Как называется процесс поступления в клетку жидких веществ?

13 ответов на вопрос “Как называется процесс поступления в клетку жидких веществ?”

  1. Fordrelbine Ответить

    Когда транспортируются незаряженные молекулы, то пассивный транспорт определяется только градиентом концентрации, т. е. разностью концентрации вещества на разных сторонах мембраны. Если же молекулы транспортируемого вещества заряжены, то к влиянию градиента концентрации добавляется влияние электичес-ких потенциалов по обе стороны мембраны. Градиент концентрации и электрический градиент в совокупности составляют электрохимический потенциал, который позволяет транспорт в клетку только положительно заряженных ионов.
    Можно сказать, что пассивный транспорт веществ в клетки осуществляется обычной диффузией через клеточную мембрану, причем скорость диффузии вещества зависит от его растворимости в мембране, коэффициента диффузии в мембране и от разности концентрации веществ в клетке и за ее пределами (в среде). Этим путем в клетку проникают вода, двуокись углерода и молекулы органических веществ, способные хорошо растворяться в жирах. Вещества в клетку проникают через поры, имеющиеся в клеточной мембране. Пассивный транспорт не зависит от энергии, обеспечиваемой АТФ.
    Известна катализируемая, или так называемая «облегченная» диффузия, при которой скорость диффузии разных веществ, например, Сахаров, аминокислот и нуклеозидов через мембрану повышается с помощью белков (ферментов). Как и обычная диффузия, «облегченная» диффузия тоже зависит от градиента концентрации, однако здесь имеются подвижные «переносчики», роль которых выполняют ферменты. Находясь в составе мембраны, ферменты действуют в качестве «переносчиков» молекул веществ, проникая (диффундируя) на противоположную сторону мембраны, где они освобождаются от переносимых веществ. Поскольку «облегченная» диффузия веществ является переносом по градиенту концентрации, она тоже непосредственно не зависит от энергии, обеспечиваемой АТФ.
    Активный транспорт веществ в клетку отличается от пассивного (диффузии) тем, что вещество переносится против градиента концентрации, т. е. из области низкой концентрации в область более высокой концентрации. Активный транспорт связан со способностью мембраны поддерживать разность электрических потенциалов (помимо поддержания разности в концентрациях веществ внутри и снаружи клетки), под которыми понимают различия между электрическими потенциалами внутри и вне клетки, а также с затратами энергии на работу в виде перемещения веществ против электрохимического градиента, т. е. «вверх».
    Энергия для транспорта обеспечивается фосфоэнолпируватом, фосфатная группа которого и часть химической энергии которого передаются белкам, часть которых используется всеми сахарами, транспортируемыми фосфотрансферазной системой, а часть специфична для отдельных Сахаров. Конечный белок содержится в мембране и ответственен за транспорт и фосфорилирование Сахаров.
    Активный транспорт особенно эффективен в случае переноса ионов. Реакции, обеспечивающие активный транспорт, происходят в мембране и сопряжены с реакциями, дающими свободную энергию. Ферменты, катализирующие эти реакции, также локализованы в мембране. Примером активного транспорта веществ является транспорт ионов натрия и калия (рис. 69), который определяет клеточный мембранный потенциал. Концентрация ионов натрия (Na+) внутри большинства клеток является меньшей, чем в среде, тогда как концентрация ионов калия (К+) внутри клеток является в 10—20 раз большей, чем в среде. В результате этого ионы Nа+ стремятся проникнуть из среды в клетку, а ионы К+, наоборот, выйти из клетки в среду. Поддержание концентрации этих ионов в клетке и в окружающей среде обеспечивается благодаря наличию в клеточной мембране системы, которая является ионным «насосом» и которая откачивает ионы Na+ из клетки в среду и накачивает ионы К+ в клетку из среды. Работа этой системы, т.е. движение ионов против электрохимического градиента, обеспечивается энергией, которая генерируется гидролизом АТФ, причем фермент АТФ-аза, катализирующий эту реакцию, содержится в самой мембране и, как считают, выполняет роль натриево-калиевого «насоса», генерирующего мембранный потенциал. Энергия, освобождаемая при гидролизе одной молекулы АТФ, обеспечивает транспорт за пределы клетки трех ионов Na+ и внутрь клетки двух ионов К+.
    Система Na+ + К+ —АТФ-аза помогает поддерживать ассиметрическое распределение ионов калия при высокой концентрации последнего в клетках. Ионы калия участвуют в регуляции многих клеточных функций, включая поток солей и воды из почечных клеток, освобождение инсулина из панкреатических клеток, частоту сердцебиений.
    Установлено, что энергетически выгодный транспорт ионов Na+ внутрь клеток оказывает также влияние на транспорт сахаров и аминокислот в клетки. В частности, с транспортом ионов Na+ сопряжен транспорт глюкозы. Чтобы создать градиент концентрации ионов Na+, благоприятный для транспорта ионов К+ и глюкозы внутрь клеток, ионная «насосная» система благодаря энергии активно откачивает ионы Na+ из клетки за ее пределы.
    Определенная роль в транспорте веществ принадлежит белоксвязывающим системам, представляющим четвертый способ транспорта. Речь идет о белках, локализованных в периплазматическом пространстве. Эти белки специфически связывают сахара, аминокислоты и ионы, перенося их затем к специфическим молекулам-носителям, локализованным в клеточной мембране. Источником энергии для этих систем является АТФ.
    Эндоцитоз, как отмечено выше, обеспечивает перенос в клетки крупных частиц и молекул. В рамках эндоцитоза различают фагоцитоз и пиноцитоз.
    Фагоцитоз (от греч. phagos — пожирающий и cytos — клетка) представляет собой процесс, заключающийся в том, что клетки-лейкоциты (макрофаги и нейтрофилы) захватывают (обволакивают) твердые частицы (фрагменты клеток, бактерии) путем выпячиваний своей клеточной мембраны и образования пузырьков, сливающихся затем с плазматической мембраной и открывающихся внутрь клетки. Вошедшие внутрь клеток частицы поступают в лизосомы, где с помощью клеточных (лизосомных) ферментов разрушаются и усваиваются затем клетками. Фагоцитоз широко распространен среди одноклеточных организмов. У многоклеточных (млекопитающих) он выполняется специализированными клетками (лейкоцитами).
    У простейших фагоцитоз является формой питания, в результате которого твердые частицы проникают в лизосомы, где и перевариваются, образуя продукты, служащие пищей. Биологическое значение фагоцитоза у млекопитающих заключается в том, что он обеспечивает иммунную (фагоцитарную) защиту организма (см. гл. XVII).
    Пиноцитоз (от греч. pino — пить и cytos — клетка) представляет собой процесс, при котором клетки поглощают жидкости и находящиеся в них высокомолекулярные вещества путем впячива-ний плазматической мембраны и образования пузырьков (каналь-цев), куда поступает жидкость. Канальцы после заполнения жидкостью отшнуровываются, поступают в цитоплазму и доходят до лизосом, где их стенки перевариваются, в результате чего содержимое (жидкость) канальцев освобождается и подвергается дальнейшей обработке лизосомными ферментами.
    Пиноцитоз часто встречается у одноклеточных животных, у многоклеточных он наблюдается в клетках кровеносной и лимфатической систем, в клетках злокачественных опухолей, а также в клетках тканей, для которых характерен повышенный уровень обмена веществ.
    Экзоцитоз — это процесс секретирования клетками различных веществ, причем известны регулируемый и конститутивный пути экзоцитоза. Примером регулируемого экзоцитоза является экзоци-тоз инсулина. Клетки поджелудочной железы, продуцирующие инсулин, упаковывают его вначале в так называемые секреторные пузырьки, которые после внеклеточного сигнала сливаются с плазматической мембраной, а затем открываются в межклеточное пространство, освобождая гормон. Подобным образом происходит эк-зоцитоз других гормонов, нейротрансмиттеров и многих ферментов. Напротив, конститутивный путь экзоцитоза присущ многим белкам, непрерывно синтезируемым клетками и упаковываемым в эк-зоцитозные пузырьки в комплексе Гольджи, после чего эти пузырьки перемещаются к плазматической мембране, где и открываются в межклеточное пространство, освобождаясь от белкового содержимого.
    С помощью экзоцитоза из клетки удаляются также частицы, оказавшиеся непереваренными путем фагоцитоза. У большинства клеток циклы эндоцитоз-экзоцитоз непрерывны.

  2. Dianadar Ответить

    Виды и способы
    Их сущность
    Эндоцитоз
    поступление веществ в клетку
    А) простая диффузия
    поступление в клетку ионов и мелких молекул через мембрану по градиенту концентрации без затрат энергии: гидрофильные молекулы диффундируют через интегральные белки мембран, гидрофобные – через билипидный слой мембраны
    Б) осмос
    поступление в клетку растворителя (воды) по градиенту концентрации без затрат энергии
    В) облегченная диффузия
    поступление молекул с помощью белков-переносчиков (пермеаз) по градиенту концентрации
    Г) активный транспорт
    перемещение веществ против градиента концентрации с помощью транспортных белков – поринов и АТФ-аз с затратой энергии
    Д) фагоцитоз
    поступление в клетку крупных молекул и частиц с затратой энергии; мембрана клетки окружает частицу, края ее смыкаются и частица поступает в цитоплазму в мембранном пузырьке – эндосоме
    Е) пиноцитоз
    поступление в клетку капелек жидкости с затратой энергии. Идет как фагоцитоз
    Экзоцитоз
    выведение из клетки веществ (гормоны, белки, капли жира), заключенных в мембранные пузырьки, которые подходят к плазматической мембране, их края сливаются, а содержимое выделяется за пределы клетки

  3. Morluth Ответить

    Ответ оставил Гость
    Процесс поступления веществ в клетку называется эндоцитозом. Различают пиноцитоз и фагоцитоз.
    Фагоцитоз (греч. фаго – пожирать) – поглощение клеткой твердых органических веществ . Оказавшись около клетки, твердая частица окружается выростами мембраны, или под ней образуется впячивание мембраны. В результате частица оказывается заключенной в мембранный пузырек внутри клетки. Такой пузырек называют фагосомой. Термин «фагоцитоз» был предложен И.И. Мечниковым в 1882 г. Фагоцитоз свойствен простейшим, кишечнополостным, лейкоцитам, а также клеткам капилляров костного мозга, селезенки, печени, надпочечников.
    Второй способ поступления веществ в клетку называют пиноцитозом (греч. пино – пью) – это процесс поглощения клеткой мелких капель жидкости с растворенными в ней высокомолекулярными веществами. Осуществляется путем захвата этих капель выростами цитоплазмы. Захваченные капли погружаются в цитоплазму и там усваиваются. Явление пиноцитоза свойственно животным клеткам и одноклеточным простейшим.
    Еще один способ поступления веществ в клетку – осмос – прохождение воды через избирательно проницаемую мембрану клетки. Вода переходит из менее концентрированного раствора в более концентрированный. Вещества могут также проходить через мембрану путем диффузии – так транспортируются вещества, способные растворяться в липидах (простые и сложные эфиры, жирные кислоты и т.д.). Путем диффузии по градиенту концентрации по специальным каналам мембраны идут некоторые ионы (например, ион калия выходит из клетки).
    Кроме того, транспорт веществ через мембрану осуществляет натрий-калиевый насос: он перемещает ионы натрия из клетки и ионы калия в клетку против градиента концентраций с затратой энергии АТФ.
    Фагоцитоз, пиноцитоз и натрий-калиевый насос – это примеры активного транспорта, а осмос и диффузия – пассивного транспорта.

  4. Steelcliff Ответить

    Процесс поступления веществ в клетку называется эндоцитозом. С4 Найдите ошибки в приведенном тексте. 3). Эта группа бактерий вступает в симбиотическую связь с корнями некоторых растений. Разность концентрации веществ внутри и снаружи клетки называют градиентом концентрации. 5). В благоприятных условиях бактерии размножаются прямым делением клетки.
    В результате частица оказывается заключенной в мембранный пузырек внутри клетки. Термин «фагоцитоз» был предложен И.И. Мечниковым в 1882 г. Фагоцитоз свойствен простейшим, кишечнополостным, лейкоцитам, а также клеткам капилляров костного мозга, селезенки, печени, надпочечников.

    Захваченные капли погружаются в цитоплазму и там усваиваются. Явление пиноцитоза свойственно животным клеткам и одноклеточным простейшим. Еще один способ поступления веществ в клетку – осмос – прохождение воды через избирательно проницаемую мембрану клетки.

    Благодаря содержанию растворов солей, Сахаров и других осмотически активных веществ, клетки характеризуются наличием в них определенного осмотического давления.

    Смотреть что такое «эндоцитоз» в других словарях:

    Поступление веществ в клетки животных, равно как и удаление их из клеток, связано с проницаемостью клеточной мембраны для молекул или ионов, а также со свойствами веществ. Клеточная мембрана регулирует обмен различными веществами между клеткой и средой. Поддержание мембраны и ее проницаемость обеспечиваются клеточной энергией. Известно несколько путей поступления веществ в клетки. В то же время клетки способны секретировать различные вещества в окружающую их среду. Этот процесс называют экзоцитозом.
    Молекулы обычно переходят из области высокой концентрации в область более низкой концентрации. Важнейший вывод их этих заключений состоит в том, что работа, необходимая для транспорта какой-либо молекулы, не зависит от абсолютных концентраций. Когда транспортируются незаряженные молекулы, то пассивный транспорт определяется только градиентом концентрации, т. е. разностью концентрации вещества на разных сторонах мембраны.

    Этим путем в клетку проникают вода, двуокись углерода и молекулы органических веществ, способные хорошо растворяться в жирах. Вещества в клетку проникают через поры, имеющиеся в клеточной мембране.

    С1. На данном рисунке изображены различные эукариотические клетки как одноклеточных, так и многоклеточных растений и животных

    Находясь в составе мембраны, ферменты действуют в качестве «переносчиков» молекул веществ, проникая (диффундируя) на противоположную сторону мембраны, где они освобождаются от переносимых веществ. Конечный белок содержится в мембране и ответственен за транспорт и фосфорилирование Сахаров. Активный транспорт особенно эффективен в случае переноса ионов. Реакции, обеспечивающие активный транспорт, происходят в мембране и сопряжены с реакциями, дающими свободную энергию.

    Примером активного транспорта веществ является транспорт ионов натрия и калия (рис. 69), который определяет клеточный мембранный потенциал. Система Na+ + К+ —АТФ-аза помогает поддерживать ассиметрическое распределение ионов калия при высокой концентрации последнего в клетках. Ионы калия участвуют в регуляции многих клеточных функций, включая поток солей и воды из почечных клеток, освобождение инсулина из панкреатических клеток, частоту сердцебиений.
    В частности, с транспортом ионов Na+ сопряжен транспорт глюкозы. Определенная роль в транспорте веществ принадлежит белоксвязывающим системам, представляющим четвертый способ транспорта. Речь идет о белках, локализованных в периплазматическом пространстве. Эти белки специфически связывают сахара, аминокислоты и ионы, перенося их затем к специфическим молекулам-носителям, локализованным в клеточной мембране.

    2). Они выполняют в природе санитарную роль, т.к. минерализуют органические веществ

    В рамках эндоцитоза различают фагоцитоз и пиноцитоз. Вошедшие внутрь клеток частицы поступают в лизосомы, где с помощью клеточных (лизосомных) ферментов разрушаются и усваиваются затем клетками. У многоклеточных (млекопитающих) он выполняется специализированными клетками (лейкоцитами). Экзоцитоз — это процесс секретирования клетками различных веществ, причем известны регулируемый и конститутивный пути экзоцитоза.
    С помощью экзоцитоза из клетки удаляются также частицы, оказавшиеся непереваренными путем фагоцитоза. У большинства клеток циклы эндоцитоз-экзоцитоз непрерывны. Процесс поглощения веществ клетками путем впячивания (инвагинации) участка клеточной мембраны и образования в цитоплазме мембранного пузырька (эндосомы) с внеклеточным содержимым.
    Вещества, предназначенные для деградации, направляются в лизосомы. Когда МЕМБРАНА клетки вступает в контакт с питательным веществом, часть цитоплазмы окружает вещество, и в стенке клетки образуется углубление. Эндоцитоз — (англ. endocytosis) процесс захвата (интернализации) внешнего материала клеткой, осуществляемый путём образования мембранных везикул.
    High Quality Content by WIKIPEDIA articles!Цитоскеле?т — это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Процесс проникновения в клеткутвердых частиц называется фагоцитозом, а попадание капель жидких веществ — … их Обеспечивает транспортвеществ как внутри клетки, так и между соседними клетками. Процесс возникновения горения в этом случае называется самовозгоранием. Самовозгорающиеся вещества … продукты и твердоевещество.
    Он имеет твердую и … форму гингивита называют гипертрофической. РОЛЬ МИНЕРАЛЬНЫХ ВЕЩЕСТВ. Размер фагосом — от 250 нм и больше. В кислой среде гидролитическиеферменты расщепляют макромолекулы, оказавшиеся во вторичной лизосоме. Продукты расщепления (аминокислоты, моносахариды и прочие полезные вещества) транспортируются затем через лизосомную мембрану в цитоплазму клетки.
    После образования эндосомы к ней подходит первичная лизосома, и эти два мембранных пузырька сливаются. Процесс пиноцитоза постоянно осуществляют все эукариотические клетки. Макромолекулы, связывающиеся со специфическими рецепторами на поверхности клетки, проходят внутрь со значительно большей скоростью, чем вещества, поступающие в клетки за счет пиноцитоза.
    При связывании лиганда из окружающей клетку среды окаймлённые ямки формируют внутриклеточные везикулы (окаймлённые пузырьки). После чего эндосомы сливаются с первичными лизосомами, в результате чего формируются вторичные лизосомы.
    С2. Разное количество митохондрий в клетках связано с количеством энергии АТФ, которое затрачивается на выполнение органом работы. Каждая клетка состоит из неразрывно связанных между собой частей: плазматической мембраны, ядра и цитоплазмы с органоидами.

  5. Kazrar Ответить

    Самый маленький органоид …..рибосома
    2.Функция эндоплазматической сети ….синтез белка, углеводов, липидов, транспорт в-в
    3.Молекулы АТФ образуются в ….
    4.Функция …. – запас органических веществ. затрудняюсь сказать
    5…плазмалемма… состоит из липидов и белков.
    6…ЭПС… бывает гладкой и шероховатой.
    7.Этот органоид овальной формы, внутри него находятся ферменты, которые разрушают органические вещества. митохондрия
    8.К двух мембранным органоидам относят ….пластиды, митохондрии.
    9.Поступление в клетку жидких веществ называется …пиноцитоз. , а поступление твердых …фагоцитоз.
    10.Этот органоид отвечает за синтез белков. рибосома
    11.…… бывают равноплечие, неравноплечие, палочковидные и точечные. хромосомы
    12.Форма этого органоида часто совпадает с формой клетки. может рибосома? Но точно не могу сказать
    13.Внутри этого органоида есть складки – кристы. митохондрия
    14.Если этого органоида нет в клетке, то клетка называется прокариотической. ядро
    15.Этот органоид принимает участие в делении клетки. ядро, наверно. А может и, цитоскелет но не знаю .относится ли он к органоидам
    16.Непостоянные структуры клетки называются включения, вакуоли. Но не факт
    17.…. Состоит из большой и малой субъединиц. рибосома
    18.В составе этого органоида есть базальное тельце. жгутики, реснички, возможно
    19.….выполняет функцию опоры, придает форму клетки. цитоскелет
    20.Эти органоиды могут самостоятельно увеличивать свою численность. митохондрии, пластиды ( полуавтономные)
    21.Какие органоиды клетки отвечают за ее движение жгутики, реснички
    22.Каковы функции ядра в клетке 1) хранение передача насл. инф. 2) управление всеми процессами в клетке
    23.У этого органоида есть центромера. хромосома
    24.Этот органоид образуется вокруг участка хромосомы. Не знаю даже, надо думать
    Возможно, что-то и не так, быстро делая, не задумывалась особо. Довольствуйся тем, что есть

  6. Gojar Ответить

    Благодаря содержанию растворов солей, сахаров и других осмотически активных веществ, клетки характеризуются наличием в них определенного осмотического давления.
    Например:
    давление в клетках животных (морских и океанических форм) достигает 30 атм и более.
    В оптимальных условиях осмотическое давление клеточного сока наземных органов болотных растений колеблется от 2 до 16 ат, у степных — от 8 до 40 ат. В разных клетках растения О. д. может резко различаться (так, у мангровых О. д. клеточного сока около 60 ат, а О. д. в сосудах ксилемы не превышает 1—2 ат). У гомойосмотических организмов, т. е. способных поддерживать относительное постоянство О. д., средней величины и диапазон колебаний О. д. различны (дождевой червь — 3,6—4,8 ат, пресноводные рыбы — 6,0—6,6, океанические костистые рыбы — 7,8—8,5, акуловые — 22,3—23,2, млекопитающие — 6,6—8,0 ат). У млекопитающих О. д. большинства биологических жидкостей равно О. д. крови (исключение составляют жидкости, выделяемые некоторыми железами, — слюна, пот, моча и др.). О. д., создаваемое в клетках животных высокомолекулярными соединениями (белки, полисахариды и др.), незначительно, но играет важную роль в обмене веществ
    Градиент концентрации – разность концентрации веществ внутри и снаружи клетки
    Поступление веществ в клетки животных, равно как и удаление их из клеток, связано с проницаемостью клеточной мембраны для молекул или ионов, а также со свойствами веществ. Клеточная мембрана регулирует обмен различными веществами между клеткой и средой. Поддержание мембраны и ее проницаемость обеспечиваются клеточной энергией.
    Основные пути поступления веществ в клетки:
    пассивный транспорт
    обеспечивается диффузией через мембрану по градиенту концентрации. Молекулы обычно переходят из области высокой концентрации в область более низкой концентрации. Вещества в клетку проникают через поры, имеющиеся в клеточной мембране. Не зависит от энергии, обеспечиваемой АТФ.
    Этим путем в клетку проникают вода, двуокись углерода и молекулы органических веществ, способные хорошо растворяться в жирах
    обеспечивают проникновение в клетки лишь малых молекул
    катализируемый транспорт
    «облегченная диффузия»
    Повышение скорости диффузии разных веществ, например, сахаров, аминокислот и нуклеозидов через мембрану под воздействием ферментов. Зависит от градиента концентрации.
    Является переносом по градиенту концентрации, она тоже непосредственно не зависит от энергии, обеспечиваемой АТФ.
    Некоторые сахара, в частности, глюкоза
    активный транспорт
    Перенос вещества против градиента концентрации, т. е. из области низкой концентрации в область более высокой концентрации.
    Связан со способностью мембраны поддерживать разность электрических потенциалов (помимо поддержания разности в концентрациях веществ внутри и снаружи клетки), под которыми понимают различия между электрическими потенциалами внутри и вне клетки, а также с затратами энергии на работу в виде перемещения веществ против электрохимического градиента, т. е. «вверх»
    Ферменты, катализирующие эти реакции
    эффективен в случае переноса ионов
    эндоцитоз:
    ответственен за поступление в клетки макромолекул (белков, по-линуклеотидов, полисахаридов) и разных твердых частиц, включая бактерии
    фагоцитоз
    процесс активного захватывания и поглощения живых и неживых частиц одноклеточными организмами или особыми клетками (фагоцитами) многоклеточных животных организмов.
    Обеспечивается путем выпячиваний своей клеточной мембраны и образования пузырьков, сливающихся затем с плазматической мембраной и открывающихся внутрь клетки. Вошедшие внутрь клеток частицы поступают в лизосомы, где с помощью клеточных (лизосомных) ферментов разрушаются и усваиваются затем клетками.
    У многоклеточных (млекопитающих) выполняется специализированными клетками (лейкоцитами).
    У простейших является формой питания.
    Биологическое значение фагоцитоза у млекопитающих заключается в том, что он обеспечивает иммунную (фагоцитарную) защиту организма
    пиноцитоз
    захват клеточной поверхностью жидкости с содержащимися в ней веществами путем впячиваний плазматической мембраны и образования пузырьков (канальцев), куда поступает жидкость. Канальцы после заполнения жидкостью отшнуровываются, поступают в цитоплазму и доходят до лизосом, где их стенки перевариваются, в результате чего содержимое (жидкость) канальцев освобождается и подвергается дальнейшей обработке лизосомными ферментами.
    Один из основных механизмов проникновения в клетку высокомолекулярных соединений, в частности белков и углеводно-белковых комплексов. Наиболее активный П. наблюдается у амёб, в эпителиальных клетках кишечника и почечных канальцев, в эндотелии сосудов и растущих ооцитах, в клетках кровеносной и лимфатической систем, в клетках злокачественных опухолей, а также в клетках тканей, для которых характерен повышенный уровень обмена веществ.
    Экзоцитоз —процесс секретирования клетками различных веществ
    Различают:
    · регулируемый экзоцитоз
    · конститутивный экзоцитоз
    Клетки способны секретировать различные вещества в окружающую их среду. Этот процесс называют экзоцитозом.
    Пассивный транспорт. Когда транспортируются незаряженные молекулы, то пассивный транспорт определяется только градиентом концентрации, т. е. разностью концентрации вещества на разных сторонах мембраны. Если же молекулы транспортируемого вещества заряжены, то к влиянию градиента концентрации добавляется влияние электических потенциалов по обе стороны мембраны. Градиент концентрации и электрический градиент в совокупности составляют электрохимический потенциал, который позволяет транспорт в клетку только положительно заряженных ионов.
    Можно сказать, что пассивный транспорт веществ в клетки осуществляется обычной диффузией через клеточную мембрану, причем скорость диффузии вещества зависит от его растворимости в мембране, коэффициента диффузии в мембране и от разности концентрации веществ в клетке и за ее пределами (в среде).
    Катализируемая, или так называемая «облегченная» диффузия, при которой скорость диффузии разных веществ, например, сахаров, аминокислот и нуклеозидов через мембрану повышается с помощью ферментов. Как и обычная, «облегченная» диффузия тоже зависит от градиента концентрации, однако здесь имеются подвижные «переносчики», роль которых выполняют ферменты. Находясь в составе мембраны, ферменты действуют в качестве «переносчиков» молекул веществ, проникая (диффундируя) на противоположную сторону мембраны, где они освобождаются от переносимых веществ. Поскольку «облегченная» диффузия веществ является переносом по градиенту концентрации, она тоже непосредственно не зависит от энергии, обеспечиваемой АТФ.
    Примеры
    Такие вещества, как глюкоза, почти нерастворимы в липидах, и размеры их частиц больше 0,8 нм; тем не менее они довольно быстро проходят через плазматическую мембрану, например через оболочку эритроцита. По-видимому, это обусловлено «облегченной диффузией» — присоединением к специфической молекуле-переносчику, представляющей собой пептид или белок. Молекула глюкозы G соединяется с молекулой-переносчиком X у наружной поверхности мембраны, и образовавшийся комплекс GX, растворимый в липидах, может диффундировать через мембрану к ее внутренней стороне, где он диссоциирует, и освобожденная глюкоза оказывается внутри клетки. Затем переносчик диффундирует обратно к наружной поверхности и сразу же может присоединить к себе другую молекулу глюкозы. При такой системе максимальная скорость переноса глюкозы определяется общим числом молекул-переносчиков, имеющихся в мембране, и возможными скоростями образования и расщепления комплекса GX. Для подобного процесса характерна «кинетика насыщения»: при малой концентрации глюкозы в наружном растворе скорость ее проникновения в клетку пропорциональна этой концентрации; однако при более высоких концентрациях пропорциональность исчезает, так как все молекулы переносчика уже «насыщены» глюкозой. Переносчики специфичны — они могут присоединять только глюкозу и некоторые очень близкие к ней по структуре сахара. Молекулы сахаров, сходные по своему химическому строению, будут конкурировать между собой за связывающие участки в молекулах-переносчиках.
    Облегченная диффузия не требует расхода энергии, если наружная концентрация глюкозы выше внутренней и глюкоза, таким образом, перемещается «вниз» по химическому градиенту. Однако некоторые клетки, например клетки кишечного эпителия и внутренней выстилки почечных канальцев, способны концентрировать глюкозу, заставляя ее перемещаться «вверх» по химическому градиенту (или, как говорят, против градиента концентрации), и для этого уже требуется затрата энергии. Гормон инсулин резко усиливает поглощение глюкозы скелетными мышцами и некоторыми клетками нашего организма. Пока еще не ясно, вызывает ли он увеличение числа эффективных молекул-переносчиков или же просто ускоряет реакции, с которыми связано образование и расщепление комплекса переносчика с глюкозой. Полагают, что не только облегченная диффузия, но и активный перенос глюкозы происходят с участием специфического переносчика, образующего с глюкозой комплекс, синтез или расщепление которого требует затраты энергии.
    Из клеточных мембран кишечной палочки Escherichia coli был выделен и частично очищен липопротеид, который, по-видимому, служит переносчиком, или пермеазой, для лактозы. На одну клетку приходится около 9000 молекул пермеазы. Как полагают, этот белок присоединяет лактозу у наружной поверхности мембраны, а затем образовавшийся комплекс диффундирует к ее внутренней поверхности, где лактоза отделяется от переносчика. Этот гипотетический механизм в принципе сходен с предполагаемым механизмом натриевого насоса.

    Активный транспорт.
    Пример:
    транспорт ионов натрия и калия, который определяет клеточный мембранный потенциал. Концентрация ионов натрия (Na+) внутри большинства клеток является меньшей, чем в среде, тогда как концентрация ионов калия (К+) внутри клеток является в 10—20 раз большей, чем в среде. В результате этого ионы Nа+ стремятся проникнуть из среды в клетку, а ионы К+, наоборот, выйти из клетки в среду. Поддержание концентрации этих ионов в клетке и в окружающей среде обеспечивается благодаря наличию в клеточной мембране системы, которая является ионным «насосом» и которая откачивает ионы Na+ из клетки в среду и накачивает ионы К+ в клетку из среды. Работа этой системы, т.е. движение ионов против электрохимического градиента, обеспечивается энергией, которая генерируется гидролизом АТФ, причем фермент АТФ-аза, катализирующий эту реакцию, содержится в самой мембране и, как считают, выполняет роль натриево-калиевого «насоса», генерирующего мембранный потенциал. Энергия, освобождаемая при гидролизе одной молекулы АТФ, обеспечивает транспорт за пределы клетки трех ионов Na+ и внутрь клетки двух ионов К+.
    Система Na+ + К+ —АТФ-аза помогает поддерживать ассиметрическое распределение ионов калия при высокой концентрации последнего в клетках. Ионы калия участвуют в регуляции многих клеточных функций, включая поток солей и воды из почечных клеток, освобождение инсулина из панкреатических клеток, частоту сердцебиений.
    Установлено, что энергетически выгодный транспорт ионов Na+ внутрь клеток оказывает также влияние на транспорт сахаров и аминокислот в клетки. В частности, с транспортом ионов Na+ сопряжен транспорт глюкозы. Чтобы создать градиент концентрации ионов Na+, благоприятный для транспорта ионов К+ и глюкозы внутрь клеток, ионная «насосная» система благодаря энергии активно откачивает ионы Na+ из клетки за ее пределы.
    Определенная роль в транспорте веществ принадлежит белоксвязывающим системам, представляющим четвертый способ транспорта. Речь идет о белках, локализованных в периплазматическом пространстве. Эти белки специфически связывают сахара, аминокислоты и ионы, перенося их затем к специфическим молекулам-носителям, локализованным в клеточной мембране. Источником энергии для этих систем является АТФ.
    Экзоцитоз
    Конститутивный экзоцитоз осуществляется периодически, по мере накоплениях секрета, без видимого воздействия внеклеточных факторов, при колебаниях гидратированности клетки, без участия аппарата Гольджи и Са2+—независимо (Инсулин и ряд других гормонов, нейротрансмиттеров и многих ферментов.)
    Нейромедиатор (Neurotransmitter) – химический посредник, освобождающийся из пресинаптического нервного окончания и передающий нервный импульс в синапсе постсинаптичсскому окончанию, мышечному волокну или железе, которые эти нервы иннервируют. Основными нейромедиаторами в периферической нервной системе являются ацетилхолин и норадреналин (сскретируются нервными окончаниями симпатической нервной системы). В центральной нервной системе наряду с ацетилхолином и норадреналином, нейромедиаторами являются дофамин, серотонин, гаммааминобутировая кислота и некоторые другие вещества.
    Регулируемый экзоцитоз отличается от предыдущего необходимостью для запуска внеклеточного воздействия и четкой стадийностью процесса. Каждая из стадий регулируется дифференцированно. Специфика экзоцитоза определяется химической природой выделяеммых веществ, невезикулярной или везикулярной формами его выведения.
    С помощью экзоцитоза из клетки удаляются также частицы, оказавшиеся непереваренными путем фагоцитоза. У большинства клеток циклы эндоцитоз-экзоцитоз непрерывны.
    Фотосинтез
    Фотосинтез — это синтез органических соединений в листьях зеленых растений из воды и углекислого газа атмосферы с использованием солнечной (световой) энергии, адсорбируемой хлорофиллом в хлоропластах.
    Благодаря фотосинтезу происходит улавливание энергии видимого света и превращение ее в химическую энергию, сохраняемую (запасаемую) в органических веществах, образуемых при фотосинтезе.
    Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С02, из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, — это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.
    Основная роль фотосинтезирующих организмов:
    1) трансформация энергии солнечного света в энергию химических связей органических соединений;
    2) насыщение атмосферы кислородом;
    В результате фотосинтеза на Земле образуется 150 млрд. т. органического вещества и выделяется около 200 млрд. т свободного кислорода в год. Он препятствует увеличению концентрации CO2 в атмосфере, предотвращая перегрев Земли (парниковый эффект).
    Созданная фотосинтезом атмосфера защищает живое от губительного коротковолнового УФ-излучения (кислородно-озоновый экран атмосферы).
    В урожай сельскохозяйственных растений переходит лишь 1-2% солнечной энергии, потери обусловлены неполным поглощением света. Поэтому имеется огромная перспектива повышения урожайности благодаря селекции сортов с высокой эффективностью фотосинтеза, созданию благоприятной для светопоглощения структуры посевов. В связи с этим особенно актуальными становятся разработка теоретических основ управления фотосинтезом
    Значение фотосинтеза гигантское. Отметим лишь, что он поставляет топливо (энергию) и атмосферный кислород, необходимые для существования всего живого. Следовательно, роль фотосинтеза является планетарной.

    Планетарность фотосинтеза определяется также тем, что благодаря круговороту кислорода и углерода (в основном) поддерживается современный состав атмосферы, что в свою очередь определяет дальнейшее поддержание жизни на Земле. Можно сказать далее, что энергия, которая запасается в продуктах фотосинтеза, есть по существу основной источник энергии, которым сейчас располагает человечество.

  7. Truthdragon Ответить

    Проникновение молекул вещества через полупроницаемую перепонку получило название осмоса. Молекулы растворителя при наличии полупроницаемой мембраны всегда передвигаются в направлении более концентрированного раствора. От концентрации раствора зависит величина осмотического давления, и чем она выше, тем выше осмотическое давление.
    Осмотическое давление в клетках растений различно и зависит от многих факторов – вида растения, условий внешней среды и др. Особенно высокое осмотическое давление наблюдается в клетках растений, обитающих на засолённых почвах и в степях.
    Адсорбция. Молекулы и ионы веществ, проникающих в клетку, прежде всего адсорбируются на поверхностном слое цитоплазмы – плазмалемме. Следовательно, первым этапом в поступлении вещества в клетку из окружающей среды является адсорбция. Затем вещество, поглощённое плазмалеммой, передается в мезоплазму. При этом происходит непрерывный обмен между имеющимися в клетке ионами и прежде всего между образующимися при дыхании ионами угольной кислоты (Н+ и НСО-) и поступающими внутрь клетки анионами и катионами различных электролитов. Таким образом, поступление в клетку различных веществ представляет собой сложный биологический процесс, тесно связанный с различными физико-химическими явлениями.
    Тургор и плазмолиз. Клеточный сок, находящийся в вакуолях, содержит различные растворенные вещества и имеет определённую концентрацию, являясь осмотически деятельным раствором. Если клеточный сок имеет более высокую концентрацию, чем окружающий раствор, то, обладая более высоким осмотическим давлением, он притягивает воду, которая будет проникать в клетку через оболочку в цитоплазму и вакуоль. При этом, увеличиваясь в объёме, клеточный сок оказывает давление на цитоплазму, прижимая её к оболочке, которая в силу своей упругости давит на содержимое клетки. Создается напряжённое состояние клеточной оболочки, называемое тургором. Давление, возникающее при этом в клетке, называется тургорным. По мере поступления в клетку воды тургорное давление будет возрастать до тех пор, пока клеточная оболочка не достигнет предела растяжения. После этого всасывание клеткой воды прекращается. Тургор является нормальным физиологическим состоянием растительной клетки. Степень тургора зависит от разности концентраций и, следовательно, осмотического давления внутри и вне клетки, а также от упругости оболочки. Благодаря тургору растение может сохранять прямое положение, поддерживать массу листьев, противостоять механическим воздействиям и т. д.
    Если концентрация клеточного сока станет ниже, чем в окружающей среде, вода устремится в сторону более концентрированного раствора и, следовательно, будет выходить из клетки, что вызовет падение тургорного давления. При этом объём вакуоли сократится, а содержимое клетки, сжимаясь, начнет отставать от оболочки и постепенно соберется в виде комочка в центре клетки (рис. 23). Наступает плазмолиз, который представляет собой состояние, обратное тургору. При плазмолизе клетки несколько уменьшаются в размерах, и все растение вянет. Длительный и сильный плазмолиз может вызвать гибель клетки. Клетку, сохранившую жизнеспособность, можно из плазмолиза снова вернуть в тургорное состояние, понизив концентрацию окружающего раствора. Возвращение плазмолизированной клетки в состояние тургора называется деплазмолизом.

  8. Beazetus Ответить

    Микроорганизмы могут использовать питательные вещества лишь в том случае, если они проникают внутрь клетки. Микроорганизмы могут потреблять питательные вещества только в растворенном виде (в воде или липидах). Низкомолекулярные вещества легко проникают в клетку. Органические высокомолекулярные вещества могут поступать в клетку после предварительного расщепления их на более простые под действием экзоферментов (в основном гидролаз).
    Поступление питательных веществ в микробную клетку регулирует двойной барьер – клеточная стенка и ЦПМ. Поступление макромолекул ограничивает величина пор клеточной стенки. Капсулы и слизистый слой представляют собой очень рыхлые структуры и не оказывают существенного сдерживающего влияния на проникновение веществ. ЦПМ является основным осмотическим барьером. Через протеиновую часть ЦПМ проходят вещества, растворимые в воде, через липидную – растворимые в липидах.
    Пассивная (простая) диффузия – поступление веществ в клетку происходит в результате процесса диффузии. Так поступают в клетку очень немногие соединения, в основном молекулы воды, газов и некоторые ионы. Процесс идет до выравнивания концентраций веществ в наружной среде и в клетке, или до выравнивания электролитических потенциалов, если поступают ионы. Такой механизм не мог бы обеспечить клетку нужным набором питательных веществ (особенно, если их мало в окружающей среде). Кроме того, в клетку могли бы поступать вредные вещества при наличии их в окружающей среде в концентрации, превышающей внутреннюю.
    При поступлении воды в клетку ЦПМ находится в набухшем состоянии и плотно прижата к клеточной стенке. Такое постоянное упругое состояние клеточного содержимого называется тугор. Это одно из необходимых условий роста клетки. Повышенная концентрация питательных веществ в среде (добавление поваренной соли или сахара) приводит к обезвоживанию клетки, она переходит в состояние расслабленности и вялости, ЦПМ сокращается и отходит от оболочки. Такое явление называется плазмолизом. Явление обратное плазмолизу – плазмоптиз, когда концентрация раствора значительно ниже концентрации содержимого клетки (дистиллированная вода). Содержимое клетки разбухает, форма ее меняется. Плазмоптиз также вреден для клетки.
    Облегченная диффузия – поступление питательных веществ в клетку осуществляется с помощью специальной системы, включающей белки-переносчики – пермеазы(англ. permeable – проницаемый). Перенос носит специфический характер, каждое соединение переносится своим переносчиком. Поэтому процесс идет быстрее, чем при простой диффузии. Энергия на перенос не затрачивается. Энергия затрачивается только на синтез пермеаз, на обеспечение определенной концентрации и активной формы пермеаз. Процесс идет до выравнивания концентраций вещества по обе стороны ЦПМ. Чаще всего такой механизм обеспечивает выход растворенных веществ из клетки. Скорость выхода веществ увеличивается с увеличением количества этих веществ внутри клетки.

  9. joker_crazy_men Ответить

    Известна катализируемая, или так называемая «облегченная» диффузия, при которой скорость диффузии разных веществ, например, Сахаров, аминокислот и нуклеозидов через мембрану повышается с помощью белков (ферментов). Как и обычная диффузия, «облегченная» диффузия тоже зависит от градиента концентрации, однако здесь имеются подвижные «переносчики», роль ко- торых выполняют ферменты. Находясь в составе мембраны, ферменты действуют в качестве «переносчиков» молекул веществ, проникая (диффундируя) на противоположную сторону мембраны, где они освобождаются от переносимых веществ. Поскольку «облегченная» диффузия веществ является переносом по градиенту концентрации, она тоже непосредственно не зависит от энергии, обеспечиваемой АТФ.
    Активный транспорт веществ в клетку отличается от пассивного (диффузии) тем, что вещество переносится против градиента концентрации, т. е. из области низкой концентрации в область более высокой концентрации. Активный транспорт связан со способностью мембраны поддерживать разность электрических потенциалов (помимо поддержания разности в концентрациях веществ внутри и снаружи клетки), под которыми понимают различия между электрическими потенциалами внутри и вне клетки, а также с затратами энергии на работу в виде перемещения веществ против электрохимического градиента, т. е. «вверх».
    Энергия для транспорта обеспечивается фосфоэнолпируватом, фосфатная группа которого и часть химической энергии которого передаются белкам, часть которых используется всеми сахарами, транспортируемыми фосфотрансферазной системой, а часть специфична для отдельных сахаров. Конечный белок содержится в мембране и ответственен за транспорт и фосфорилирование сахаров.
    Активный транспорт особенно эффективен в случае переноса ионов. Реакции, обеспечивающие активный транспорт, происходят в мембране и сопряжены с реакциями, дающими свободную энергию. Ферменты, катализирующие эти реакции, также локализованы в мембране. Примером активного транспорта веществ является транспорт ионов натрия и калия (рис. 69), который определяет клеточный мембран- ный потенциал. Концентрация ионов натрия (Na+) внутри большинства клеток является меньшей, чем в среде, тогда как концентрация ионов калия (К+) внутри клеток является в 10—20 раз большей, чем в среде. В результате этого ионы Nа+ стремятся про- никнуть из среды в клетку, а ионы К+, наоборот, выйти из клетки в среду.
    Поддержание концентра- ции этих ионов в клетке и в окружающей среде обеспечивается благодаря наличию в клеточной мембране системы, которая является ионным «на- сосом» и которая откачивает ионы Na+ из клетки в среду и накачивает ионы К+в клетку из среды. Ра- бота этой системы, т.е. движение ионов против электрохимического градиента, обеспечивается
    энергией, которая генерируется гидролизом АТФ, причем фермент АТФ-аза, катализирующий эту реакцию, содержится в самой мембране и, как считают, выполняет роль натриево-калиевого «насоса», генерирующего мембранный по- тенциал. Энергия, освобождаемая при гидролизе одной молекулы АТФ, обес- печивает транспорт за пределы клетки трех ионов Na+ и внутрь клетки двух ио- нов К+.
    Система Na+ + К+ —АТФ-аза помогает поддерживать ассиметрическое распределение ионов калия при высокой концентрации последнего в клетках. Ионы калия участвуют в регуляции многих клеточных функций, включая поток солей и воды из почечных клеток, освобождение инсулина из панкреатических клеток, частоту сердцебиений.
    Установлено, что энергетически выгодный транспорт
    ионов Na+ внутрь клеток оказывает также влияние на транс-
    порт сахаров и аминокислот в клетки. В частности, с транс-
    портом ионов Na+сопряжен транспорт глюкозы. Чтобы
    создать градиент концентрации ионов Na+, благоприятный
    для транспорта ио- нов К+ и глюкозы внутрь клеток, ион-
    ная «насосная» система благодаря энергии активно откачи-
    вает ионы Na+ из клетки за ее пределы.
    Определенная роль в транспорте веществ принад-
    лежит белоксвязывающим системам, представляющим
    четвертый способ транспорта. Речь идет о белках,
    локализованных в периплазматическом пространстве.
    Эти белки специфически связывают сахара, аминокис-
    лоты и ионы, перенося их затем к специфическим
    молекулам-носителям, локализованным в клеточной
    мембране. Источником энергии для этих систем является АТФ.
    Эндоцитоз, как отмечено выше, обеспечивает перенос в клетки крупных частиц и молекул. В рамках эндоцитоза различают фагоцитоз и пиноцитоз.
    Фагоцитоз (от греч. phagos — пожирающий и cytos — клетка) представляет собой процесс, заключающийся в том, что клетки-лейкоциты (макрофаги и нейтрофилы) захватывают (обволакивают) твердые частицы (фрагменты клеток, бактерии) путем выпячиваний своей клеточной мембраны и образования пузырьков, сливающихся затем с плазматической мембраной и открывающихся внутрь клетки. Вошедшие внутрь клеток частицы поступают в лизосомы, где с помощью клеточных (лизосомных) ферментов разрушаются и усваиваются затем клетками. Фагоцитоз широко распространен среди одноклеточных организмов. У многоклеточных (млекопитающих) он выполняется специализированными клетками (лейкоцитами).
    У простейших фагоцитоз является формой питания, в результате которого твердые частицы проникают в лизосомы, где и перевариваются, образуя продукты, служащие пищей. Биологическое значение фагоцитоза у млекопитающих заключается в том, что он обеспечивает иммунную (фагоцитарную) защиту организма (см. гл. XVII).
    Пиноцитоз (от греч. pino — пить и cytos — клетка) представляет собой процесс, при котором клетки поглощают жидкости и находящиеся в них высокомолекулярные вещества путем впячиваний плазматической мембраны и образования пузырьков (канальцев), куда поступает жидкость. Канальцы после заполнения жидкостью отшнуровываются, поступают в цитоплазму и доходят до лизосом, где их стенки перевариваются, в результате чего содержимое (жидкость) канальцев освобождается и подвергается дальнейшей обработке лизосомными ферментами.
    Пиноцитоз часто встречается у одноклеточных животных, у многоклеточных он наблюдается в клетках кровеносной и лимфатической систем, в клетках злокачественных опухолей, а также в клетках тканей, для которых характерен повышенный уровень обмена веществ.
    Экзоцитоз — это процесс секретирования клетками различных веществ, причем известны регулируемый и конститутивный пути экзоцитоза. Примером регулируемого экзоцитоза является экзоцитоз инсулина. Клетки поджелудочной железы, продуцирующие инсулин, упаковывают его вначале в так называемые секреторные пузырьки, которые после внеклеточного сигнала сливают- ся с плазматической мембраной, а затем открываются в межклеточное пространство, освобождая гормон. Подобным образом происходит экзоцитоз других гормонов, нейротрансмиттеров и многих ферментов. Напротив, конститутивный путь экзоцитоза присущ многим белкам, непрерывно синтезируемым клетками и упаковываемым в экзоцитозные пузырьки в комплексе Гольджи, после чего эти пузырьки перемещаются к плазматической мембране, где и открываются в межклеточное пространство, освобождаясь от белкового содержимого.
    С помощью экзоцитоза из клетки удаляются также частицы, оказавшиеся непереваренными путем фагоцитоза. У большинства клеток циклы эндоцитоз- экзоцитоз непрерывны.

  10. ShootingStar Ответить

    Транспорт через мембраны жизненно важен, т.к. он обеспечивает:
    соответствующее значение рН и концентрации ионов
    доставку питательных веществ
    выведение токсичных отходов
    секрецию различных полезных веществ
    создание ионных градиентов.
    Основное свойство цитоплазматической мембраны – полупроницаемость. Благодаря этому свойству через мембрану в клетку вещества транспортируются избирательно.
    В настоящее время известно, что ионы проникают через мембрану несколькими способами:
    1. Простая диффузия липофильных веществ
    2. Облегченная диффузия гидрофильных веществ с помощью липофильных переносчиков
    3. Простая диффузия через поры
    4. Активный перенос с помощью насосов
    5. Перенос путем экзоцитоза
    Пассивный транспорт молекул происходит без затраты энергии. Различают
    диффузию и осмос. Диффузия (лат. diffusio —распостранение, растекание, рассеивание) — процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией. Самым известным примером диффузии является перемешивание газов или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Его направление определяется только разностью концентраций вещества по обеим сторонам мембраны (градиентом концентрации). Диффузия растворенного вещества через полупроницаемую мембрану называется диализом. Диффузия молекул растворителя через полупроницаемую мембрану по градиенту концентраций называется осмос. Переход жидкости под влиянием разности потенциалов в пограничных слоях мембраны называется электроосмос.
    Путём простой диффузии в клетку проникают неполярные (гидрофобные) вещества, растворимые в липидах и мелкие незаряженные молекулы (например, вода). Если клетки имеют низкую обводненность, то вода поступает путем осмоса, если содержат много воды – путем электроосмоса.
    Большинство веществ, необходимых клеткам, переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки, по-видимому, образуют непрерывный белковый проход через мембрану.

    Рис. Схема пиноцетоза (1) и фагоцитоза (2)
    Различают две основные формы транспорта с помощью переносчиков: облегчённая диффузия и активный транспорт.
    Облегчённая диффузия обусловлена градиентом концентрации, и молекулы движутся соответственно этому градиенту. Однако если молекула заряжена, то на её транспорт влияет как градиент концентрации, так и общий электрический градиент поперёк мембраны (мембранный потенциал).
    Активный транспорт – это перенос растворённых веществ против градиента концентрации или электрохимического градиента с использованием энергии АТФ. Энергия требуется потому, что вещество должно двигаться вопреки своему естественному стремлению диффундировать в противоположном направлении. Он осуществляется с помощью переносчиков – Н+-АТФазы, Na+, K+, Ca++-АТФазы, анион-АТФазы. Особую роль в транспорте веществ играет Н+-насос, создающий электрохимический градиент ионов.

  11. TakaNaketu Ответить

    Благодаря содержанию растворов солей, Сахаров и других осмотически активных веществ, клетки характеризуются наличием в них определенного осмотического давления. Например, давление в клетках животных (морских и океанических форм) достигает 30 атм и более. В клетках растений осмотическое давление является еще большим. Разность концентрации веществ внутри и снаружи клетки называют градиентом концентрации.
    Поступление веществ в клетки животных, равно как и удаление их из клеток, связано с проницаемостью клеточной мембраны для молекул или ионов, а также со свойствами веществ. Клеточная мембрана регулирует обмен различными веществами между клеткой и средой. Поддержание мембраны и ее проницаемость обеспечиваются клеточной энергией.
    Известно несколько путей поступления веществ в клетки. В частности, различают пассивный, катализируемый и активный транспорт веществ в клетки, а также проникновение веществ в клетки путем эндоцитоза в виде фагоцитоза и пиноцитоза. Пассивный, катализируемый и активный транспорт обеспечивают проникновение в клетки лишь малых молекул, тогда как эндоцитоз ответственен за поступление в клетки макромолекул (белков, по-линуклеотидов, полисахаридов) и разных твердых частиц, включая бактерии. В то же время клетки способны секретировать различные вещества в окружающую их среду. Этот процесс называют экзоцитозом.
    Пассивный транспорт веществ в клетки обеспечивается диффузией через мембрану по градиенту концентрации. Молекулы обычно переходят из области высокой концентрации в область более низкой концентрации.
    Количество работы, затрачиваемой на обеспечение транспорта молекул в клетку против градиента концентрации, можно определить, исходя из допущенияпростой реакции, в которой Ац есть концентрация молекул за пределами клетки, a Ai есть концентрация молекул внутри клетки. Эту реакцию можно описать константой равновесия в виде уравнения:

    Между тем константа равновесия Кр связана со свободной энергией реакции отношением в виде G = RTInКр, где R есть около 2 кал/моль, а Т есть 25°С (температура, при которой протекают многие биологические реакции). Допуская, что совместная энергия гидролиза АТФ к АДФ обеспечивает эту реакцию с 50-процентной эффективностью, можно далее допустить, что транспортная система будет располагать примерно 3500 калориями (из общего количества энергии в 7000 калорий) на 1 моль АТФ, гидролизуемого при определенных физиологических условиях. Следовательно, константа равновесия будет равна:

    Важнейший вывод их этих заключений состоит в том, что работа, необходимая для транспорта какой-либо молекулы, не зависит от абсолютных концентраций. Она зависит от отношений между концентрациями внутри и вне клетки.
    Когда транспортируются незаряженные молекулы, то пассивный транспорт определяется только градиентом концентрации, т. е. разностью концентрации вещества на разных сторонах мембраны. Если же молекулы транспортируемого вещества заряжены, то к влиянию градиента концентрации добавляется влияние электичес-ких потенциалов по обе стороны мембраны. Градиент концентрации и электрический градиент в совокупности составляют электрохимический потенциал, который позволяет транспорт в клетку только положительно заряженных ионов.
    Можно сказать, что пассивный транспорт веществ в клетки осуществляется обычной диффузией через клеточную мембрану, причем скорость диффузии вещества зависит от его растворимости в мембране, коэффициента диффузии в мембране и от разности концентрации веществ в клетке и за ее пределами (в среде). Этим путем в клетку проникают вода, двуокись углерода и молекулы органических веществ, способные хорошо растворяться в жирах. Вещества в клетку проникают через поры, имеющиеся в клеточной мембране. Пассивный транспорт не зависит от энергии, обеспечиваемой АТФ.
    Известна катализируемая, или так называемая «облегченная» диффузия, при которой скорость диффузии разных веществ, например, Сахаров, аминокислот и нуклеозидов через мембрану повышается с помощью белков (ферментов). Как и обычная диффузия, «облегченная» диффузия тоже зависит от градиента концентрации, однако здесь имеются подвижные «переносчики», роль которых выполняют ферменты. Находясь в составе мембраны, ферменты действуют в качестве «переносчиков» молекул веществ, проникая (диффундируя) на противоположную сторону мембраны, где они освобождаются от переносимых веществ. Поскольку «облегченная» диффузия веществ является переносом по градиенту концентрации, она тоже непосредственно не зависит от энергии, обеспечиваемой АТФ.
    Активный транспорт веществ в клетку отличается от пассивного (диффузии) тем, что вещество переносится против градиента концентрации, т. е. из области низкой концентрации в область более высокой концентрации. Активный транспорт связан со способностью мембраны поддерживать разность электрических потенциалов (помимо поддержания разности в концентрациях веществ внутри и снаружи клетки), под которыми понимают различия между электрическими потенциалами внутри и вне клетки, а также с затратами энергии на работу в виде перемещения веществ против электрохимического градиента, т. е. «вверх».
    Энергия для транспорта обеспечивается фосфоэнолпируватом, фосфатная группа которого и часть химической энергии которого передаются белкам, часть которых используется всеми сахарами, транспортируемыми фосфотрансферазной системой, а часть специфична для отдельных Сахаров. Конечный белок содержится в мембране и ответственен за транспорт и фосфорилирование Сахаров.
    Активный транспорт особенно эффективен в случае переноса ионов. Реакции, обеспечивающие активный транспорт, происходят в мембране и сопряжены с реакциями, дающими свободную энергию. Ферменты, катализирующие эти реакции, также локализованы в мембране. Примером активного транспорта веществ является транспорт ионов натрия и калия (рис. 69), который определяет клеточный мембранный потенциал. Концентрация ионов натрия (Na+) внутри большинства клеток является меньшей, чем в среде, тогда как концентрация ионов калия (К+) внутри клеток является в 10—20 раз большей, чем в среде. В результате этого ионы Nа+ стремятся проникнуть из среды в клетку, а ионы К+, наоборот, выйти из клетки в среду. Поддержание концентрации этих ионов в клетке и в окружающей среде обеспечивается благодаря наличию в клеточной мембране системы, которая является ионным «насосом» и которая откачивает ионы Na+ из клетки в среду и накачивает ионы К+ в клетку из среды. Работа этой системы, т.е. движение ионов против электрохимического градиента, обеспечивается энергией, которая генерируется гидролизом АТФ, причем фермент АТФ-аза, катализирующий эту реакцию, содержится в самой мембране и, как считают, выполняет роль натриево-калиевого «насоса», генерирующего мембранный потенциал. Энергия, освобождаемая при гидролизе одной молекулы АТФ, обеспечивает транспорт за пределы клетки трех ионов Na+ и внутрь клетки двух ионов К+.

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *