Как называется полет на предельно низкой высоте в авиации?

9 ответов на вопрос “Как называется полет на предельно низкой высоте в авиации?”

  1. saxron Ответить

    Любители и профессионалы в сфере авиатехники наверняка знают, что при определенных условиях в самолете можно достичь невесомости. С какой высоты начинается невесомость? На какой высоте летает самолет, который способен на такое?
    
    На самом деле, крейсерская высота не столь важна, когда речь идет о достижении невесомости. При определенных маневрах и обычный гражданский самолет может вызвать кратковременный эффект снижения гравитации, например, люди, которые часто летают самолетами, иногда могут заметить подобный эффект при заходе судна на посадку.
    Длительный (до 40 секунд) эффект потери гравитации на самолете можно создать, если выполнить маневр по эллипсоидной траектории: резкий набор высоты, краткое выравнивание и затем резкий сброс. Такой маневр называется «провал в воздухе». С его помощью тренируются выдерживать перегрузки будущие космонавты.

    Также есть специальные самолет, на которых выполняется по несколько сессий перегрузок за один полет. Они принадлежат космическим агентствам разных стран. Маневры на таких самолетах обычно находятся на высотах от 30 км.

    На какой высоте летают истребители?

    Крейсерская высота конкретного истребителя зависит не столько от его характеристик, сколько от поставленной военной задачи. Набор высоты происходит аналогично гражданским самолетам: эшелон перехода определяется согласно отправной точке, а затем меняется при пересечении границ воздушного пространства, чтобы избежать столкновения с другими судами в одном эшелоне.
    Уровень полета истребителя зависит от его поколения. Сверхзвуковые воздушные судна, к которым относятся практически все современные истребители, обычно следуют на высоте 18–20 км. Однако высота полета может меняться, в зависимости от возможностей самолета. Например, в 1977 году был установлен мировой рекорд высоты, покоренной истребителем: Александр Федотов на МиГ-25 достиг отметки в 37650 метров.

  2. msapik Ответить


    Работу российского спецназа показали на видео

    Новый американский вертолет уничтожил российскую “Армату” в рекламе

    Танк перепрыгивает траншею: видео

    Сколько бумаги понадобится, чтобы остановить пулю 50 калибра

    Американская ракета TOW против российского танка Т-72: видео

    Бразильцы согнули пистолет ради удобства

  3. DAEx3m Ответить

    10. Минимум аэродрома для взлета устанавливается по минимально допустимому значению видимости на ВПП и, при необходимости, по высоте нижней границы облаков, при которых разрешается выполнять взлет на воздушном судне данной категории.
    Минимум аэродрома для посадки устанавливается по минимально допустимым значениям видимости на ВПП и ВПР (МВС), при которых разрешается выполнять посадку на воздушном судне данной категории.
    Минимум воздушного судна для взлета устанавливается по минимально допустимому значению видимости на ВПП, позволяющему безопасно производить взлет на воздушном судне данного типа.
    Минимум воздушного судна для посадки устанавливается по минимально допустимым значениям видимости на ВПП и ВПР (МВС), позволяющим безопасно производить посадку на воздушном судне данного типа.
    Минимум командира воздушного судна для взлета устанавливается по минимально допустимому значению видимости на ВПП и, при необходимости, по высоте нижней границы облаков, при которых командиру воздушного судна разрешается выполнять взлет на воздушном судне данного типа.
    Минимум командира воздушного судна для посадки устанавливается по минимально допустимым значениям видимости на ВПП и ВПР (МВС), при которых командиру воздушного судна разрешается выполнять посадку на воздушном судне данного типа.
    Минимум командира воздушного судна для полетов под облаками по ПВП устанавливается по минимально допустимым значениям видимости и высоты нижней границы облаков, при которых командиру воздушного судна разрешается выполнять визуальные полеты на воздушном судне данного типа.
    Командиру воздушного судна минимум для выполнения полета устанавливается в зависимости от уровня его летной подготовки.
    Минимум вида авиационных работ устанавливается по минимально допустимым значениям видимости и высоты нижней границы облаков, при которых разрешается выполнение вида авиационных работ с применением правил полетов (ПВП, ППП), установленных для данного вида работ.

  4. rintaru Ответить

    Окошки эти (точнее два нижних) называют окнами Колсманна по имени американского изобретателя Пауля Колсманна (Paul Kolsmann, эмигрировал в Америку из Германии в 1923 году :-)), занимавшегося авиационными приборами. Он-то как раз эти окна и придумал. Для чего?
    На самом деле – это очень важная вещь в деле контроля высоты полета самолета, и на каждом высотомере есть как минимум одно окно Колсманна. Кроме того все эти приборы имеют специальную кремальеру, кинематически связанную со шкалой, которая видна в этом окне. Шкала эта подвижна и на ней нанесены цифры, представляющие собой величину атмосферного давления.
    Это давление может быть представлено на приборах в различных единицах измерения. В России используются миллиметры ртутного столба, в Америке и Канаде та же величина в дюймах (inch-ах, один дюйм (inch) равен 2,54 см), в Европе и других странах – в гектопаскалях (или миллибарах, что то же самое :-)).
    В том «западном» высотомере это давление показано для удобства сразу в двух окошках (Колсманна). В левом в гектопаскалях, в правом в дюймах.
    Для любого измерительного прибора, чтобы он осуществлял свои функции, требуется наличие нуля, точки отсчета. Для высотомера, соответственно, тоже должна быть какая-то начальная ( нулевая) высота. А так как прибор барометрический, то эта высота должна соответствовать определенному начальному давлению, например, давлению того места откуда начинается полет. Вот это самое начальное давление как раз и устанавливается на высотомере в окошке Колсманна.
    Хотя на самом деле таких «начальных давлений» в практике полетов существует несколько. Поэтому и определений высот полета самолета тоже несколько. Первая – это, пожалуй, истинная высота Нист.. Это реальная высота полета, отсчитываемая от точки поверхности местности, над которой в данный момент пролетает самолет. Международное обозначение AGL (Above Ground Level).
    Высотомер, как барометрический прибор, не меряет реальную высоту непосредственно. Он делает это косвенно, измеряя разность давлений между начальным давлением и давлением на той высоте, на которой он находится. Получаем так называемую барометрическую высоту. Она может довольно сильно отличаться от реальной высоты AGL. Все зависит от величины давления, установленной на высотомере.

    Виды высот полета самолета.
    Далее высота относительная Нотн.. Она отсчитывается от некоего условного уровня, обычно от уровня аэродрома, с которого взлетает (или на который садится) самолет. В международном обозначении эта высота —  height и ей соответствует давление QFE (Q-code Field Elevation), то есть давление на уровне порога ВПП.
    Еще одна высота это абсолютная Набс.. Это высота полета самолета, отсчитываемая от условного (среднего) уровня моря. Международное обозначение – altitude. Этой высоте соответствует давление QNH (Q-code Nautical Height) означающее давление в данной точке земной поверхности, приведенное к уровню моря.
    На всякий случай скажу, что значит «приведенное к уровню моря» (упрощенно :-)). Имеем вышеупомянутое давление в данной точке поверхности. Допустим, это давление на пороге ВПП, то есть QFE. Превышение (абсолютная высота) этой точки над уровнем моря известно (обычный топографический параметр :-)).
    Кроме того, известна зависимость падения давления с высотой. Например, для небольших высот принято, что изменение высоты на 11,2 м соответствует изменению давления на 1мм рт. ст. (так называемая барометрическая ступень) или подъем на высоту 800 м соответствует падению давления на 100 гПА.
    Остается высоту нашей точки от уровня моря поделить на 11,2 (если за единицу измерения принимаем мм.рт.ст.) и полученное давление сложить с имеющимся (QFE, в данном случае). В итоге имеем давление в точке, если бы она находилась на уровне моря (то есть приведена к уровню моря).
    Интересно, что средний уровень моря (международное обозначение MSL) во ряде стран СНГ, в России и в Польше ведется с использованием Балтийской системы высот (то есть по уровню Балтийского моря в Кронштадте), а по стандартам ICAO с использованием системы WGS-84, которые не полностью совпадают.
    Кроме того еще высоты полета самолета до 200 м именуются предельно малыми, от 200 до 1000 м малыми, от 1000 до 4000 м средними, от 4000 м до 12000 м большими и выше 12000 м – стратосферными.
    Летчик, выруливая на взлетную полосу аэродрома с помощью вышеуказанной кремальеры устанавливает в окошке высотомера определенное давление, которое ему сообщает диспетчер (руководитель полетов). Для российских аэродромов – это давление QFE, то есть на высотомере при этом стоит высота, равная нулю.
    Интересно, что так делается только в России (и в некоторых странах СНГ). В остальном мире перед вылетом на высотомере выставляется давление, приведенное к уровню моря, то есть QNH. И на высотомере у них уже до взлета стоит высота превышения аэродрома над уровнем моря (а вовсе не ноль, как у нас).
    Далее самолет взлетает и в процессе полета летчик на определенных этапах полета выставляет на высотомере соответствующие давления, которые ему сообщает диспетчер (руководитель полетов). Сам этот порядок выставки строго регламентирован, потому что от  него напрямую зависит безопасность полетов.
    В статье о TCAS я уже говорил, что воздушное пространство только кажется необъятным, хотя когда-то оно, конечно, таковым и было :-). Но сейчас самолетам в воздухе уже довольно тесно (особенно над Европой и Америкой) и, чтобы избежать никому ненужных встреч в воздухе, возрастает роль воздушного эшелонирования.
    Оно бывает продольное, боковое и вертикальное. Нас сегодня интересует последнее, как непосредственно связанное с высотой полета самолета. Упрощенно суть вертикального эшелонирования такова. В некоторой области воздушного пространства через определенные интервалы по вертикали назначаются высоты, на которых должны находиться воздушные суда для того, чтобы гарантированно избежать опасного сближения (или даже столкновения) при пролете в относительной близости по отношению друг к другу.
    Тут появляется еще одно определение высоты полета самолета. Это высота эшелона. Или просто эшелон (международное обозначение FL). Но для того, чтобы самолеты, находящиеся на разных эшелонах, были гарантировано на достаточном высотном интервале друг от друга, нужно, чтобы их высотомеры работали одинаково, то есть, чтобы у всех у них изначально было установлено одно и то же давление. Тогда в любой заданной точке пространства высотомеры разных самолетов будут показывать одну и ту же высоту.
    Есть одна такая величина давления, которая одинакова и постоянна во всем мире. Вот она-то и выставляется на высотомере для  полета воздушного судна на эшелоне. Это стандартное атмосферное давление 1013,2 гПа = 760 мм рт. ст. = 29,92 дюйма рт. ст. Международное обозначение QNE). Оно, кстати, выставлено на высотомере, показанном выше, том самом с двумя окошками Колсманна.
    Давление одинаковое, а схемы эшелонирования в разных странах могут быть разными. Иной раз мешанина еще та :-). При пересечении границ различных государств экипаж самолета действует по указанию диспетчера, и по его же указанию может поменять эшелон.
    То есть высота эшелона скорей всего не будет соответствовать истинной высоте полета и даже будет от него отличаться на сотни метров. Зато безопасное эшелонирование будет соблюдено. И даже, если самолет летит на самом нижнем эшлоне, он все равно находится достаточно далеко от земли (как минимум в 1500-1800 м). то есть ниже нижнего эшелона тоже существует своя зона полетов.

  5. robozon Ответить

    Взлетали перехватчики, наоборот, с оглушительным ревом, сотрясая все вокруг, с огромным хвостом форсажного пламени позади, исчезая высоко в небе за какие-то секунды. Несмотря на обилие на аэродроме разнообразной военной техники – гигантских стратегических бомбардировщиков и транспортных самолетов, штурмовиков, фронтовых истребителей и вертолетов, все разговоры вертелись вокруг МиГ-25, уж больно необычен был самолет без следов заклепок на борту, с неправдоподобно тонкими крыльями, с двигательными соплами, куда свободно залезал человек. И уж совсем мифическим был тот факт, что это единственный самолет, с которого после посадки сливалось 200 л 40-градусного водно-спиртового раствора, слегка отдающего резиной и за всенародную аэродромную любовь прозванного «Массандрой». В ответ на вопрос, зачем в полете столько водки, пилоты перехватчиков, затянутые в противоперегрузочные высотные костюмы и сгибающиеся под тяжестью канистр с «Массандрой», загадочно хранили молчание. Может, они и в самом деле не знали. А вот мы теперь знаем.
    Полет «Валькирий»
    В конце 1954 года командующий стратегической авиацией ВВС США генерал Кертис Ли Мэй поднял вопрос о создании бомбардировщика, обладающего дальностью полета без дозаправки не менее 11 тыс. км при «максимально возможной» скорости. А спустя несколько лет в США развернулись интенсивные работы по супербомбардировщику B-70 «Валькирия».
    Самолет должен был иметь крейсерскую скорость в 1,5-2 М, а максимальную до 3 М. Первое боевое авиакрыло было намечено сформировать уже к августу 1965 года. В 1960 году об этой сверхсекретной программе узнали в Советском Союзе и КБ Микояна начало разработку высокоскоростного перехватчика с невиданными характеристиками для перехвата американских «Валькирий». Вторгающаяся со стороны Северного полюса предполагаемая армада бомбардировщиков, со скоростью в 3 раза больше скорости звука, сильно давила на психику руководства СССР. Поэтому инициатива Микояна быстро нашла поддержку в правительстве (надо отметить, пока в правительстве сохранялись позиции родного брата Анастаса Микояна, практически все предложения Артема Микояна находили поддержку) и КБ было выдано задание на разработку проекта перехватчика Е-155 – будущего МиГ-25.
    Задача оказалась невероятно сложной. Только самолеты преодолели звуковой барьер, как ставилась цель летать в 3 раза быстрее звука. К тому же предстояло преодолеть еще один барьер – тепловой.
    Уже при полете МиГ-19 с числом М=1,3 при температуре 00С воздух в районе носового обтекателя нагревался до 720С. Аналогичный нагрев обтекателя МиГ-21 при М=2,05 достигал уже 1070С. Расчеты показывали, что при М=3 температура превысит 3000С. Оказалось, на таких скоростях плавился плексиглас остекления кабины пилота, разлагалась гидравлическая жидкость, все детали из резины, включая шины, теряли упругость. Но самое неприятное: основной авиационный материал – алюминиевые сплавы теряли свои прочностные свойства уже при 1300С. Казалось, на безальтернативной основе остался только титан, на котором и остановились американцы. Однако при традиционной клепке авиационных корпусов требовалась герметизация швов. Высокотемпературных герметиков, выдерживающих предполагаемые режимы полета перехватчика, в России не существовало. Титановые листы безуспешно пытались сваривать – материал растрескивался. Зато сваривать сталь в нашей стране умели великолепно. После долгих раздумий в КБ решили сваривать самолет из стали. Качественная сталь обладает прочностью в 3 раза выше, чем алюминиевые сплавы, но и весит в 3 раза больше. По меньшей мере это означало, что каждый элемент надо было делать в 3 раза тоньше, что требовало кардинального пересмотра традиционного подхода к проблемам сопротивления, устойчивости, вибрации и т. д. В итоге конечный самолет на 80% состоял из стали, на 8% – из титана и только на 11% – из жаропрочного алюминиевого сплава. В конструкции планера было 5 км сварных швов и 1,4 млн сварных точек. О качестве работ говорит тот факт, что за один год сварочных работ при общей длине швов в 450 км были обнаружены только две незначительные утечки топлива (незначительная капельная течь). Неожиданным побочным эффектом нового материала стала удивительная ремонтопригодность самолета – сварку можно было вести прямо на стоянке.
    Совершенно необычным был двигатель перехватчика, представляющий собой развитие двигателя ТРД-15К для беспилотных аппаратов конструкции Микулина. После доработки компрессора, камеры сгорания и форсажной камеры получился почти прямоточный двигатель, с очень коротким компрессором, чрезвычайно прожорливый, но имеющий характеристики, сходные с ракетным двигателем. Он идеально подходил для однойединственной цели – практически мгновенно набирать огромную высоту и скорость. Но никогда и никому такие двигатели ставить на серийной самолет не разрешили бы: правительство всегда требовало универсальные машины. Микоян оказался исключением (не будем забывать, кто был его братом). По этой же причине Е-155 обзавелся поджарым, спринтерским планером, с огромными воздухозаборниками и тонкими лезвиями крыльев и оперения.
    Отличало перехватчик от других самолетов и необычное по тем временам двухкилевое оперение. Легенда, бытующая в КБ, описывает его появление так. Разведчики принесли как-то в КБ фотографию разрабатывающегося в США новейшего скоростного разведчика SR-71.
    Фотография была настолько мутной, что ничего рассмотреть на ней было нельзя, за исключением того, что килей было два. Решили подстраховаться, установив на Е-155 также два киля. Попутно выяснилось, что если их установить не совсем перпендикулярно к горизонту – это ощутимо снижает радиолокационную заметность. Собственно поэтому большинство современных боевых самолетов имеют два наклонных киля, а гражданские – традиционный один.
    МиГ-25 – чемпион
    Невероятно, но практически за два года основные проблемы были решены. Односторонний пуск на огромных скоростях подвешенной на внешних узлах подвески ракеты приводил к опасной асимметрии, которая была устранена цельно-поворотным дифференциальным стабилизатором. Самолет пронизывала целая система теплообменников, турбохолодильников для уменьшения температуры воздуха от 7000С на входе компрессора до необходимых 200С для нормального функционирования оборудования. Для радиоэлектронного оборудования была специально разработана мощная водно-спиртовая система охлаждения, заправляемая как раз теми загадочными 200 л «Массандры». На теплоотражающие стальные перегородки Госплан выделил по 5 кг серебра на самолет – и ни граммом больше. Тело и голова пилота охлаждались специальным потоком воздуха, но прикасаться голой рукой к стеклянной кабине было строжайше запрещено – все равно, что дотронуться до раскаленного железа. В итоге получился уникальный, не имеющий мировых аналогов самолет, как ничто в мире умеющий набирать высоту и скорость. Самолету было присвоено специальное «спортивное» название «Е-266», под которым он был зарегистрирован в Международной авиационной федерации ФАИ, и он начал расправляться с мировыми рекордами, установленными преимущественно американским суперразведчиком SR-71. Это было продолжением своеобразного психологического прессинга США, вдогонку космическим успехам СССР. До сих пор многие из рекордов Е-266 остаются непобитыми.
    Таблица рекордов
    Под стать планеру была и начинка перехватчика. Четыре новые ракеты «воздух – воздух» К-40 с титановым корпусом позволяли вести стрельбу на дальность до 50 км, развивая при этом невиданную скорость, превышающую число М=5. Бортовая радиоэлектронная аппаратура впервые позволяла выводить перехватчик на цель в полуавтоматическом режиме, что при ожидаемых скоростях сближения было просто необходимым: обычные человеческие рефлексы просто не успевали срабатывать. Проблемы начались там, где их не ждали, – у суперперехватчика исчез суперпротивник.
    Бесцельный перехватчик
    Появление в СССР первых дальних мобильных зенитных ракетных комплексов заставило американцев сделать вывод, что по уязвимости сверхзвуковой В-70 будет не намного лучше дозвукового В-52 при разнице в цене в десятки раз. В марте 1964 года, израсходовав более $1,3 млрд, США отказались от дальнейшей разработки «Валькирий», ограничившись постройкой двух 2-местных экспериментальных самолетов ХВ-70А без боевых систем. (Правда, в Советском Союзе до 1967 года эта машина считалась не экспериментальной, а боевой.) У еще не родившегося МиГ-25 исчезла цель, ведь он был предназначен для решения однойединственной задачи. Через полюс к нам летят неповоротливые, но удивительно быстрые «Валькирии». С заполярных аэродромов к ним навстречу поднимаются такие же неповоротливые, но такие же скоростные перехватчики и расстреливают B-70 прямо над полюсом. Как истребитель МиГ-25 никуда не годился: ближний и средний бой он вести не мог – радиус виража превышал 10 км. Правда, некоторая надежда на американцев у разработчиков все же была: долгое время советская разведка считала, что разрабатываемый создателем U-2 Кларенсом Джонсоном сверхскоростной разведчик A-11 (будущий SR-71) – на самом деле, бомбардировщик. В заблуждение ввела буква «A» в названии. Обычно ею в ВВС США обозначались самолеты, предназначенные для нанесения ударов по наземным целям (от слова «Attack»). У Джонсона же буква появилась от слова «Archangel» – U-2 в ходе разработки носил обозначение «Angel». Существует еще одна версия – «А» обозначает «Agency», ведь заказчиком нового самолета выступало ЦРУ.
    Во все другие времена исчезновение цели автоматически привело бы к свертыванию программы. Но не для человека с фамилией Микоян. На Горьковском авиазаводе разворачивается все увеличивающийся выпуск чудо-машины: в 1967-1970 годах выпущено 79 машин, в 1971-1975-м – уже 343, в 1976-1980-м – 402 и в 1981-1985-м – 288. Всего на заводе построили 1112 (!) МиГ-25 всех модификаций.
    Модификаций было действительно много, причем некоторые на грани анекдота. Чувствуя необходимость как-то обосновывать все возрастающий выпуск самолета, Микоян находил ему все новые и новые применения. Самое простое решение лежало на поверхности: если МиГ-25 летает выше и быстрее SR-71, то почему бы из него не сделать советский тактический разведчик. Сказано – сделано. У МиГ-25 изменили носовой обтекатель, в котором размещалось разведывательное оборудование; установили дополнительные антенны; для увеличения дальности кили были превращены в интегральные топливные баки (по 350 л в каждом); был разработан специальный подфюзеляжный топливный бак больших размеров (5300 л); было снято все вооружение. В 1969 году неуловимый российский разведчик МиГ-25Р пошел в серию.
    Совсем уж невероятной кажется история создания стратосферного бомбардировщика на базе МиГ-25. Дело в том, что некоторые разведчики МиГ-25Р, предназначенные для фотосъемки в ночное и сумеречное время, для подсветки целей могли нести до 8 осветительных бомб калибра 100 или 250 кг – этакие сверхмощные фотовспышки. Эти самолеты довольно интенсивно применялись во время арабоизраильских конфликтов. А что если вместо фотобомб навешивать фугасные – такая идея пришла в микояновскую голову. В кратчайшие сроки была разработана сложнейшая аппаратура прицельного бомбометания из стратосферы на сверхзвуковой скорости (!) «Пеленг-2», была увеличена до 5 т бомбовая нагрузка, внедрена тандемная подвеска авиабомб. Есть данные, что 4 подобных самолета дважды (в 1971-м и 1973-м годах) направлялись в Египет, где активно вели разведывательные полеты, в том числе во время военных действий в октябре 1973 года. Далее источники противоречат сами себе: с одной стороны, утверждается, что бомбометание эти самолеты не вели, с другой – что система бомбометания в командировках была отработана. Можно предположить, что бросали, но не попали – попробуй попасть с 20 км на скорости несколько тысяч километров в час.
    Не прошла только одна микояновская модификация МиГ-25 – административный самолет для высшего комсостава МиГ-25П. Видно, престарелое руководство просто боялось не выдержать перегрузки при полете в 7-местном раскаленном самолете со средней скоростью 2500 км/ч.
    Продолжение следует
    История имеет продолжение. В начале 70-х США приступили к разработке бомбардировщика B-1, оснащенного револьверными пусковыми барабанами, позволяющими в короткий срок выпустить 8 крылатых ракет, не залетая в зону действия советского ПВО. Для перехвата ракет была создана специальная модификация МиГ-25, получившая отдельное название – «МиГ-31». Самолет получил новые более экономичные двигатели, ракеты большой дальности (до 110 км) и совершенно уникальную бортовую аппаратуру. МиГ-31 предназначены для действий четверками, в которых ведущий самолет выполняет роль своеобразного сверхзвукового «Авакса», в автоматическом режиме распределяя цели и наводя на них 3 ведомых самолета. Самолеты в таком порядке находятся друг от друга на расстоянии 200 км, перекрывая своими радарами зону в 800-900 км. На сегодняшний день Нижегородским авиазаводом выпущено более 400 различных модификаций МиГ-31. У американцев в строю сейчас 93 B-1B. Так что с целями для «тридцать первого» все в порядке. Беда в том, что, судя по всему, лететь к нам через Северный полюс B-1B не собираются.
    Мировые рекорды самолета Е-266 М/1
    Эти 6 мировых рекордов (один из которых абсолютный), установленные более 15 лет назад, не побиты до сих пор
    17 мая 1975 года
    Время подъема на высоту 25 000 м – 2 мин 32,2 с (летчик А.В. Федотов)
    17 мая 1975 года
    Время подъема на высоту 30 000 м – 3 мин 9,85 с (летчик П.М. Остапенко)
    17 мая 1975 года
    Время подъема на высоту 35 000 м – 4 мин 11,7 с (летчик А.В. Федотов)
    22 июля 1977 года
    Рекорд высоты с полезной нагрузкой 1000 кг – 37 080 м (летчик А.В. Федотов). Рекорд высоты с полезной нагрузкой 2000 кг
    31 августа 1977 года
    Абсолютный рекорд высоты – 37 650 м (летчик А.В. Федотов)
    P.S. Про спирт…
    Про спирт … А я служил в группе РТР и РЭБ на МИГ 25 РБ двухгодичником и все фокусы со спиртом прошел от и до. По нашей линии было самое большее количество спирта в самолете – от РЛС бокового обзора, до станции постановки помех – 45 литров. Кстати у слонов (техников) чистяка было всего 6 литров от обледенителя лобовухи, ну и литров 150-200 массандры, как говорили для охлаждения генераторов при “разгоне” (когда самолет преодолевал сверхзвук), у радистов литров 20 спирта для охлаждения радиостанций. При применении нашей аппаратуры спирт охлаждал передатчики и выбрасывался в атмосферу (стакан в минуту). На этом и была построена примитивная математика списания. Распределение было такое (по убыванию). Основными потребителями спирта чистого, а не “массандры” или как ещё называли СВС – “жижки”, были летуны. Так что это миф об их “чистоплотности”. После полета они фиксировали в ЖПСе (журнал подготовки самолета) завышенное время (а иногда и вообще её не включали) работы радиоэлектронной аппаратуры и на разницу мы получали спирт на ГСМе, а потом канистры втихую забирал доверенный боец, как правило водитель комэски на уазике. Далее техническое руководство эскадрильи, остатки нам в группе (тоже по ранжиру) , ну и крохи кто попросит , но не всем. И все это происходило не каждые полеты, а когда применялась “спиртозависимая” аппаратура, а применялась она при сверхзвуке, т е при “разгоне”. Вот тогда и тек рекой и спирт у спецов и жижка у технарей. Либо когда применялась станция постановки помех “Сирень” – это день назывался “Сиреневым”, но всем было понятно что он значит. За летную смену списывалось по 60 и более литров чистого. За спирт в городке делалось всё! – это была вторая валюта. Пили конечно много, водка казалась компотом в сравнении с этим дерьмом, которое в конце службы уже не лезло. И одновременно с нашим дембелем умер один кадровый , уже не молодой техник от запоя – сердце не выдержало. После службы я подумал какой же я дурак, что лил в себя ЭТО пойло и слава богу что служил всего 2 года.
    К слову, с самолета с нашей аппаратуры, мы спирт никогда не сливали – там всё чик-чик, всегда по уровню (вдруг проверка), и опломбировано. Во вторых зачем мучиться, эта процедура придумана там через жопу. Так что пили спирт никогда не бывавший в воздухе и о радиоактивности бортового спирта ничего пояснить не могу. Недочет однако …

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *