от оса­дочного и гранитного слоев, представляет собой сплошную оболочку. Скорость распространения продольных волн в этом слое наибольшая по сравнению с вышележащими слоями (Vp = 6,9–7,6 км/с; скорость поперечных волн Vs – около 3,7–3,8 км/с).
    Океаническая кора тоньше материковой, она состоит из двух основных слоев–осадочного и базальтового. Толщина осадочного слоя в пределах молодых вулканических горных систем но превышает нескольких метров, а на глубоковод­ных равнинах и у материковых склонов достигает 0, 5–3,0 км. Толщина базальтового слоя изменяется от 3 до 12 км.
    Геохимический анализ показывает наличие в земной коре 93 химических элементов. Значения средних содержаний элементов в коре называются кларками (по фамилии впер­вые рассчитавшего их в 1889 г американского ученого Ф. Кларка). В настоящее время среднее содержание отдельных элементоа оценивается так (%) О–47,2; Si– 27,6; Al–8,3; Fe–5,1; Ca–3,6; Na–2,64; K–2,6, Mg– 2,1, Ti–0,6; H–0,15; C–0,1. На долю этих 11 элементов приходится 99,99% массы земной коры, все остальные 82 элемента в общей сумме дают не более 0,01% массы, в том числе РЬ–0,0016%, Au–0,0000005%
    Мантия Земли. Мантия является переходной геосферой (промежуточной оболочкой) между земной корой и ядром Земли. Верхняя ее граница совпадает с поверхностью Мохо, нижняя – находится на глубине 2900км.
    По скорости прохождения сейсмических волн мантия под­разделяется на три слоя: В, С и Д. Верхний из них (слой В) называется верхней мантией, или слоем Гутенберга. Его ниж­няя граница расположена на глубине 350–410км. В пределах этого слоя продольные волны распространяются со скоростью более 8 км/с. Второй слой (С) – средняя мантия, или слой Голицына, простирается до глубины 850–900 км Скорость распространения продольных волн здесь достигает 11,4 км/с. Третий слой (Д) – нижняя мантия простирается до глубины 2900 км. Нарастание скорости продольных волн с глубиной в этом слое происходит с меньшим градиентом, чем в верх­ней и средней мантии, что свидеюльствует о большей одно­родности этой области. В основании нижней мантии их ско­рость достигает 13,6 км/с, поперечных–7,3 км/с.
    Сейсмическим методом в верхней мантии на глубине око­ло 120–200 км под материком и 60–100 км и более под океанической корой установлен слой как бы «размягченных» горных пород, называемый астеносферой (от греч «астянос»– слабый) Астеносферный слой, или так называемый пояс размягчения, наиболее четко выражен и приподнят местами до глубин 20–25 км и менее под наиболее подвижными зонами земной коры и, напротив, слабо выраже и опущен под наиболее спокойными участками континентов (щитами платформ). В сводах молодых горных сооружений, как и в осевых зонах срединно-океанических хребтов, кровля астеносферы может пересекать границу Мохо, внедряясь в земчую кору.
    В астеносферном слое наблюдается понижение скорости распространения сейсмических волн, особенно поперечных, и повышение электропроводности. Это свидетельствует о свое­образном состоянии вещества, менее вязком, более пластич­ном по отношению к выше- и нижележащим слоям. Вязкость вещества астеносферы–около 1019 Па?с, т е на 2–3 порядка ниже, чем в покрывающих и подстилающих ее слоях мантии. Вязкость астенооферного слоя не постоянна, она существеннo изменяется как в вертикальном, так и в горизонтальном направлении, изменяется и его мощность.
    Понижение скоростей продольных и поперечных сейсмических волн и повышение электропроводности в астеносфере можно объяснить частичным (около 1–10%) плавлением вещества мантии, происходящим в результате более быстрого повышения температуры с глубиной, чем повышение давления.
    Возникает вопрос: в силу каких причин вещества астеносферы находятся в размягченном состоянии? Главная причина этого явления заключается в дифференциации земного вещества. В мантии вещество облегченное удалением металлов, поднимается к земной коре, а тяжелое опускается. Так в мантии возникают вертикальные конвекционные токи. В верхней мантии на глубинах от 100 до 350 км, осо­бенно в пределах 100–150 км, сочетание температуры и давления таково, что вещество находится в размягченном или расплавленном состоянии и стремится всплыть. Этот слой плавления и повышенной активности кроме астеносферы называют еще волноводом
    Вертикальные конвекционные токи металлов порождают горизонтальные астенооферные течения. Их скорость дости­гает нескольких десятков сантиметров в год. Эти течения при­вели к расколу литосферы на отдельные глыбы и к их горизонтальному перемещению, известному как дрейф мате­риков. Так, на основе данных, полученных с искусствен­ных спутников Земли, установлено, что за последние пять лет Австралия «подплыла» к Японии на 11 cм, Гавайские острова – на 39 см. Подсчитано, что если такой темп движе­ния сохранится, то ближайший к Японии сосед – Гаваи соль­ются с Японскими островами через 100 млн лет.
    Астеносфере принадлежит большая роль в глубинных вулканических процессах. В ней находятся очаги расплавленной магмы, внедряющейся в земную кору или изливаю­щейся на земную поверхность.
    Верхняя часть мантии выше астеносферы вместе с земной корой составляют литосферу (от греч lithos–камень и sparia–шар), сравнительно хрупкую оболочку, обладающую упругими свойствами вверху и упруго-пластичными – внизу. Литосфера характеризуется активными тектоническими движениями горных пород, поэтому ее вместе с астеносферой еще принято называть тектоносферой. Существенно, что тектоносфера сверху вниз неоднородна по геологическому строению (текучести) вещества. Согласно новой теории глобаль­ной тектоники все землетрясения возникают в литосфере, по­скольку только она способна реагировать на напряжения как хрупкое твердое тело.
    В современной мантии около 8% ее массы приходится на железо, 30% его уже спустилось в ядро. Но и этих 8% вполне достаточно для продолжения дифференциации ве­щества и обеспечения тектонической активности нашей пла­неты по крайней мере на ближайшие 1,5–2,0 млрд лет.
    Ядро Земли На глубине 2900 км отмечается второй сейсмический раздел первого порядка, отделяющий мантию or ядра.
    Граница между мантией и ядром является наиболее резко выраженной границей раздела в недрах Земли. От нее отражаются продольные п поперечные волны и кроме того на ней образуются преломленные волны, распространяющиеся по различным траекториям в недра земного ядра. На этой границе скорость продольных волн скачкообразно падает от 13,6 км/с в нижней мантии до 8,1 км/с в ядре, поперечные волны ниже этой границы не распространяются.
    Тот факт, что земное ядро не пропускает через себя поперечные волны, скорость которых в нем равна нулю, означает, что модуль сдвига вещества ядра мю-сдв также равен нулю. Отсюда можно сделать вывод, что земное ядро, или по крайней мере его верхний слой, находится в жидком состоянии.
    Земное ядро (его еще называют барисферой) – это наиболее плотная внутренняя геосфера Земли. Средняя плотнось ядра – около 10,7-103 кг/м3, радиус–3470 км. По сейсмическим данным – скачку скорости продольных волн на глубине около 5000 км – в нем выделяют внешнее ядро, или слой Е, до глубины 4980 км и внутреннее ядро, или слой G. Между внешним и внутренним ядром имеется переходная зона (слой F) толщиной около 140км. Переходная зона имеется также на нижней границе мантии (слой D’) на глубине 2700–2900км. Она характеризуется почти постоянной скоростью продольных и поперечных волн.
    Во внешнем ядре скорость продольных сейсмических волн постепенно возрастает до 10,5 км/с, а затем уменьшается до < 9,5км/с в переходном слое. Во внутреннем ядре скорость продольных волн вновь увеличивается до 11,3 км/с. На глубине 2900км, т. е. на верхней границе ядра, давление достигает 137 ГПа, а в центральной его части – 343 ГПа. Предполагается, что при таком большом давлении электронные оболочки атомов нарушаются и их ядра оказываются растворенными в общей массе электронов. Предполагается, также, что в таких условиях вещество переходит в новое физическое состояние – сверхплотное, при котором нарушаются химические свойства, и оно не может быть названо именем ни одного химического элемента или соединения, существующего в земной коре при небольших давлениях. По физическим свойствам вещество в этом состоянии универсально-металлическое, обладающее магнитными свой­ствами. При температурах, господствующих внутри Земли (принимается, что температура в центральной части ядра около 5000°С), внешнее ядро расплавлено, а внутреннее, по последним данным, находится в твердом состоянии. По современным представлениям ядро на 85–90% состоит из железоникелевого сплава с примесью S, Mg и Si железное ядро). Во внешнем жидком ядре легкой добавкой к железу является кислород, а во внутреннем – никель. Высказывается также предположение, что кроме железа и никеля в ядре должны быть какие-то легкие элементы, к ко­торым могут быть отнесены кремний или сера. Известна также гипотеза, разделяемая меньшей частью ученых, что сос­тав мантии и ядра одинаков он силикатный, но вещество ядра находится в нем в особом металлизированном состоя­нии.

  6. NENOPE Ответить

    В течение XIXв. господствующей идеей в представлениях о внутреннем строении Земли была идея о том, что весь земной шар наполнен бушующим морем огня, которое прикрывает лишь тонкая земная кора. Весь XIX в. выделен мною поэтому в особый период, несмотря на наличие других взглядов на строение Земли. Как я видела, развитие представлений о внутреннем строении Земли шло с середины XVIIв. таким образом: идея о пассивном центральном огне (до середины XVIIIв.) и идея развития Земли как планеты и активного воздействия ее недр на поверхность Земли (вторая половина XVIIIв.). Эти два направления как бы слились воедино в начале XIXв., когда господствующими стали представления об огненно-жидкой внутренности Земли, прикрытой тонкой земной корой, и об активном воздействии этого расплава на земную кору. Вместе с тем в начале XIXв., несмотря на господство идеи об огненном состоянии внутренности Земли, в таком вопросе, как причины землетрясений, еще существовала гипотеза более раннего периода о каналах и пустотах внутри Земли и о действии сжатых паров и газов, вызывающих землетрясения. Лишь с начала XIXв. в соответствии с общими представлениями причиной землетрясений стали считать воздымающее действие огненного расплава. Наряду с этим в XIXв. существовали и вполне оформившиеся идеи о твердом и даже железном ядре Земли.
    Детальный анализ данных сейсмометрии и всех достижений сейсмологии был сделан в первой четверти XXв. Много различных высказываний о внутреннем строении Земли было в первую половину XXв. со стороны петрографов. Представления о пластическом или жидком подкоровом слое в первые десятилетия XXв. легли в основу многих вариантов гипотезы горизонтального перемещения материков. Учитывая успехи науки и техники в области космонавтики, глубоководного бурения, эксперимента при высоких температурах и давлениях, можно надеяться, что основные положения гипотезы могут быть проверены уже в ближайшем будущем.
    Современный период характеризован развитием методов изучения внутреннего строения Земли.
    Литература
    1.Батюшкова И.В. Внутреннее строение Земли. М.: Наука. 1966. 194с.
    2.Ботт М. Внутреннее строение Земли. М.: Мир. 1974. 373с.
    3.Гапеев А.А. Земля, происхождение, история, жизнь. Москва-Ленинград: ГНТИ. 1931. 149с.
    4.Гордеев Д.И. История геологических наук. Часть 1. (от древности до конца XIX в). М.: Издательство Московского Университета. 1967. 316с.
    5.Гордеев Д.И. История геологических наук. Часть 2. (от конца XIX —до середины XX в).М.: Издательство Московского Университета. 1972. 323с. История геологии. М.: Наука. 1973. 388с.
    6.Косыгин Ю.А. Тектоника. М.: Недра. 1988. 462с.
    7.Ларин В.Н. Гипотеза изначально гидридной Земли. М.: Недра. 1975. 100с.
    8.Молнар П. Строение горных хребтов.//В мире науки.1986. № 9. С.34—44.
    9.Пауэлл К.С. Вглядываясь вглубь. //В мире науки. 1991. № 8.С. 68 — 79.
    10.Павлов А.А. Очерки истории геологических знаний. М.: Государственное издательство. 1921. 84с.
    Ссылки
    11. http://www.bygeo.ru/materialy/chetvertyi_kurs/fizika_zemli-chtenie/1644-vnutrennee-stroenie-zemli.html
    12. http://xreferat.ru/18/1226-1-vnutrennee-stroenie-i-rel-ef-zemli.html

  7. Morasida Ответить

    В свое время я тоже заинтересовался тем, что находится у нас под ногами, и начал изучать ее подробнее. Проблема изучения внутреннего строения и состава нашей планеты с давних времен привлекала внимание ученых. Наиболее значимых результатов удалось добиться в XX веке, потому что по сложности и важности эта задача стоит в одном ряду с изучением космоса.

    Методы изучения Земли

    При изучении внутреннего строения Земли используются различные методы, которые можно объединить в две группы: методы прямого наблюдения и методы косвенного исследования. Первый тип – наиболее простой для понимания, ученые просто изучают горные породы, шахты и материалы, которые получают при бурении скважин. Интересно, что сегодня самые глубокие шахты достигают глубины 6 км, нефтяные скважины – 9 км. Отдельно стоит упомянуть об очень занимательной Кольской сверхглубокой скважине, расположенной на Кольском полуострове. Её глубина достигает 12,5 километров, что делает ее самой глубокой скважиной в мире. Она была создана специально для научно-исследовательской работы. Короче говоря, методом прямого наблюдения можно узнать о строении Земли до глубины около 20-ти километров.

    Косвенные методы исследования

    Другой, более сложный, тип методов исследования – косвенные методы. Они используются для изучения недр Земли, т.е. того, что находится ниже 20-ти км. Вот их перечень:
    Сейсмический.
    Гравиметрический.
    Геомагнитный.
    Геоэлектрический.
    Самый важный из них – сейсмический, который использует сейсмические волны, они изменяют свою скорость распространения в зависимости от материала, через который они проходят. Этих волн существует два типа: продольные и поперечные.
    Проще говоря, данный метод позволил определить границы, отделяющие разные оболочки Земли друг от друга, и установить то, в каком состоянии они находятся: вязком, жидком, твердом и т.д.

    Итог

    Сегодня мы знаем, что у Земли есть три оболочки: земная кора, мантия и ядро. Сейсмическая модель внутреннего строения Земли выглядит так, как показано на рисунке выше.

  8. Rexfang Ответить

    К методам непосредственных наблюдений относится изучение глубин Земли с помощью горных выработок – шахт, тоннелей и скважин. Их много на Земле, особенно скважин, пробуренных в поисках нефти и газа. Глубина таких скважин не превышает 5 км. Сверхглубоких скважин, которые бурят для изучения верхних частей Земли, уже несколько: на Кольском полуострове, в Азербайджане и в других местах. Глубина сверхглубоких скважин находится в пределах современных технических возможностей и пока не превышает 15 км. А этого очень мало, чтобы судить о строении Земли.
    Данные о том, что находится внутри Земли, получают, изучая извержения вулканов и лаву, изливающуюся из недр. Но и здесь, даже если принять глубину очагов некоторых извержений в 100 км, данных оказывается крайне недостаточно.
    Геофизические методы, изучая физические параметры Земли – электропроводность и силу тяжести, могут судить о внутреннем состоянии Земли, практически не ограничивая глубины исследования. Геофизические методы пока единственные приносящие научно обоснованные сведения о том, что делается внутри Земли. Особенно много интересных данных было получено при изучении скоростей распространения в Земле упругих колебаний, которые называют сейсмическими волнами. Раздел науки, который изучает эти волны, называется сейсмологией.
    Изучение скорости распространения сейсмических волн показало, что с глубиной их скорость изменяется либо скачкообразно (сейсмические разделы 1 порядка), либо постепенно (сейсмические разделы 2 порядка), обнаруживая устойчивую тенденцию увеличиваться к центру Земли.
    Волна – это распространение некоторой деформации в упругой среде, т.е. изменение объёма или формы вещества. При деформации в веществе возникает напряжение, которое стремится вернуть его к первоначальной форме или объёму. Выделяют два типа сейсмических волн: объёмные и поверхностные.
    Объёмные волны бывают продольными и поперечными (рис.2).
    Продольные– это волны сжатия, распространяющиеся в направлении движения волны. Они обозначаются латинской буквой «Р» (primary – первичный, англ.), так как скорость их распространения выше других волн и они первыми приходят на сейсмоприёмники. Продольная волна изменяет форму тела.
    Поперечные волны S (secondary – вторичный, англ.) – это волны сдвига, при которой деформации в веществе происходят поперёк направления движения волны.
    Поверхностныеволны распространяются в поверхностном слое земной коры. Различают волны Лява и Рэлея. В первых из них колебания осуществляются только в горизонтальной плоскости поперёк направления движения волны. Волны Рэлея подобны волнам на воде, в них частицы вещества совершают круговые движения.

    Рис.2. Типы сейсмических волн. А – объёмные волны: а –продольные, б – поперечные. Б – поверхностные волны: в –Лява, г – Релэя.
    Стрелками показано направление движения воды.
    Изменение скоростей сейсмических волн на поверхностях разделов может быть связано с изменением плотности вещества или его фазового состояния, или того и другого вместе. Поверхности разделов ограничивают внутри Земли сфероподобные оболочки и её ядро. Такие оболочки получили названия внутреннихгеосфер. К внешнимгеосферам относят биосферу, гидросферу и атмосферу. Рассмотрим сначала внешние геосферы.
    Внешние геосферы
    Атмосфера –располагается от поверхности Земли на высоту до 1300 км. Главные компоненты, слагающие атмосферу- азот, кислород, аргон, углекислота и пары воды. В небольшом количестве в атмосфере присутствуют газы и имеют большое значение в её жизни. Так, промышленные газы создают ощутимый парниковый эффект, приводящий к разогреву атмосферы за счёт поглощения значительной части инфракрасного излучения поверхности Земли, нагретой Солнцем. Озон, концентрируясь на высоте 10-15 км образует озоновый слой,предохраняющий всё живое от вредного ультрафиолетового излучения Солнца. Этот слой может быть разрушен вследствие поступления в атмосферу веществ, которые разрушают озон, и, в частности, техногенного фреона.
    Атмосфера состоит из нескольких слоёв:
    – тропосфера до высоты8 км над полюсом и 17 км над экватором;
    – стратосферы до высоты 55 км;
    – ионосферы, в которой разряжённый воздух ионизирован ультрафиолетовым излучением Солнца и способен проводить электрический ток.
    Гидросфера, или водная оболочка Земли, включает воду морей и океанов, рек, озёр, болот, а также льды ледников. К гидросфере следует отнести и подземные воды.
    Биосфераобразует зону на границе атмосферы и литосферы, которая включает и гидросферу, и характеризуется тем, что в ней есть органическая жизнь. Органическая жизнь в биосфере распространена практически везде, но больше всего её в морях и океанах. Большая роль в изучении биосферы принадлежит В.И. Вернадскому.

  9. Zimoro Ответить

    При исследовании внутреннего строения нашей планеты чаще всего проводят визуальные наблюдения естественных и искусственных обнажений горных пород, бурение скважин и сейсмическую разведку.
    Обнажение горных пород – это выход пород на земную поверхность в оврагах, долинах рек, карьерах, шахтных выработках, на склонах гор. Породы в обнажении обычно скрыты тонким слоем осыпи, поэтому прежде всего его очищают от лишнего материала. При изучении обнажения обращают внимание на то, какими породами оно сложено, каковы состав и мощность этих пород, порядок их залегания (рис. 17). Обнажение тщательно описывают, зарисовывают или фотографируют. Из каждого пласта берут пробы для дальнейшего изучения в лаборатории. Лабораторный анализ проб необходим для того, чтобы определить химический состав пород, их происхождение и возраст.
    Рис. 17. Схема обнажения горизонтально залегающих горных пород, прорезанных вулканической жилой
    Бурение скважин позволяет глубже проникнуть в толщу Земли. При бурении извлекают образцы пород – керн. А затем на основании изучения керна определяют состав, строение, залегание пород и строят чертеж пробуренной толщи – геологический разрез местности. Сопоставление многих разрезов дает возможность установить, как залегают породы, и составить геологическую карту территории.
    При изучении внутреннего строения Земли особенно велико значение глубоких и сверхглубоких скважин. Самая глубокая скважина находится на Кольском полуострове, где бур достиг отметки более 12 км.
    Недостаток и наблюдения обнажений и буровых работ состоят в том, что они позволяют изучить только тонкую пленку земной поверхности. Так, глубина даже Кольской сверхглубокой скважины составляет менее 0,25 % радиуса Земли.
    Сейсмический метод дает возможность «проникнуть» на большие глубины.
    В основе этого метода лежит представление о том, что сейсмические волны (от греческого сейсмос волна, колебание) в средах разной плотности распространяются с неодинаковой скоростью: чем плотнее среда, тем больше скорость. На границе двух сред часть волн отражается и подобно кругам на воде идет обратно, а другая – распространяется дальше.

  10. Doshicage Ответить

    При исследовании внутреннего строения нашей планеты чаще всего проводят визуальные наблюдения естественных и искусственных обнажений горных пород, бурение скважин и сейсмическую разведку.
    Обнажение горных пород – это выход пород на земную поверхность в оврагах, долинах рек, карьерах, шахтных выработках, на склонах гор. Породы в обнажении обычно скрыты тонким слоем осыпи, поэтому, прежде всего, его очищают от лишнего материала. При изучении обнажения обращают внимание на то, какими породами оно сложено, каковы состав и мощность этих пород, порядок их залегания (рис. 2). Обнажение тщательно описывают, зарисовывают или фотографируют. Из каждого пласта берут пробы для дальнейшего изучения в лаборатории. Лабораторный анализ проб необходим для того, чтобы определить химический состав пород, их происхождение и возраст.
    Бурение скважин позволяет глубже проникнуть в толщу Земли. При бурении извлекают образцы пород – керн. А затем на основании изучения керна определяют состав, строение, залегание пород и строят чертеж пробуренной толщи – геологический разрез местности. Сопоставление многих разрезов дает возможность установить, как залегают породы, и составить геологическую карту территории.
    При изучении внутреннего строения Земли особенно велико значение глубоких и сверхглубоких скважин. Самая глубокая скважина находится на Кольском полуострове, где бур достиг отметки более 12 км.
    Рисунок 2. Схема обнажения горизонтально залегающих горных пород, прорезанных вулканической жилой
    Недостаток и наблюдения обнажений и буровых работ состоят в том, что они позволяют изучить только тонкую пленку земной поверхности. Так, глубина даже Кольской сверхглубокой скважины составляет менее 0,25% радиуса Земли.
    Сейсмический метод дает возможность “проникнуть” на большие глубины.
    В основе этого метода лежит представление о том, что сейсмические волны (от греческого сейсмос – волна, колебание) в средах разной плотности распространяются с неодинаковой скоростью: чем плотнее среда, тем больше скорость. На границе двух сред часть волн отражается и подобно кругам на воде идет обратно, а другая – распространяется дальше.
    Искусственно возбуждая волны на поверхности Земли путем взрывов, сейсмологи фиксируют время, за которое отраженные волны вернулись назад. Для этих целей применяется прибор-самописец – сейсмограф.
    Различают два вида сейсмических волн – продольные и поперечные. Продольные распространяются во всех средах – твердых, жидких и газообразных, а поперечные – только в твердой среде.
    Зная, с какой скоростью распространяются волны в песках, глинах, гранитах, базальтах и других породах, по времени их прохождения “туда и обратно” можно определить глубину залегания пород, различающихся по плотности.

  11. Творческий беспорядок Ответить


    После «гранитного» слоя, находится слой, сложенный преимущественно из базальта — горной породы глубинного происхождения. Базальт тяжелее гранита, он содержит больше железа, магния и кальция. Эти три слоя земной коры — осадочный, «гранитный» и «базальтовый» — хранят все полезные ископаемые, используемые человеком. Толщина земной коры не везде одинакова: от 5 км под океанами до 75 км под материками. Под океанами, как правило, отсутствует «гранитный» слой.
    За земной корой, если двигаться к центру Земли следует, самый толстый слой Земли – мантия
    (учёные говорят «самый мощный»). Никто никогда не видел ее. Ученые предполагают, что состоит она из магния, железа и свинца. Температура здесь около +2000° С!
    От низлежащей мантии земную кору отделяет во вмогом еще загадочный Слой Мохо
    (назван так в честь сербского сейсмолога Мохоровичича, открывшего его в 1909 году), в котором скорость распространения сейсмических волн скачкообразно увеличивается.
    На долю Мантии
    приходится около 67% общей массы планеты. Твердый слой верхней мантии, распространяющийся до различных глубин под океанами и континентами, совместно с земной корой называют литосферой – самой жесткой оболочкой Земли. Под ней отмечен слой, где наблюдается некоторое уменьшение скорости распространения сейсмических волн, что говорит о своеобразном состоянии вещества. Этот слой, менее вязкий и более пластичный по отношению к выше и ниже лежащим слоям, называют астеносферой. Считается, что вещество мантии находится в непрерывном движении, и высказывается предположение, что в относительно глубоких слоях мантии с ростом температуры и давления происходит переход вещества в более плотные модификации. Такой переход подтверждается и экспериментальными исследованиями.
    В нижней мантии
    на глубине 2900 км отмечается резкий скачок не только в скорости продольных волн, но и в плотности, а поперечные волны сдесь исчезают совсем, что указывает на смену вещественного состава пород. Это внешняя граница ядра Земли.
    Ученые установили, что температура горных пород с глубиной возрастает: в среднем на каждые 30 м глубины Земли становится теплее на 1 С. Мантия получает огромное количество тепла от ядра Земли, которое ещё горячее.
    При огромной температуре породы мантии должны быть в жидком, расплавленном виде. Но этого не происходит, потому что вышележащие горные породы давят на мантию, и давление на такой глубине в 13 тысяч раз больше, чем на поверхности. Иначе говоря, на каждый 1 см2
    горной породы давят 13т. Столько весит КАМАЗ, груженый асфальтом. Поэтому, по-видимому, породы мантии и ядра находятся в твердом состоянии. Выделяют нижнюю и верхнюю мантию.
    Состав мантии:
    алюминий, магний, кремний, кальций

    Люди давно заметили, что на дне глубоких шахт температура горных пород выше, чем на поверхности. Некоторые шахты даже приходилось забрасывать, потому что там становилось невозможно работать, так как температура достигала +50° С.
    Ядро Земли
    — пока загадка для науки. С определенной достоверностью можно говорить лишь о его радиусе — примерно 3500 км и температуре — около 4000 °С. Это пока все, что известно науке о строении глубин Земли. Некоторые учёные придерживаются мнения о том, что наше ядро состоит из железа, другие допускают возможным существования огромной пустоты в центре нашей планеты. Выделяют внешнее и внутреннее ядро. Но каково ядро Земли на самом деле пока не знает никто.
    Земное ядро
    открыто в 1936 году. Получить его изображение было чрезвычайно трудно из-за малого числа сейсмических волн, достигавших его и возвращавшихся к поверхности. Кроме того, экстремальные температуры и давления ядра долгое время трудно было воспроизвести в лаборатории. Земное ядро разделяется на 2 отдельные области: жидкую (ВНЕШНЕЕ ЯДРО
    ) и твердую (BHУTPEHHE
    ), переход между ними лежит на глубине 5156 км. Железо – элемент, который соответствует сейсмическим свойствам ядра и обильно распространен во Вселенной, чтобы представить в ядре планеты приблизительно 35% ее массы. По современным данным, внешнее ядро представляет собой вращающиеся потоки расплавленного железа и никеля, хорошо проводящие электричество. Именно с ним связывают происхождение земного магнитного поля, считая, что, электрические токи, текущие в жидком ядре, создают глобальное магнитное поле. Слой мантии, находящийся в соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре выше, чем в мантии. Местами этот слой порождает огромные, направленные к поверхности Земли тепломассопотоки – плюмы.
    ВНУТРЕННЕЕ ТВЕРДОЕ ЯДРО
    не связано с мантией. Полагают, что его твердое состояние, несмотря на высокую температуру, обеспечивается гигантским давлением в центре Земли. Высказываются предположения о том, что в ядре помимо железоникелевых сплавов должны присутствовать и более легкие элементы, такие как кремний и сера, а возможно, кремний и кислород. Вопрос о состоянии ядра 3емли до сих пор остается дискуссионным. По мере удаления от поверхности увеличивается сжатие, которому подвергается вещество. Расчеты показывают, что в земном ядре давление может достигать 3 млн. атм. При зтом многие вещества как бы металлизируются – переходят в металлическое состояние. Существовала даже гипотеза, что ядро Земли состоит из металлического водорода.
    Состав ядра:
    железо, никель.

    Литосфера
    – это твердая оболочка Земли, состоящая из земной коры и верхней части мантии (от греч. lithos – камень и sphaira – шар). Известно, что существует тесная связь между литосферой и мантией Земли.
    Движение литосферных плит.
    Многие ученые считают, что литосфера разделена глубинными разломами на блоки, или плиты, разной величины. Эти плиты перемещаются по разжиженному слою мантии относительно друг друга. Литосферные плиты бывают материковые и океанические (мы немного рассказывали чем они отличаются). При взаимодействии материковой и океанической плит одна надвигается на другую. Из-за своей меньшей толщины край океанической плиты как бы “ныряет” под край континентальной плиты. При этом образуются горы, глубоководные желоба, островные дуги. Наиболее яркий пример такого образования – Курильские острова и Анды .

  12. Mr.hot Ответить

    Рис.2. Типы сейсмических волн. А – объёмные волны: а –продольные, б – поперечные. Б – поверхностные волны: в –Лява, г – Релэя.
    Стрелками показано направление движения воды.
    Изменение скоростей сейсмических волн на поверхностях разделов может быть связано с изменением плотности вещества или его фазового состояния, или того и другого вместе. Поверхности разделов ограничивают внутри Земли сфероподобные оболочки и её ядро. Такие оболочки получили названия внутреннихгеосфер. К внешнимгеосферам относят биосферу, гидросферу и атмосферу. Рассмотрим сначала внешние геосферы.
    Внешние геосферы
    Атмосфера –располагается от поверхности Земли на высоту до 1300 км. Главные компоненты, слагающие атмосферу- азот, кислород, аргон, углекислота и пары воды. В небольшом количестве в атмосфере присутствуют газы и имеют большое значение в её жизни. Так, промышленные газы создают ощутимый парниковый эффект, приводящий к разогреву атмосферы за счёт поглощения значительной части инфракрасного излучения поверхности Земли, нагретой Солнцем. Озон, концентрируясь на высоте 10-15 км образует озоновый слой,предохраняющий всё живое от вредного ультрафиолетового излучения Солнца. Этот слой может быть разрушен вследствие поступления в атмосферу веществ, которые разрушают озон, и, в частности, техногенного фреона.
    Атмосфера состоит из нескольких слоёв:
    – тропосфера до высоты8 км над полюсом и 17 км над экватором;
    – стратосферы до высоты 55 км;
    – ионосферы, в которой разряжённый воздух ионизирован ультрафиолетовым излучением Солнца и способен проводить электрический ток.
    Гидросфера, или водная оболочка Земли, включает воду морей и океанов, рек, озёр, болот, а также льды ледников. К гидросфере следует отнести и подземные воды.
    Биосфераобразует зону на границе атмосферы и литосферы, которая включает и гидросферу, и характеризуется тем, что в ней есть органическая жизнь. Органическая жизнь в биосфере распространена практически везде, но больше всего её в морях и океанах. Большая роль в изучении биосферы принадлежит В.И. Вернадскому.
    Внутренние геосферы.
    Земная кора– верхняя каменная оболочка Земли сложена магматическими, метаморфическими и осадочными породами, имеющими от 7 до 70-80 км. Земная кора ограничивается снизу очень чёткой поверхностью скачка скоростей волн Р и S, впервые установленной югославским геофизиком А. Мохоровичичем в 1909 г. и получившей его имя: поверхность Мохоровичича (Мохо или просто М). Это наиболее активный слой твердой Земли. Здесь особенно отчетливо проявляется вертикальная и горизонтальная неоднородность, создаваемая разнообразными осадочными, метаморфическими, интрузивными породами.
    Мантия – самая крупная промежуточная оболочка Земли. Масса Земли, заключенной в этом слое около 2/3 массы планеты. Вторая глобальная сейсмическая граница раздела находится на глубине 2900 км, была выделена в 1913 г. немецким геофизиком Б.Гутенбергом и также получила его имя.
    Верхняя мантия.Нижняя граница на материках располагается на глубине 80 – 120 км, в океанах – не превышает 50 км. Строение этого слоя под континентальными и океаническими структурами существенно отличается. На континентах это условно гранитный слой, в океанах – базальтовый, со средней плотностью 2,7 г/см3. Поверхность, разделяющая гранитный и базальтовый слои называется границей Конрада. Базальтовые породы содержат по сравнению с гранитами меньше кремня и алюминия и имеют более высокую плотность 2,8 – 2,9 г/см3.
    Нижняя мантия в интервале 2900-120 км характеризуется плотностью 5,5 – 6,0 г/см3 , где наряду с кислородом, кремнем, магнием присутствуют такие тяжелые элементы, как железо и никель. Температура – 10000 . Вещество находится в стекловидном (аморфном) состоянии. Такое состояние поддерживается высоким давлением.
    Центральная, внутренняя, наиболее плотная часть Земли называется ядром. По геофизическим данным ядро находится в состоянии, приближенном к жидкому с температурой 2500 – 30000С. Плотность вещества достигает 13 г/см3.
    На глубине 5120 км снова происходит скачкообразное увеличение скорости продольных волн, а путём применения особого метода показано, что там появляются и поперечные волны, т.е. эта часть ядра твёрдая (рис.3).

  13. Spellsong Ответить

    При исследовании внутреннего строения нашей планеты чаще всего проводят визуальные наблюдения естественных и искусственных обнажений горных пород, бурение скважин и сейсмическую разведку.
    Обнажение горных пород – это выход пород на земную поверхность в оврагах, долинах рек, карьерах, шахтных выработках, на склонах гор. Породы в обнажении обычно скрыты тонким слоем осыпи, поэтому прежде всего его очищают от лишнего материала. При изучении обнажения обращают внимание на то, какими породами оно сложено, каковы состав и мощность этих пород, порядок их залегания (рис. 17). Обнажение тщательно описывают, зарисовывают или фотографируют. Из каждого пласта берут пробы для дальнейшего изучения в лаборатории. Лабораторный анализ проб необходим для того, чтобы определить химический состав пород, их происхождение и возраст.

    Рис. 17.Схема обнажения горизонтально залегающих горных пород, прорезанных вулканической жилой
    Бурение скважинпозволяет глубже проникнуть в толщу Земли. При бурении извлекают образцы пород – керн. А затем на основании изучения керна определяют состав, строение, залегание пород и строят чертеж пробуренной толщи – геологический разрез местности. Сопоставление многих разрезов дает возможность установить, как залегают породы, и составить геологическую карту территории.
    При изучении внутреннего строения Земли особенно велико значение глубоких и сверхглубоких скважин. Самая глубокая скважина находится на Кольском полуострове, где бур достиг отметки более 12 км.
    Недостаток и наблюдения обнажений и буровых работ состоят в том, что они позволяют изучить только тонкую пленку земной поверхности. Так, глубина даже Кольской сверхглубокой скважины составляет менее 0,25 % радиуса Земли.
    Сейсмический методдает возможность «проникнуть» на большие глубины.
    В основе этого метода лежит представление о том, что сейсмические волны(от греческого сейсмос – волна, колебание) в средах разной плотности распространяются с неодинаковой скоростью: чем плотнее среда, тем больше скорость. На границе двух сред часть волн отражается и подобно кругам на воде идет обратно, а другая – распространяется дальше.
    Искусственно возбуждая волны на поверхности Земли путем взрывов, сейсмологи фиксируют время, за которое отраженные волны вернулись назад. Для этих целей применяется прибор-самописец – сейсмограф.
    Различают два вида сейсмических волн – продольные и поперечные. Продольные распространяются во всех средах – твердых, жидких и газообразных, а поперечные – только в твердой среде.
    Зная, с какой скоростью распространяются волны в песках, глинах, гранитах, базальтах и других породах, по времени их прохождения «туда и обратно» можно определить глубину залегания пород, различающихся по плотности.
    ⇐ Предыдущая27282930313233343536Следующая ⇒
    Date: 2015-09-22; view: 185; Нарушение авторских прав

  14. Mokree Ответить

    ВНУТРЕННЕЕ СТРОЕНИЕ И РЕЛЬЕФ ЗЕМЛИ
    Знания о внутреннем строении Земли пока очень поверхностны, так как получены на основании косвенных доказательств. Прямые свидетельства относятся только к поверхностной пленке планеты, чаще всего не превышающей полутора десятков километров. В целом же о внутреннем строении нашей планеты мы знаем меньше, чем о ближнем космосе, исследуемом с помощью спутников и космических кораблей.
    Вместе с тем изучение внутреннего строения Земли жизненно важно. С ним связаны образование и размещение многих видов полезных ископаемых, рельефа земной поверхности, возникновение вулканов и землетрясений. Знания о внутреннем строении Земли необходимы и для составления геологических и географических прогнозов.
    При исследовании внутреннего строения нашей планеты чаще всего проводят визуальные наблюдения естественных и искусственных обнажений горных пород, бурение скважин и сейсмическую разведку.
    Обнажение горных пород – это выход пород на земную поверхность в оврагах, долинах рек, карьерах, шахтных выработках, на склонах гор. Породы в обнажении обычно скрыты тонким слоем осыпи, поэтому прежде всего его очищают от лишнего материала. При изучении обнажения обращают внимание на то, какими породами оно сложено, каковы состав и мощность этих пород, порядок их залегания (рис. 17). Обнажение тщательно описывают, зарисовывают или фотографируют. Из каждого пласта берут пробы для дальнейшего изучения в лаборатории. Лабораторный анализ проб необходим для того, чтобы определить химический состав пород, их происхождение и возраст.

    Рис. 17.Схема обнажения горизонтально залегающих горных пород, прорезанных вулканической жилой
    Бурение скважинпозволяет глубже проникнуть в толщу Земли. При бурении извлекают образцы пород – керн. А затем на основании изучения керна определяют состав, строение, залегание пород и строят чертеж пробуренной толщи – геологический разрез местности. Сопоставление многих разрезов дает возможность установить, как залегают породы, и составить геологическую карту территории.
    При изучении внутреннего строения Земли особенно велико значение глубоких и сверхглубоких скважин. Самая глубокая скважина находится на Кольском полуострове, где бур достиг отметки более 12 км.
    Недостаток и наблюдения обнажений и буровых работ состоят в том, что они позволяют изучить только тонкую пленку земной поверхности. Так, глубина даже Кольской сверхглубокой скважины составляет менее 0,25 % радиуса Земли.
    Сейсмический методдает возможность «проникнуть» на большие глубины.
    В основе этого метода лежит представление о том, что сейсмические волны(от греческого сейсмос – волна, колебание) в средах разной плотности распространяются с неодинаковой скоростью: чем плотнее среда, тем больше скорость. На границе двух сред часть волн отражается и подобно кругам на воде идет обратно, а другая – распространяется дальше.

  15. Adollador Ответить

    Основные вопросы, рассматриваемые на лекции:
    1. Сейсмический метод изучения внутреннего строения Земли.
    2. Состав, строение и свойства внутренних геосферЗемли.
    1. Сейсмический метод изучения внутреннего строения Земли.Сейсмический метод (от греч. «сейма» – колебание, земле­трясение) изучения внутреннего строения Земли основан на наблюдениях за распространением сейсмических волн в ее недрах. Сейсмические волны –это упругие колебания вещест­ва, вызванные землетрясениями или искусственными взрыва­ми.
    Сейсмические волны бывают двух типов – объемные и поверхностные. Объемные волны бывают двух типов продольные и пoперечные.
    Продольные сейсмические волны распространяются в любых средах (твердой, жидкой, газообразной). Скорость их распространения в 1,7 раза больше скорости поперечных волн. Поэтому на сейсмограммах они регистрируются раньше, чем поперечные волны, и называются первичными, или волнами Р (от лат. Prima – первые).
    Поперечные волны связаны со сдвигом вещества, т. е. с изменением его формы. Эти волны могут проходить только через твердое тело и затухают в жидком и газообразном веществах, ибо два последних не сопротивляются изменению формы. Поскольку на сейсмограммах поперечные волны регистрируются после про­хождения продольных волн, то они получили название вторичных, или S-волн (от лат sekundo – вторые).
    Скорость распространения продольных волн зависит от плотности среды в данной точке ?, модуля сжатия Кcж и мо­дуля сдвига ?сдв выражается формулой, известной из курса общей физики
    (2.1)
    (2.2)
    Поскольку в жидких средах модуль сдвига ?сдв=0, то это означает, что в них скорость распространения продольных волн равна
    (2.3)
    а скорость поперечных волн Vs=0. Из этого следует, что по­перечные сейсмические волны, в отличие от продольных, мо­гут распространяться только в твердых средах; в жидкос­тях и газах они затухают.
    Поверхностные сейсмические волны. Поверхностные вол­ны (L-волны, от лат. longa–длинные) возникают на гра­нице разнородных сред у поверхности материков и океани­ческою дна.Они имеют большую длину, чем продольные и по­перечные волны, а скорость их меньше. В поверхностных волнах величина смещения максимальна на поверхности и очень быстро (по экспотенциальному закону) убывает с ростом глубины и обратно пропорционально расстоянию от их источника. Длина поверхностных волн – от десятков до многих сотен километров. Поэтому с их помощью изучаются лишь наружные слои Земли толщиной не менее нескольких километров.
    Сейсмическая модель внутреннего строения Земли. Первая поверхность скачка скорости продольных и поперечных сейсмических волн находится на глубине в среднем около 60–70 км (верхняя мантия). На этой глубине от земной поверхности скорость распространения продольных волн резко возрастает с 5 до 8 км/с, резко возрастает и скорость поперечных волн – с 1,5 до 4,5 км/с. В следующем слое скорость продольных волн постепенно увеличивается, достигая максимума в 13,6км/с на глубине около 2900 км (верхнее ядро), после чего резко падает до 8,1 км/с, а затем к цент­ру Земли медленно возрастает до 11,3км/с
    Скорость поперечных волн в слое от 70 до 2900 км так же, как и скорость продольных волн, постепенно нарастает до 7,5 км/с На глубине 2900км, как и у продольных, она резко снижается, но в отличие от них приближается к нулю.
    Резкое изменение скоростей сейсмических волн на глубинах 70 и 2900 км дает основание для выделения в ней трех основных частей, или трех внутренних геосфер наружной (земной коры), промежуточной (мантии) и внутренней (ядра).
    На границах сейсмических разделов первого порядка – между земной корой и верхней мантией и между нижней мантией и внешним ядром существенно изменяется и плотность вещества. Так, непосредственно ниже границы Мохо плотность пород значительно выше, чем в земной коре, и составляет 3,4 103 кг/м3 В основании нижней мантии на глубине 2900 км она равна 5,7 103 кг/м3. При переходе от мантии к ядру происходит резкое увеличение плотности до 10 103 кг/м3. Затем плотность повышается до 11,5 кг/м3,а во внутреннем ядре составляет примерно 13 кг/м3.
    Внутренние геосферы сильно различаются по толщине, объему и массе. Самой малой по толщине (33 км, или 0,5 % радиуса Земли), массе (5?1022 кг, или 0,8 % массы Земли) и по объему (1,7 1010 км3, или 1,6 % объема Земли) является земная кора, наибольшей по массе (405-1022 кг, или 67,8 %) и объему (89,1 1010 км3, или 82,2 %) – мантия, а по толщине–ядро (3573 км, или 55,2 %).
    2. Состав, строение и свойства внутренних геосфер Земли. Мощность земной коры изменяется от 5–8 км под океанами до 30–40км в равнинных областях и до 70–75 км в ropныx районах континентальных областей. Средняя плотность земной коры составляет около 2,8 кг/м3. Самые древние из найденных образцов пород континентальной земной коры существуют на Земле 3,8млрдлет (океани­ческой коры – не ранее 200 млн. лет).
    Материковая кора состоит из осадочного (р = 2,2 103 кг/м3), гранитного (?=2,4–2,6 кг/м3 ) и базальтового слоев (p = (2,8–3,3)•103 кг/м3). Океаническая кора тоньше материковой, она состоит из двух основных слоев–осадочного и базальтового.
    Геохимический анализ показывает наличие в земной коре 93 химических элементов. Значения средних содержаний элементов в коре называются кларками (%) О–47,2; Si– 27,6; Al–8,3; Fe–5,1; Ca–3,6; Na–2,64; K–2,6, Mg– 2,1, Ti–0,6; H–0,15; C–0,1. На долю этих 11 элементов приходится 99,99% массы земной коры.
    Мантия является переходной геосферой (промежуточной оболочкой) между земной корой и ядром Земли. Верхняя ее граница совпадает с поверхностью Мохо, нижняя – находится на глубине 2900км. По скорости прохождения сейсмических волн мантия под­разделяется на три слоя: В, С и Д. Верхний из них (слой В) называется верхней мантией, или слоем Гутенберга. Его ниж­няя граница расположена на глубине 350–410км. В пределах этого слоя продольные волны распространяются со скоростью более 8 км/с. Второй слой (С) – средняя мантия, или слой Голицына, простирается до глубины 850–900 км Скорость распространения продольных волн здесь достигает 11,4 км/с. Третий слой (Д) – нижняя мантия простирается до глубины 2900 км. В основании нижней мантии их ско­рость продольных волн достигает 13,6 км/с, поперечных–7,3 км/с.
    Сейсмическим методом в верхней мантии на глубине око­ло 120–200 км под материком и 60–100 км и более под океанической корой установлен слой как бы «размягченных» горных пород, называемый астеносферой (от греч «астянос»– слабый) Астеносферный слой, или так называемый пояс размягчения, наиболее четко выражен и приподнят местами до глубин 20–25 км и менее под наиболее подвижными зонами земной коры и, напротив, слабо выражен и опущен под наиболее спокойными участками континентов (щитами платформ). В сводах молодых горных сооружений, как и в осевых зонах срединно-океанических хребтов, кровля астеносферы может пересекать границу Мохо, внедряясь в земную кору. Вязкость вещества астеносферы на 2–3 порядка ниже, чем в покрывающих и подстилающих ее слоях мантии. Понижение скоростей продольных и поперечных сейсмических волн и повышение электропроводности в астеносфере можно объяснить частичным (около 1–10%) плавлением вещества мантии, происходящим в результате более быстрого повышения температуры с глубиной, чем повышение давления.

  16. Miraswyn Ответить

    Рассмотрим сначала методы и источники информации о глубинном строении Земли.
    Бурение. Всем хорошо известны эти методы, однако далеко не все представляют их возможности и масштабы. Скважины глубиной 3—7 км считаются глубокими, более 7 км — сверхглубокими. Практически все они пробурены в научных целях. Самая глубокая в мире Кольская сверхглубокая скважина глубиной 12 262 м была пробурена в Советском Союзе. Бурение было начато в 1970 г., прерывалось из-за аварий и прекращено в 1992 г. Первоначально предполагалось пробурить 15 км.
    Бурение глубоких скважин — очень дорогое и продолжительное мероприятие. Бурение в научных целях усложняется необходимостью постоянного отбора образцов пород, поэтому оно под силу только богатым странам с развитой экономикой (рис. 1.1).
    В мире сооружается довольно много (сотни в год) менее глубоких (от сотен метров до нескольких километров), но тоже довольно значительных скважин для поиска и добычи нефти, газа и других полезных ископаемых. В год сооружаются многие тысячи скважин для водоснабжения и изысканий. Изыскательские скважины имеют целью изучение разреза и отбор образцов для проектирования и строительства. Их глубина — от нескольких метров до нескольких десятков метров. Любые скважины весьма полезны для изучения глубинного строения Земли, особенно тем, что позволяют непосредственно получать образцы пород, но одного бурения явно недостаточно.
    Горные выработки — шахты и карьеры. Они дают очень много полезной информации, горные породы в них доступны для непосредственного наблюдения и изучения, но их глубина обычно составляет десятки-сотни метров и редко превышает 1 км.

    Рис. 1.1. Схема Кольской сверхглубокой скважины [8]
    Обнажения горных пород на склонах. Обнажением называется участок выхода на поверхность геологического тела, перекрытого в других местах вышележащими породами (рис. 1.2).
    При необходимости площадь обнажения можно увеличить, сделав расчистку. Обнажения позволяют подробно изучить горные породы, но глубина, на которую при этом можно заглянуть, определяется глубиной эрозионного вреза и лишь в редчайших случаях превышает 1 км.
    Геофизические (прежде всего сейсмические) методы. Геофизика — раздел геологии, основанный на изучении физических свойств горных пород, геологических тел и Земли в целом. Гео-

    Рис. 1.2. Обнажения пород на склоне:
    2 и 3 — открытые для наблюдения пласты; для изучения пластов 7, 4 и 5 требуются
    расчистки
    физика имеет несколько направлений, весьма эффективных при поиске полезных ископаемых, — это электроразведка, магниторазведка, радиоразведка, гравиметрия, каротаж скважин и др. Методы являются косвенными, так как измеряются только физические параметры, а конкретные образцы горных пород на поверхность не извлекаются. При изучении глубинного строения Земли основным является вклад сейсморазведки. Глубинность методов составляет сотни и тысячи километров. Вкратце поясним суть сейсмических методов.
    Если на поверхности Земли произвести взрыв или просто сильный механический удар, внутри геологической среды возникнет сейсмическая волна, которая будет распространяться в глубь горных пород. При достижении геологических границ, где одна порода сменяет другую, сейсмическая волна частично проходит дальше и частично отражается от каждой геологической границы и возвращается на поверхность (рис. 1.3).
    Если поставить соответствующее оборудование и измерить время, через которое сейсмическая волна вернется на поверхность, то, зная скорость прохождения сейсмической волны через горные породы различного состава, можно вычислить глубину залегания геологической границы. Зная положение геологических границ, можно вычислить скорости прохождения сейсмических волн через породы различного состава.
    За счет различных приемов удается определить положение не одной, а многих геологических границ, в том числе и очень глубоко залегающих, совершенно недоступных, например, для бурения. В целом разрез расчленяется на основе выделения пластов с различной скоростью прохождения сейсмических волн. Крите

    Рис. 1.3. Схема сейсмических методов в геофизике
    рием правильности сейсмических методов является их эффективность при поиске нефтегазовых и других месторождений.
    Приводимые в последующих главах схемы строения Земли и земной коры построены на основе сейсмических методов. Геофизические работы намного дешевле бурения, они выполняются быстрее, поэтому на практике те и другие работы обычно применяются в комплексе, дополняя друг друга. Полагают, что выводы, сделанные только на основе геофизических поисков, не могут считаться окончательно подтвержденными, однако для построений, касающихся глубин более 10 км, сейсмические источники являются единственными.
    Магматические породы и современная магма. Считается, что магма приходит с глубин в сотни километров, однако не следует считать, что она точно представляет состав находящегося там вещества (рис. 1.4).

    Рис. 1.4. Залегание магматических пород показывает, что магма приходит с очень больших глубин
    При движении вверх магма расплавляет находящиеся на ее пути породы, из-за этого сильно изменяется ее состав, поэтому соображения о ее начальном составе могут быть лишь примерными, однако полученные геологические данные безусловно используются в практике.
    Блоки земной коры, поднятые тектоническими движениями
    (рис. 1.5).

    Рис. 1.5. Тектонически поднятый блок земной коры (на рисунке справа), слой 5 показывает амплитуду поднятия
    На рисунке показано залегание горных пород и поднятый по разлому тектонический блок. Амплитуда таких поднятий может составлять километры. В земной коре имеются регионы с подобным блоковым строением, сложенные очень древними породами и практически не перекрытые сверху более молодыми образованиями.
    Космические данные. Материал горных пород, находящийся на глубинах, превышающих глубинность бурения или амплитуду поднятия блоков земной коры, недоступен для конкретного исследования. Стремясь как-то оценить химический состав Земли, геологи обращаются к данным о составе метеоритов, лунного грунта и планет земной группы.
    Итак, при изучении строения Земли на глубины (несколько километров) используются различные источники информации, но чем больше глубина, тем информации становится меньше. Для глубин примерно от 10 км до центра Земли единственный источник информации — сейсмические данные геофизики. Иллюстрация внутреннего строения Земли представлена на рис. 1.6.
    Как можно видеть в ее строении выделяется несколько внутренних оболочек, называемых геосферами — земная кора, верхняя и нижняя мантия, внешнее и внутреннее ядро.

    Рис. 1.6. Внутреннее строение Земли [16]

  17. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *