Как ньютон открыл закон всемирного тяготения кратко?

20 ответов на вопрос “Как ньютон открыл закон всемирного тяготения кратко?”

  1. YSAIKOE Ответить

    Ни для кого не секрет, что закон всемирного тяготения был открыт великим английским ученым Исааком Ньютоном, по легенде гуляющим в вечернем саду и раздумывающем над проблемами физики. В этот момент с дерева упало яблоко (по одной версии прямо на голову физику, по другой просто упало), ставшее впоследствии знаменитым яблоком Ньютона, так как привело ученого к озарению, эврике. Яблоко, упавшее на голову Ньютону и вдохновило того к открытию закона всемирного тяготения, ведь Луна в ночном небе оставалась не подвижной, яблоко же упало, возможно, подумал ученый, что какая-то сила воздействует как на Луну (заставляя ее вращаться по орбите), так и на яблоко, заставляя его падать на землю.
    Сейчас по заверениям некоторых историков науки вся эта история про яблоко лишь красивая выдумка. На самом деле падало яблоко или нет, не столь уж важно, важно, что ученый таки действительно открыл и сформулировал закон всемирного тяготения, который ныне является одним из краеугольных камней, как физики, так и астрономии.
    Разумеется, и задолго до Ньютона люди наблюдали, как падающие на землю вещи, так и звезды в небе, но до него они полагали, что существует два типа гравитации: земная (действующая исключительно в пределах Земли, заставляющая тела падать) и небесная (действующая на звезды и Луну). Ньютон же был первым, кто объединил эти два типа гравитации в своей голове, первым кто понял, что гравитация есть только одна и ее действие можно описать универсальным физическим законом.

    Определение закона всемирного тяготения

    Согласно этому закону, все материальные тела притягивают друг друга, при этом сила притяжения не зависит от физических или химических свойств тел. Зависит она, если все максимально упростить, лишь от веса тел и расстояния между ними. Также дополнительно нужно принять во внимание тот факт, что на все тела находящиеся на Земле действует сила притяжения самой нашей планеты, получившая название – гравитация (с латыни слово «gravitas» переводиться как тяжесть).
    Попробуем же теперь сформулировать и записать закон всемирного тяготения максимально кратко: сила притяжения между двумя телами с массами m1 и m2 и разделенными расстоянием R прямо пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

    Формула закона всемирного тяготения

    Ниже представляем вашему вниманию формулу закона всемирного тяготения.

    G в этой формуле это гравитационная постоянная, равная 6,67408(31)•10?11 эта величина воздействия на любой материальный объект силы гравитации нашей планеты.

    Закон всемирного тяготения и невесомость тел

    Открытый Ньютоном закон всемирного тяготения, а также сопутствующий математический аппарат позже легли в основу небесной механики и астрономии, ведь с помощью него можно объяснить природу движения небесных тел, равно как и явление невесомости. Находясь в космическом пространстве на значительном удалении от силы притяжения-гравитации такого большого тела как планета, любой материальный объект (например, космический корабль с астронавтами на борту) окажется в состоянии невесомости, так как сила гравитационного воздействия Земли (G в формуле закона тяготения) или какой-нибудь другой планеты, больше не будет на него влиять.

    Закон всемирного тяготения, видео

    И в завершение поучительное видео об открытии закона всемирного тяготения.

  2. Посейдон Ответить

    На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения (см. Законы механики Ньютона), он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.
    Чтобы в полной мере оценить весь блеск этого прозрения, давайте ненадолго вернемся к его предыстории. Когда великие предшественники Ньютона, в частности Галилей, изучали равноускоренное движение тел, падающих на поверхность Земли, они были уверены, что наблюдают явление чисто земной природы — существующее только недалеко от поверхности нашей планеты. Когда другие ученые, например Иоганн Кеплер (см. Законы Кеплера), изучали движение небесных тел, они полагали что в небесных сферах действуют совсем иные законы движения, нежели законы, управляющие движением здесь, на Земле. История науки свидетельствует, что практически все аргументы, касающиеся движения небесных тел, до Ньютона сводились в основном к тому, что небесные тела, будучи совершенными, движутся по круговым орбитам в силу своего совершенства, поскольку окружность — суть идеальная геометрическая фигура. Таким образом, выражаясь современным языком, считалось, что имеются два типа гравитации, и это представление устойчиво закрепилось в сознании людей того времени. Все считали, что есть земная гравитация, действующая на несовершенной Земле, и есть гравитация небесная, действующая на совершенных небесах.
    Прозрение же Ньютона как раз и заключалось в том, что он объединил эти два типа гравитации в своем сознании. С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование.
    Результаты ньютоновских расчетов теперь называют законом всемирного тяготения Ньютона. Согласно этому закону между любой парой тел во Вселенной действует сила взаимного притяжения. Как и все физические законы, он облечен в форму математического уравнения. Если M и m — массы двух тел, а D — расстояние между ними, тогда сила F взаимного гравитационного притяжения между ними равна:
    F = GMm/D2
    где G — гравитационная константа, определяемая экспериментально. В единицах СИ ее значение составляет приблизительно 6,67 ? 10–11.
    Относительно этого закона нужно сделать несколько важных замечаний. Во-первых, его действие в явной форме распространяется на все без исключения физические материальные тела во Вселенной. В частности, сейчас вы и эта книга испытываете равные по величине и противоположные по направлению силы взаимного гравитационного притяжения. Конечно же, эти силы настолько малы, что их не зафиксируют даже самые точные из современных приборов, — но они реально существуют, и их можно рассчитать. Точно так же вы испытываете взаимное притяжение и с далеким квазаром, удаленным от вас на десятки миллиардов световых лет. Опять же, силы этого притяжения слишком малы, чтобы их инструментально зарегистрировать и измерить.
    Второй момент заключается в том, что сила притяжения Земли у ее поверхности в равной мере воздействует на все материальные тела, находящиеся в любой точке земного шара. Прямо сейчас на вас действует сила земного притяжения, рассчитываемая по вышеприведенной формуле, и вы ее реально ощущаете как свой вес. Если вы что-нибудь уроните, оно под действием всё той же силы равноускоренно устремится к земле. Галилею первому удалось экспериментально измерить приблизительную величину ускорения свободного падения (см. Уравнения равноускоренного движения) вблизи поверхности Земли. Это ускорение обозначают буквой g.
    Для Галилея g было просто экспериментально измеряемой константой. По Ньютону же ускорение свободного падения можно вычислить, подставив в формулу закона всемирного тяготения массу Земли M и радиус Земли D, помня при этом, что, согласно второму закону механики Ньютона, сила, действующая на тело, равняется его массе, умноженной на ускорение. Тем самым то, что для Галилея было просто предметом измерения, для Ньютона становится предметом математических расчетов или прогнозов.
    Наконец, закон всемирного тяготения объясняет механическое устройство Солнечной системы, и законы Кеплера, описывающие траектории движения планет, могут быть выведены из него. Для Кеплера его законы носили чисто описательный характер — ученый просто обобщил свои наблюдения в математической форме, не подведя под формулы никаких теоретических оснований. В великой же системе мироустройства по Ньютону законы Кеплера становятся прямым следствием универсальных законов механики и закона всемирного тяготения. То есть мы опять наблюдаем, как эмпирические заключения, полученные на одном уровне, превращаются в строго обоснованные логические выводы при переходе на следующую ступень углубления наших знаний о мире.
    Картину устройства солнечной системы, вытекающую из этих уравнений и объединяющую земную и небесную гравитацию, можно понять на простом примере. Предположим, вы стоите у края отвесной скалы, рядом с вами пушка и горка пушечных ядер. Если просто сбросить ядро с края обрыва по вертикали, оно начнет падать вниз отвесно и равноускоренно. Его движение будет описываться законами Ньютона для равноускоренного движения тела с ускорением g. Если теперь выпустить ядро из пушки в направлении горизонта, оно полетит — и будет падать по дуге. И в этом случае его движение будет описываться законами Ньютона, только теперь они применяются к телу, движущемуся под воздействием силы тяжести и обладающему некой начальной скоростью в горизонтальной плоскости. Теперь, раз за разом заряжая в пушку всё более тяжелое ядро и стреляя, вы обнаружите, что, поскольку каждое следующее ядро вылетает из ствола с большей начальной скоростью, ядра падают всё дальше и дальше от подножия скалы.
    Теперь представьте, что вы забили в пушку столько пороха, что скорости ядра хватает, чтобы облететь вокруг земного шара. Если пренебречь сопротивлением воздуха, ядро, облетев вокруг Земли, вернется в исходную точку точно с той же скоростью, с какой оно изначально вылетело из пушки. Что будет дальше, понятно: ядро на этом не остановится и будет и продолжать наматывать круг за кругом вокруг планеты. Иными словами, мы получим искусственный спутник, обращающийся вокруг Земли по орбите, подобно естественному спутнику — Луне. Так мы поэтапно перешли от описания движения тела, падающего исключительно под воздействием «земной» гравитации (ньютоновского яблока), к описанию движения спутника (Луны) по орбите, не изменяя при этом природы гравитационного воздействия с «земной» на «небесную». Вот это-то прозрение и позволило Ньютону связать воедино считавшиеся до него различными по своей природе две силы гравитационного притяжения.
    Остается последний вопрос: правду ли рассказывал на склоне своих дней Ньютон? Действительно ли всё произошло именно так? Никаких документальных свидетельств того, что Ньютон действительно занимался проблемой гравитации в тот период, к которому он сам относит свое открытие, сегодня нет, но документам свойственно теряться. С другой стороны, общеизвестно, что Ньютон был человеком малоприятным и крайне дотошным во всем, что касалось закрепления за ним приоритетов в науке, и это было бы очень в его характере — затемнить истину, если он вдруг почувствовал, что его научному приоритету хоть что-то угрожает. Датируя это открытие 1666-м годом, в то время как реально ученый сформулировал, записал и опубликовал этот закон лишь в 1687 году, Ньютон, с точки зрения приоритета, выгадал для себя преимущество больше чем в два десятка лет.
    Я допускаю, что кого-то из историков от моей версии хватит удар, но на самом деле меня этот вопрос мало беспокоит. Как бы то ни было, яблоко Ньютона остается красивой притчей и блестящей метафорой, описывающей непредсказуемость и таинство творческого познания природы человеком. А является ли этот рассказ исторически достоверным — это уже вопрос вторичный.

  3. Dionysus Ответить

    В последующие недели мысли Ньютона всё снова и снова возвращались к этой гипотезе. Редкие свободные минуты между двумя заседаниями он посвящал планам её проверки. Прошло несколько лет, в течение которых, как показывают тщательные подсчёты, он уделил обдумыванию этих планов 63 минуты 28 секунд. Ньютон понял, что для проверки его предположения нужно больше свободного времени, чем то, на которое он может рассчитывать. Ведь требовалось определить с большой точностью длину одного градуса широты на земной поверхности и изобрести дифференциальное исчисление.
    Не имея ещё опыта в таких делах, он выбрал простую процедуру и написал краткое письмо из 22 слов королю Карлу, в котором изложил свою гипотезу и указал на то, какие великие возможности она сулит, если подтвердится. Видел ли король это письмо — неизвестно, вполне возможно, что и не видел, так как он ведь был перегружен государственными проблемами и планами грядущих войн. Однако нет никакого сомнения в том, что письмо, пройдя по соответствующим каналам, побывало у всех начальников отделов, их заместителей и заместителей их заместителей, которые имели полную возможность высказать свои соображения и рекомендации.
    В конце концов письмо Ньютона вместе с объёмистой папкой комментариев, которыми оно успело обрасти по дороге, достигло кабинета секретаря ПКЕВИР/КИНИ/ППАБИ (Плановая Комиссия Его Величества по Исследованиям и Развитию, Комитет по Изучению Новых Идей, Подкомитет по Подавлению Антибританских Идей). Секретарь сразу же осознал важность вопроса и вынес его на заседание Подкомитета, который проголосовал за предоставление Ньютону возможности дать показания на заседании Комитета. Этому решению предшествовало краткое обсуждение идеи Ньютона на предмет выяснения, нет ли в его намерениях чего?нибудь антибританского, но запись этой дискуссии, заполнившая несколько томов in quarto, с полной ясностью показывает, что серьёзного подозрения на него так и не упало.
    Показания Ньютона перед ПКЕВИР/КИНИ следует рекомендовать для прочтения всем молодым учёным, ещё не знающим, как вести себя, когда придёт их час. Колледж проявил деликатность, предоставив ему на период заседаний Комитета двухмесячный отпуск без сохранения содержания, а зам декана по научно?исследовательской работе проводил его шутливым напутственным пожеланием не возвращаться без «жирного» контракта. Заседание Комитета проходило при открытых дверях, и публики набилось довольно много, но впоследствии оказалось, что большинство присутствующих ошиблось дверью, стремясь попасть на заседание КЕВОРСПВО — Комиссии Его Величества по Обличению Разврата Среди Представителей Высшего Общества.
    После того как Ньютон был приведён к присяге и торжественно заявил, что он не является членом Лояльной Его Величества Оппозиции, никогда не писал безнравственных книг, не ездил в Россию и не совращал молочниц, его попросили кратко изложить суть дела. В блестящей, простой, кристально ясной десятиминутной речи, произнесённой экспромтом, Ньютон изложил законы Кеплера и свою собственную гипотезу, родившуюся при виде падающего яблока. В этот момент один из членов Комитета, импозантный и динамичный мужчина, настоящий человек действия, пожелал узнать, какие средства может предложить Ньютон для улучшения постановки дела по выращиванию яблок в Англии. Ньютон начал объяснять, что яблоко не является существенной частью его гипотезы, но был прерван сразу несколькими членами Комитета, которые дружно высказались в поддержку проекта по улучшению английских яблок. Обсуждение продолжалось несколько недель, в течение которых Ньютон с характерным для него спокойствием и достоинством сидел и ждал, когда Комитет пожелает с ним проконсультироваться. Однажды он опоздал на несколько минут к началу заседания и нашёл дверь запертой. Он осторожно постучал, не желая мешать размышлениям членов Комитета. Дверь приотворилась, и привратник, прошептав, что мест нет, отправил его обратно. Ньютон, всегда отличавшийся логичностью мышления, пришёл к заключению, что Комитет не нуждается более в его советах, а посему вернулся в свой колледж, где его ждала работа в различных комиссиях.
    Спустя несколько месяцев Ньютон был удивлён, получив объёмистый пакет из ПКЕВИР/КИНИ. Открыв его, он обнаружил, что содержимое состоит из многочисленных правительственных анкет, в пяти экземплярах каждая. Природное любопытство — главная черта всякого истинного учёного — заставило его внимательно изучить эти анкеты. Затратив на это изучение определённое время, он понял, что его приглашают подать прошение о заключении контракта на постановку научного исследования для выяснения связи между способом выращивания яблок, их качеством и скоростью падения на землю. Конечной целью проекта, как он понял, было выведение сорта яблок, которые не только имели бы хороший вкус, но и падали бы на землю мягко, не повреждая кожуры. Это, конечно, было не совсем то, что Ньютон имел в виду, когда писал письмо королю. Но он был человеком практичным и понял, что, работая над предлагаемой проблемой, сможет попутно проверить и свою гипотезу. Так он соблюдёт интересы короля и позанимается немножко наукой — за те же деньги. Приняв такое решение, Ньютон принялся заполнять анкеты без дальнейших колебаний.
    Однажды в 1865 году точный распорядок дня Ньютона был нарушен. В четверг после обеда он готовился принять комиссию вице?президентов компаний, входивших во фруктовый синдикат, когда пришло повергшее Ньютона в ужас и всю Британию в скорбь известие о гибели всего состава комиссии во время страшного столкновения почтовых дилижансов. У Ньютона, как это уже было однажды, образовалось ничем не занятое «окно», и он принял решение прогуляться. Во время этой прогулки ему пришла (он сам не знает как) мысль о новом, совершенно революционном математическом подходе, с помощью которого можно решить задачу о притяжении вблизи большой сферы. Ньютон понял, что решение этой задачи позволит проверить его гипотезу с наибольшей точностью, и тут же, не прибегая ни к чернилам, ни к бумаге, в уме доказал, что гипотеза подтверждается. Легко можно себе представить, в какой восторг он пришёл от столь блестящего открытия.
    Вот так правительство Его Величества поддерживало и воодушевляло Ньютона в эти напряжённые годы работы над теорией. Мы не будем распространяться о попытках Ньютона опубликовать своё доказательство, о недоразумениях с редакцией «Журнала садоводов» и о том, как его статью отвергли журналы «Астроном?любитель» и «Физика для домашних хозяек». Достаточно сказать, что Ньютон основал свой собственный журнал, чтобы иметь возможность напечатать без сокращений и искажений сообщение о своём открытии.[53]
    — • • • —
    Многие указывали, что процесс превращения гипотезы в научное открытие очень хорошо иллюстрируется на примере открытия Америки Колумбом. Колумб был одержим идеей, что Земля круглая и что можно достичь Восточной Индии, плывя на Запад.
    Обратите внимание на следующее:
    а) идея никоим образом не была оригинальной, но он получил новую информацию;
    б) он встретился с огромными трудностями как в поиске лиц, которые могли бы его субсидировать, так и непосредственно в процессе проведения эксперимента;
    в) он не нашёл нового пути в Индию, но зато нашёл новую часть света;
    г) несмотря на все доказательства противного, он всё же верил, что открыл дорогу на Восток;
    д) при жизни он не дождался ни особого почёта, ни существенного вознаграждения;
    е) с тех пор были найдены неопровержимые доказательства, что Колумб был не первым европейцем, достигшим Америки.
    • • •
    — Никак не могу найти себе помощника, — пожаловался однажды Эдисон Эйнштейну. — Каждый день заходят молодые люди, но ни один не подходит.
    — А как вы определяете их пригодность? — поинтересовался Эйнштейн.
    Эдисон показал ему листок с вопросами.
    — Кто на них ответит, тот и станет моим помощником.
    «Сколько миль от Нью?Йорка до Чикаго?» — прочёл Эйнштейн и ответил: «Нужно заглянуть в железнодорожный справочник». «Из чего делают нержавеющую сталь?» — «Об этом можно узнать в справочнике по металловедению…» Пробежав глазами остальные вопросы, Эйнштейн сказал:
    — Не дожидаясь отказа, свою кандидатуру снимаю сам.

  4. Тихий Омут Ответить

    Вот формулировка и определение закона всемирного тяготения: все тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Эту силу называют силой тяготения.

    Рис. 2. Формула закона всемирного тяготения.
    Сила тяготения очень мала и становится заметной только тогда, когда хотя бы одно из взаимодействующих тел имеет большую массу (планета, звезда).

    Рис. 3. Планеты солнечной системы.
    Из этого закона следует еще один существенный признак массы: масса отражает свойство тела притягиваться к другим телам и определяет силу этого притяжения.

    Применение закона всемирного тяготения

    Как и любые другие законы, закон всемирного тяготения имеет определенные границы применимости. Он справедлив для:
    материальных точек;
    тел, имеющих форму шара;
    шара большого радиуса, взаимодействующего с телами, размеры которых много меньше размеров шара.
    Закон неприменим, например, для взаимодействия бесконечного стержня и шара. В этом случае сила тяготения обратно пропорциональна только расстоянию, а не квадрату расстояния. А, скажем, сила притяжения между телом и бесконечной плоскостью вообще не зависит от расстояния.

  5. Beasius Ответить

    В Лондоне бубонная чума разорила испуганное население. Университеты были закрыты, и нетерпеливым ученым, таким как Исаак Ньютон, пришлось ждать своего времени в безопасных усадьбах, ожидая, когда чума ослабит свою смертельную хватку в городе. Это было страшное время.
    В своей изоляции Ньютон был одержим поиском ответа на вопрос: что удерживало Луну, вращающуюся вокруг Земли, и что удерживало Землю на орбите вокруг Солнца? Почему Луна не упала на Землю? Почему Земля не упала на Солнце?
    Читайте также: Эксперт рассказал, к каким природным аномалиям готовиться жителям Москвы осенью
    В последующие годы Ньютон уверял, что история с яблоком в его жизни действительно произошла. Сидя в саду в поместье своей сестры, он услышал знакомый мягкий стук яблока, упавшего на покрытую травой землю, и обернулся вовремя, чтобы увидеть, как второе яблоко упало с нависающей ветви и подпрыгнуло один раз, прежде чем мягко “сесть” в траву. Это было, конечно, не первое яблоко, которое Исаак Ньютон когда-либо видел упавшим на землю. Однако именно в тот момент перед Исааком встал новый важный вопрос: «Яблоко падает на Землю, а Луна – нет. В чем разница между яблоком и Луной?

  6. Salune Ответить


    Кратко Всемирного тяготения закон можно следующим образом сформулировать: сила, с которой притягиваются друг к другу два тела, прямо пропорциональна произведению их масс и квадрату расстояния между их гравитационными центрами обратно пропорциональна. Если массы тел обозначить символами m1 и m2, а расстояние между ними – r, тогда сила притяжения F вычисляется по следующей формуле:
    F = G*m1*m2/r2.
    В формуле Всемирного тяготения закона стоит величина G . Эта величина называется гравитационной универсальной постоянной. Сам Ньютон не смог определить ее значение, поскольку не обладал достаточным количеством данных на конец XVII века. Измерена она была лишь век спустя Кавендишем на крутильных весах.
    Что касается формулы Всемирного тяготения закона, то любители физики могут заметить, что она имеет точно такой же вид, что и формула для кулоновского взаимодействия электрических зарядов. Этот факт побудил ученых ввести в физику понятие гравитационного поля, с помощью которого взаимодействуют массивные объекты по аналогии с электрическим полем, обуславливающим взаимодействие зарядов.

    Сила земного тяготения


    Как известно, на любые тела, находящиеся на поверхности нашей планеты или недалеко от нее, действует направленная к центру Земли сила тяжести. Она описывается следующей формулой:
    F = m*g.
    Где g = 9,81 м/с2 – это падения свободного ускорение. Откуда берется эта величина? Ответить на вопрос можно кратко: Всемирного тяготения закон позволяет точно определить величину g. Покажем, как это делается.
    Предположим, что тело массой m падает на Землю, имеющую массу M. Радиус R нашей планеты составляет 6371 км. Если даже тело m находится на высоте нескольких километров, то эту дистанцию можно не учитывать по сравнению с расстоянием до центра планеты. В таком случае универсальный гравитационный закон запишется в виде:
    F = G*m*M /R2.
    Сравнивая эту и предыдущую формулы, получаем выражение для величины g:
    g = G*M/R2.
    Если сюда подставить значения для всех величин, то мы получим значение 9,81 м/с2.
    Ускорение g действует на всех планетах и их спутниках, но его величина не является постоянной, так как разными являются массы тел и их радиусы.
    Из статики известно, что тела вес – это сила, с которой оно давит на опору. Вес вычисляется по той же формуле, что и сила тяжести. Если взвесить одно и то же тело вблизи полюса и вблизи экватора, то окажется, что во втором случае оно будет весить немного меньше. Причиной этому являются два фактора:
    Расстояние до центра Земли меньше на полюсах, чем на экваторе.
    В результате вращения вокруг оси Земли на все тела, находящиеся на ее поверхности, действуют центробежные силы, уменьшающие влияние гравитационного притяжения, а значит, вес тела. Вблизи экватора центробежные силы максимальны, на полюсах они равны нулю.

    Границы применимости


    Рассмотрев кратко Всемирного тяготения закон, следует несколько слов сказать о границах его применимости.
    Изученной формулой можно пользоваться всегда, когда массы тел и расстояния между ними велики. Так, движение планет в Солнечной системе с хорошей точностью описываются с помощью этого закона. Исключение составляет лишь Меркурий, который очень близко находится к Солнцу, поэтому для точного описания его движения следует пользоваться теорией относительности общей Эйнштейна.
    Проблемы применения универсального закона также возникают при описании взаимодействия электромагнитных волн с сильными полями гравитации.
    Источник

  7. Yozshusida Ответить

    Классическая механика, частью которой является теория Ньютона, описывает движение физических объектов во Вселенной. Объясняет, как взаимодействуют предметы при столкновении, при скатывании с наклонной плоскости, каким образом работают механизмы с шестерёнками и блоками и т. д. Данная модель была общепризнанной в XVII-XIX вв., её точности хватало для любых задач, возникавших перед людьми, таких как постройка зданий и создание механизмов. По сей день классическая механика изучается в школах и закладывает основы для дальнейшего образования инженеров и учёных.
    Стоит отметить, что ньютоновский закон всемирного притяжения не объясняет природу возникновения гравитации, а всего лишь устанавливает количественные закономерности.

    Описывается данное взаимодействие с помощью формулы:

    , где:
    m1 и m2 – масса первого и второго тела соответственно;
    r – расстояние между их центрами тяжести;
    G – гравитационная постоянная.
    Измеряется сила гравитации в Ньютонах.
    Гравитационная постоянная равна:


    Малая величина гравитационной постоянной отражает низкую интенсивность взаимодействия, сила которого возрастает только при очень больших массах.

    Ограничения по применению законов Ньютона

    Формула, предложенная Ньютоном, может быть использована для решения задач только в нескольких случаях:
    Расчёт осуществляется для двух тел, размеры которых пренебрежительно малы по отношению к расстоянию, отделяющему их друг от друга.
    В случае когда оба объекта обладают шарообразной формой и равномерной плотностью.
    Первое тело – шар, масса и объём которого многократно превосходит соответствующие характеристики второго тела, а оно само находится вблизи него или лежит на его поверхности.
    Третий случай описывает гравитационное взаимодействие между Землёй и любым предметом на её поверхности. Дистанция между объектами равна радиусу планеты, т. е. 6370 км. Сила притяжение вызывает ускорение движения при падении предметов на Землю.

    Сила тяжести

    Это частный случай действия силы тяготения, который описывает притяжение, возникающее между планетами и малыми объектами.

    m – масса тела, на которое действует притяжение планеты;
    g – ускорение свободного падения.
    Величина g не зависит от массы тела и является константой для каждой планеты. На Земле она примерно равна 9,8 м/с2. Есть незначительные колебания в зависимости от географического местоположения, наличия полезных ископаемых, высоты над уровнем моря и т. д.

    История открытия

    Идея о существовании некой силы, удерживающей планеты на орбитах и заставляющей тела притягиваться друг к другу, озвучивалась задолго до написания Ньютоном. Над этим размышляли ещё древнегреческие философы и учёные.
    Свой труд «Математические начала натуральной философии» И. Ньютон основывает на эмпирических законах Кеплера. Однако английский физик не только выдвинул гипотезу, но и сумел предложить целостную математическую модель, описывающую движение тел и позволявшую вести точные расчёты. В неё вошли: три ньютоновских закона, система методов для математического исследования и закон тяготения.
    Найденные числовые закономерно неоднократно проверялись учёными XVIII –XIX вв. Одни использовали в экспериментах точные крутильные весы, как Г. Кавендиш, другие применяли закон гравитации для описания движения небесных тел или исследовали действие гравитационного поля при произвольном распределении вещества.
    В научном сообществе того времени большинство приняло ньютоновскую модель в качестве наиболее точного описания фундаментального закона физики. Однако, у неё нашёлся ряд недостатков: необъяснимое дальнодействие, ненулевая средняя плотность вещества во Вселенной и др.
    Дальнейшее развитие теория получила в работах С. Пуассона, У. Леверье и А. Эйнштейна. Общая теория относительности, предложенная последним, смогла преодолеть все ключевые недостатки теории Ньютона и стала основой для качественного скачка в понимании природы вещей.

  8. The Eagles from Meldin Ответить

    Исаак Ньютон дважды избирался в парламент от Кембриджского университета. Бытует анекдот о том, что он лишь однажды взял слово. Все замерли, предвкушая, что светило скажет что-то очень умное. А Ньютон просто попросил закрыть окно, боясь простудиться от сквозняка. Так вот и это неправда. Ученый был добросовестным парламентарием, ходил на все заседания. А историю про окно наверняка сочинили завистники.
    Победил фальшивомонетчиков
    Несколько десятилетний Ньютон был хранителем Монетного двора, причем проявил себя классным управленцем. В то время в Англии существовала серьезная проблема: не успевали отчеканить партию серебряных монет, как они буквально исчезали из обращения. А все потому, что ценность монет определялась по их весу, и аферисты придумали срезать края. В итоге ходило много фальшивок, деньги массово вывозились за границу, оседали в сундуках, шли на переплавку.
    Ньютон перечеканил все монеты, а на ободке придумал делать насечки – так называемый гурт (он, к слову, есть и на современных монетах). Сработало! Обрезка краев стала заметной. Фальшивомонетчики негодовали и стали строчить доносы на “реформатора”. Ньютон проявил принципиальность – лично участвовал в расследованиях, в итоге более 100 доносчиков были выслежены и осуждены. Нескольких главарей даже казнили.
    Научил Петра I реформам
    Монетный двор в 1698 году посетил Петр I. Бывал там трижды, однако подробностей о его встречах с Исааком Ньютоном не сохранилось. Зато известно, что несколькими годами позже в России была проведена монетная реформа, очень похожая на английскую.
    Назначил конец света на 2060 год
    Мало кто знает, что Ньютон занимался еше и алхимией, оккультизмом, теологией. И помимо сочинения своих знаменитых законов расшифровывал Библию. Манускрипт на 4,5 тысячи страниц хранится в Еврейской национальной библиотеке Иерусалима. В нем ученые и обнаружили своего рода “последний закон Ньютона”: пророчество о конце света. Дату ученый вычисил математически, расшифровывая Книгу пророка Данила (Ветхий завет). Его прогноз – 2060-й год. Что именно произойдет через 43 года? Мировая война, потом мор, из-за чего исчезнет большая часть человечества. Сбудется ли? Думать об этом страшновато, учитывая, что у Ньютона есть точные предсказания – к примеру, он правильно указал дату появления государства Израиль – 1948 год.
    Был долгожителем
    Ньютон родился в семье мелкого, но успешного фермера. Отец умер, так и не увидев сына. А мальчик появился на свет раньше срока и таким слабым, что его даже крестить не хотели: думали, долго не протянет. Однако Исаак, названный в честь отца, не просто выжил, но и прожил очень длинную для 17 века жизнь – 84 года. Почти не болел, до старости сохранил густую шевелюру и все зубы кроме одного.

  9. Axefist Ответить

    Огромный рост числа молодых энергичных работников, подвизающихся на научной ниве, есть счастливое следствие расширения научных исследований в нашей стране, поощряемых и лелеемых Федеральным правительством. Измотанные и задерганные научные руководители бросают этих неофитов на произвол судьбы, и они часто остаются без лоцмана, который мог бы провести их среди подводных камней государственного субсидирования. По счастью, они могут вдохновляться историей сэра Исаака Ньютона, открывшего закон всемирного тяготения. Вот как это произошло.
    В 1665 году молодой Ньютон стал профессором математики в Кембриджском университете — своей альма-матер. Он был влюблён в работу, и способности его как преподавателя не вызывали сомнений. Однако нужно заметить, что это ни в коей мере не был человек не от мира сего или же непрактичный обитатель башни из слоновой кости. Его работа в колледже не ограничивалась только аудиторными занятиями: он был деятельным членом Комиссии по Составлению Расписаний, заседал в управлении университетского отделения Ассоциации Молодых Христиан Благородного Происхождения, подвизался в Комитете Содействия Декану, в Комиссии по Публикациям и прочих и прочих комиссиях, которые были необходимы для надлежащего управления колледжем в далёком 17 веке. Тщательные исторические изыскания показывают, что всего за пять лет Ньютон заседал в 379 комиссиях, которые занимались изучением 7924 проблем университетской жизни, из коих решена 31 проблема.
    Однажды (а было это в 1680 году) после очень напряжённого дня заседание комиссии, назначенное на одиннадцать часов вечера — раньше времени не было, не собрало необходимого кворума, ибо один из старейших членов комиссии внезапно скончался от нервного истощения. Каждое мгновение сознательной жизни Ньютона было тщательно распланировано, а тут вдруг оказалось, что в этот вечер ему нечего делать, так как начало заседания следующей комиссии было назначено только на полночь. Поэтому он решил немного пройтись. Эта коротенькая прогулка изменила мировую историю.
    Была осень. В садах многих добрых граждан, живших по соседству со скромным домиком Ньютона, деревья ломились под тяжестью спелых яблок. Всё было готово к сбору урожая. Ньютон увидел, как на землю упало очень аппетитное яблоко. Немедленной реакцией Ньютона на это событие — типичной для человеческой стороны великого гения — было перелезть через садовую изгородь и сунуть яблоко в карман. Отойдя на приличное расстояние от сада, он с наслаждением надкусил сочный плод.
    Вот тут его и осенило. Вез обдумывания, без предварительных логических рассуждений в мозгу его блеснула мысль, что падение яблока и движение планет по своим орбитам должны подчиняться одному и тому же универсальному закону. Не успел он доесть яблоко и выбросить огрызок, как формулировка гипотезы о законе всемирного тяготения была уже готова. До полуночи оставалось три минуты, и Ньютон поспешил на заседание Комиссии по Борьбе с Курением Опиума Среди Студентов Неблагородного Происхождения.
    В последующие недели мысли Ньютона все снова и снова возвращались к этой гипотезе. Редкие свободные минуты между двумя заседаниями он посвящал планам её проверки. Прошло несколько лет, в течение которых, как показывают тщательные подсчёты, он уделил обдумыванию этих планов 63 минуты 28 секунд. Ньютон понял, что для проверки его предположения нужно больше свободного времени, чем то, на которое он может рассчитывать. Ведь требовалось определить с большой точностью длину одного градуса широты на земной поверхности и изобрести дифференциальное исчисление.
    Не имея ещё опыта в таких делах, он выбрал простую процедуру и написал краткое письмо из 22 слов королю Карлу, в котором изложил свою гипотезу и указал на то, какие великие возможности она сулит, если подтвердится. Видел ли король это письмо – неизвестно, вполне возможно, что и не видел, так как он ведь был перегружен государственными проблемами и планами грядущих войн. Однако нет никакого сомнения в том, что письмо, пройдя по соответствующим каналам, побывало у всех начальников отделов, их заместителей и заместителей их заместителей, которые имели полную возможность высказать свои соображения и рекомендации.
    В конце концов письмо Ньютона вместе с объёмистой папкой комментариев, которыми оно успело обрасти по дороге, достигло кабинета секретаря ПКЕВИР/КИНИ/ППАБИ (Плановая Комиссия Его Величества по Исследованиям и Развитию, Комитет по Изучению Новых Идей, Подкомитет по Подавлению Антибританских Идей). Секретарь сразу же осознал важность вопроса и вынес его на заседание Подкомитета, который проголосовал за предоставление Ньютону возможности дать показания на заседании Комитета. Этому решению предшествовало краткое обсуждение идеи Ньютона на предмет выяснения, нет ли в его намерениях чего-нибудь антибританского, но запись этой дискуссии, заполнившая несколько томов in quarto, с полной ясностью показывает, что серьёзного подозрения на него так и не упало.
    Показания Ньютона перед ПКЕВИР/КИНИ следует рекомендовать для прочтения всем молодым учёным, ещё не знающим, как вести себя, когда придёт их час. Колледж проявил деликатность, предоставив ему на период заседаний Комитета двухмесячный отпуск без сохранения содержания, а зам декана по научно-исследовательской работе проводил его шутливым напутственным пожеланием не возвращаться без ”жирного” контракта. Заседание Комитета проходило при открытых дверях, и публики набилось довольно много, но впоследствии оказалось, что большинство присутствующих ошиблось дверью, стремясь попасть на заседание КЕВОРСПВО — Комиссии Его Величества по Обличению Разврата Среди Представителей Высшего Общества.
    После того как Ньютон был приведён к присяге и торжественно заявил, что он не является членом Лояльной Его Величества Оппозиции, никогда не писал безнравственных книг, не ездил в Россию и не совращал молочниц, его попросили кратко изложить суть дела. В блестящей, простой, кристально ясной десятиминутной речи, произнесённой экспромтом, Ньютон изложил законы Кеплера и свою собственную гипотезу, родившуюся при виде падающего яблока. В этот момент один из членов Комитета, импозантный и динамичный мужчина, настоящий человек действия, пожелал узнать, какие средства может предложить Ньютон для улучшения постановки дела по выращиванию яблок в Англии. Ньютон начал объяснять, что яблоко не является существенной частью его гипотезы, но был прерван сразу несколькими членами Комитета, которые дружно высказались в поддержку проекта по улучшению английских яблок. Обсуждение продолжалось несколько недель, в течение которых Ньютон с характерным для него спокойствием и достоинством сидел и ждал, когда Комитет пожелает с ним проконсультироваться. Однажды он опоздал на несколько минут к началу заседания и нашёл дверь запертой. Он осторожно постучал, не желая мешать размышлениям членов Комитета. Дверь приотворилась, и привратник, прошептав, что мест нет, отправил его обратно. Ньютон, всегда отличавшийся логичностью мышления, пришёл к заключению, что Комитет не нуждается более в его советах, а посему вернулся в свой колледж, где его ждала работа в различных комиссиях.
    Спустя несколько месяцев Ньютон был удивлён, получив объемистый пакет из ПКЕВИР/КИНИ. Открыв его, он обнаружил, что содержимое состоит из многочисленных правительственных анкет, в пяти экземплярах каждая. Природное любопытство – главная черта всякого истинного учёного — заставило его внимательно изучить эти анкеты. Затратив на это изучение определённое время, он понял, что его приглашают подать прошение о заключении контракта на постановку научного исследования для выяснения связи между способом выращивания яблок, их качеством и скоростью падения на землю. Конечной целью проекта, как он понял, было выведение сорта яблок, которые не только имели бы хороший вкус, но и падали бы на землю мягко, не повреждая кожуры. Это, конечно, было не совсем то, что Ньютон имел в виду, когда писал письмо королю. Но он был человеком практичным и понял, что, работая над предлагаемой проблемой, сможет попутно проверить и свою гипотезу. Так он соблюдет интересы короля и позанимается немножко наукой – за те же деньги. Приняв такое решение, Ньютон принялся заполнять анкеты без дальнейших колебаний.
    Однажды в 1865 году точный распорядок дня Ньютона был нарушен. В четверг после обеда он готовился принять комиссию вице-президентов компаний, входивших во фруктовый синдикат, когда пришло повергшее Ньютона в ужас и всю Британию в скорбь известие о гибели всего состава комиссии во время страшного столкновения почтовых дилижансов. У Ньютона, как это уже было однажды, образовалось ничем не занятое ”окно”, и он принял решение прогуляться. Во время этой прогулки ему пришла (он сам не знает как) мысль о новом, совершенно революционном математическом подходе, с помощью которого можно решить задачу о притяжении вблизи большой сферы. Ньютон понял, что решение этой задачи позволит проверить его гипотезу с наибольшей точностью, и тут же, не прибегая ни к чернилам, ни к бумаге, в уме доказал, что гипотеза подтверждается. Легко можно себе представить, в какой восторг он пришёл от столь блестящего открытия.
    Вот так правительство Его Величества поддерживало и воодушевляло Ньютона в эти напряженные годы работы над теорией. Мы не будем распространяться о попытках Ньютона опубликовать своё доказательство, о. недоразумениях с редакцией ”Журнала садоводов” и о том, как его статью отвергли журналы ”Астроном-любитель” и ”Физика для домашних хозяек”. Достаточно сказать, что Ньютон основал свой собственный журнал, чтобы иметь возможность напечатать без сокращений и искажений сообщение о своём открытии.

  10. page_of_desert Ответить

    Джеймс Э. МИЛЛЕР
    Огромный рост числа молодых энергичных работников, подвизающихся на научной ниве, есть счастливое следствие расширения научных исследований в нашей стране, поощряемых и лелеемых Федеральным правительством. Измотанные и задерганные научные руководители бросают этих неофитов на произвол судьбы, и они часто остаются без лоцмана, который мог бы провести их среди подводных камней государственного субсидирования. По счастью, они могут вдохновляться историей сэра Исаака Ньютона, открывшего закон всемирного тяготения. Вот как это произошло.
    В 1665 году молодой Ньютон стал профессором математики в Кембриджском университете – своей альма-матер. Он был влюблен в работу, и способности его как преподавателя не вызывали сомнений. Однако нужно заметить, что это ни в коей мере не был человек не от мира сего или же непрактичный обитатель башни из слоновой кости. Его работа в колледже не ограничивалась только аудиторными занятиями: он был деятельным членом Комиссии по Составлению Расписаний, заседал в управлении университетского отделения Ассоциации Молодых Христиан Благородного Происхождения, подвизался в Комитете Содействия Декану, в Комиссии по Публикациям и прочих и прочих комиссиях, которые были необходимы для надлежащего управления колледжем в далеком XVII веке. Тщательные исторические изыскания показывают, что всего за пять лет Ньютон заседал в 379 комиссиях, которые занимались изучением 7924 проблем университетской жизни, из коих решена 31 проблема.
    Однажды (а было это в 1680 году) после очень напряженного дня заседание комиссии, назначенное на одиннадцать часов вечера – раньше времени не было, не собрало необходимого кворума, ибо один из старейших членов комиссии внезапно скончался от нервного истощения. Каждое мгновение сознательной жизни Ньютона было тщательно распланировано, а тут вдруг оказалось, что в этот вечер ему нечего делать, так как начало заседания следующей комиссии было назначено только на полночь. Поэтому он решил немного пройтись. Эта коротенькая прогулка изменила мировую историю.
    Была осень. В садах многих добрых граждан, живших по соседству со скромным домиком Ньютона, деревья ломились под тяжестью спелых яблок. Все было готово к сбору урожая. Ньютон увидел, как на землю упало очень аппетитное яблоко. Немедленной реакцией Ньютона на это событие – типичной для человеческой стороны великого гения – было перелезть через садовую изгородь и сунуть яблоко в карман. Отойдя на приличное расстояние от сада, он с наслаждением надкусил сочный плод.
    Вот тут его и осенило. Вез обдумывания, без предварительных логических рассуждений в мозгу его блеснула мысль, что падение яблока и движение планет по своим орбитам должны подчиняться одному и тому же универсальному закону. Не успел он доесть яблоко и выбросить огрызок, как формулировка гипотезы о законе всемирного тяготения была уже готова. До полуночи оставалось три минуты, и Ньютон поспешил на заседание Комиссии по Борьбе с Курением Опиума Среди Студентов Неблагородного Происхождения.
    В последующие недели мысли Ньютона все снова и снова возвращались к этой гипотезе. Редкие свободные минуты между двумя заседаниями он посвящал планам ее проверки. Прошло несколько лет, в течение которых, как показывают тщательные подсчеты, он уделил обдумыванию этих планов 63 минуты 28 секунд. Ньютон понял, что для проверки его предположения нужно больше свободного времени, чем то, на которое он может рассчитывать. Ведь требовалось определить с большой точностью длину одного градуса широты на земной поверхности и изобрести дифференциальное исчисление.
    Не имея еще опыта в таких делах, он выбрал простую процедуру и написал краткое письмо из 22 слов королю Карлу, в котором изложил свою гипотезу и указал на то, какие великие возможности она сулит, если подтвердится. Видел ли король это письмо – неизвестно, вполне возможно, что и не видел, так как он ведь был перегружен государственными проблемами и планами грядущих войн. Однако нет никакого сомнения в том, что письмо, пройдя по соответствующим каналам, побывало у всех начальников отделов, их заместителей и заместителей их заместителей, которые имели полную возможность высказать свои соображения и рекомендации.
    В конце концов письмо Ньютона вместе с объемистой папкой комментариев, которыми оно успело обрасти по дороге, достигло кабинета секретаря ПКЕВИР/КИНИ/ППАБИ (Плановая Комиссия Его Величества по Исследованиям и Развитию, Комитет по Изучению Новых Идей, Подкомитет по Подавлению Антибританских Идей). Секретарь сразу же осознал важность вопроса и вынес его на заседание Подкомитета, который проголосовал за предоставление Ньютону возможности дать показания на заседании Комитета. Этому решению предшествовало краткое обсуждение идеи Ньютона на предмет выяснения, нет ли в его намерениях чего-нибудь антибританского, но запись этой дискуссии, заполнившая несколько томов in quarto, с полной ясностью показывает, что серьезного подозрения на него так и не упало.
    Показания Ньютона перед ПКЕВИР/КИНИ следует рекомендовать для прочтения всем молодым ученым, еще не знающим, как вести себя, когда придет их час. Колледж проявил деликатность, предоставив ему на период заседаний Комитета двухмесячный отпуск без сохранения содержания, а зам декана по научно-исследовательской работе проводил его шутливым напутственным пожеланием не возвращаться без «жирного» контракта. Заседание Комитета проходило при открытых дверях, и публики набилось довольно много, но впоследствии оказалось, что большинство присутствующих ошиблось дверью, стремясь попасть на заседание КЕВОРСПВО – Комиссии Его Величества по Обличению Разврата Среди Представителей Высшего Общества.
    После того как Ньютон был приведен к присяге и торжественно заявил, что он не является членом Лояльной Его Величества Оппозиции, никогда не писал безнравственных книг, не ездил в Россию и не совращал молочниц, его попросили кратко изложить суть дела. В блестящей, простой, кристально ясной десятиминутной речи, произнесенной экспромтом, Ньютон изложил законы Кеплера и свою собственную гипотезу, родившуюся при виде падающего яблока. В этот момент один из членов Комитета, импозантный и динамичный мужчина, настоящий человек действия, пожелал узнать, какие средства может предложить Ньютон для улучшения постановки дела по выращиванию яблок в Англии. Ньютон начал объяснять, что яблоко не является существенной частью его гипотезы, но был прерван сразу несколькими членами Комитета, которые дружно высказались в поддержку проекта по улучшению английских яблок. Обсуждение продолжалось несколько недель, в течение которых Ньютон с характерным для него спокойствием и достоинством сидел и ждал, когда Комитет пожелает с ним проконсультироваться. Однажды он опоздал на несколько минут к началу заседания и нашел дверь запертой. Он осторожно постучал, не желая мешать размышлениям членов Комитета. Дверь приотворилась, и привратник, прошептав, что мест нет, отправил его обратно. Ньютон, всегда отличавшийся логичностью мышления, пришел к заключению, что Комитет не нуждается более в его советах, а посему вернулся в свой колледж, где его ждала работа в различных комиссиях.
    Спустя несколько месяцев Ньютон был удивлен, получив объемистый пакет из ПКЕВИР/КИНИ. Открыв его, он обнаружил, что содержимое состоит из многочисленных правительственных анкет, в пяти экземплярах каждая. Природное любопытство – главная черта всякого истинного ученого – заставило его внимательно изучить эти анкеты. Затратив на это изучение определенное время, он понял, что его приглашают подать прошение о заключении контракта на постановку научного исследования для выяснения связи между способом выращивания яблок, их качеством и скоростью падения на землю. Конечной целью проекта, как он понял, было выведение сорта яблок, которые не только имели бы хороший вкус, но и падали бы на землю мягко, не повреждая кожуры. Это, конечно, было не совсем то, что Ньютон имел в виду, когда писал письмо королю. Но он был человеком практичным и понял, что, работая над предлагаемой проблемой, сможет попутно проверить и свою гипотезу. Так он соблюдет интересы короля и позанимается немножко наукой – за те же деньги. Приняв такое решение, Ньютон принялся заполнять анкеты без дальнейших колебаний.
    Однажды в 1865 году точный распорядок дня Ньютона был нарушен. В четверг после обеда он готовился принять комиссию вице-президентов компаний, входивших во фруктовый синдикат, когда пришло повергшее Ньютона в ужас и всю Британию в скорбь известие о гибели всего состава комиссии во время страшного столкновения почтовых дилижансов. У Ньютона, как это уже было однажды, образовалось ничем не занятое «окно», и он принял решение прогуляться. Во время этой прогулки ему пришла (он сам не знает как) мысль о новом, совершенно революционном математическом подходе, с помощью которого можно решить задачу о притяжении вблизи большой сферы. Ньютон понял, что решение этой задачи позволит проверить его гипотезу с наибольшей точностью, и тут же, не прибегая ни к чернилам, ни к бумаге, в уме доказал, что гипотеза подтверждается. Легко можно себе представить, в какой восторг он пришел от столь блестящего открытия.
    Вот так правительство Его Величества поддерживало и воодушевляло Ньютона в эти напряженные годы работы над теорией. Мы не будем распространяться о попытках Ньютона опубликовать свое доказательство, о. недоразумениях с редакцией «Журнала садоводов» и о том, как его статью отвергли журналы «Астроном-любитель» и «Физика для домашних хозяек». Достаточно сказать, что Ньютон основал свой собственный журнал, чтобы иметь возможность напечатать без сокращений и искажений сообщение о своем открытии.
    Напечатано в журнале «The American Scientist», 39, №1 (1951).
    Дж.Э. Миллер – заведующий кафедрой метеорологии и океанографии Нью-йоркского университета.
    Источник
    Нравится

  11. Painmoon Ответить

    В 1665—1666 годах в Лондоне свирепствовала чума, и Ньютон много времени проводил на ферме в Вулсторпе. Ему было всего 24 года, но историки считают, что именно в это время Ньютон задумался о причинах тяжести, а следовательно, и о движениях планет и их спутников. Мысли эти привели его к созданию великого закона всемирного тяготения…
    Закон всемирного тяготения сегодня известен каждому школьнику. Знают все и анекдот об упавшем яблоке, которое якобы явилось причиной открытия великого закона.
    Но как связать падение яблока со всемирным тяготением?..
    Рассказ о яблоке имеет некоторую степень достоверности. Современник Ньютона Стекелей писал в конце жизни: «После обеда погода была жаркая; мы перешли в сад и пили чай под тенью нескольких яблонь; были только мы вдвоем. Между прочим, сэр Исаак сказал мне, что точно в такой же обстановке он находился, когда впервые ему пришла в голову мысль о тяготении. Она была вызвана падением яблока, когда он сидел, погрузившись в думы. Почему яблоко всегда падает отвесно, подумал он про себя, почему не в сторону, а всегда к центру Земли? Должна существовать притягательная сила в материи, сосредоточенная в центре Земли. Если материя та тянет другую материю, то должна существовать пропорциональность ее количеству. Должна, следовательно, существовать сила, подобная той, которую мы называем тяжестью, простирающаяся по всей Вселенной…»
    «Этот рассказ мало кому был известен, — пишет академик Вавилов, — но зато весь мир узнал похожий на анекдот пересказ Вольтера, слыхавшего об этом случае от племянницы Ньютона». Вольтеровский анекдот имел успех. А вскоре после смерти Ньютона предприимчивые наследники стали показывать и яблоню, явившуюся, так сказать, первопричиной открытия великого закона.
    А теперь, прежде чем мы попытаемся одним глазком заглянуть в творческую лабораторию великого ученого, давайте вспомним современную формулировку закона всемирного тяготения: «Всякие два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними». На языке математики то же самое можно записать значительно короче F ~ M1M2/r?, где F — сила притяжения, M1 и M2 — массы притягивающихся тел, r? — квадрат расстояния между тяготеющими массами. Если ввести коэффициент пропорциональности k, то формула получит совсем привычный вид: F = k(M1M2/r?). Такой мы ее много раз видели в учебниках. Кажется все так просто, правда? Но это только тогда, когда закон уже открыт, когда к нему все привыкли, если и в голове ни у кого не умещается мысль, что было время, когда люди не знали такого простого и замечательного правила. Впрочем, ни одна теория не строится на пустом месте. После этой фразы мы и оказываемся прямо на пороге творческой лаборатории. О чем же знал Ньютон, размышляя над взаимной связью небесных тел? И что в этом направлении было сделано до него?
    Помните «законодателя небес» Иоганна Кеплера? Три его закона произвели переворот во взглядах на Вселенную, заставили отказаться от привычного представления о планетных орбитах как правильных окружностях, разрушили представление о планетных сферах. Законы Кеплера просто и точно описывали движения небесных тел, но… в этих законах автор ни словом не обмолвился о причинах такого движения. Между тем мысли ученых людей XVII века все чаще и чаще обращались к такому вопросу: какая же это сила действует на планеты, заставляет их сворачивать со свободного прямолинейного пути и двигаться по эллипсам вокруг Солнца? В чем кроется причина этой силы? Какова природа ее?..
    Сам Кеплер искал первопричину в Солнце. Силы, исходящие из могучего светила, должны были, по его мнению, подталкивать планеты. О природе этой «солнечной силы» астроном не задумывался. Со времен древних философов небо считалось чуждым Земле миром, и его законы не имели ничего общего с земными. А потому нечего было и думать об их природе. В небе властвовал бог! Лишь после того, как Галилей открыл закон инерции, объединивший движение тел в мировом пространстве и на земной поверхности, древняя точка зрения оказалась несостоятельной. Люди увидели, что земные и небесные явления подчиняются единым правилам. А не означало ли это, что и природа их была одной и той же? Из этого предположения напрашивается вывод еще более смелый: так ли уж отличается мир неба от мира Земли? А это уже очень походило на косвенное посягательство на авторитет бога.
    Чтобы поддержать идею о единстве мира, надо было придумать механизм действия небесных сил, схожий с каким-то явлением на Земле. И вот французский естествоиспытатель и философ Рене Декарт (1596—1650) выдвигает гипотезу о существовании вихрей в мировом эфире. Подобно тому как знакомые всем вихри на Земле увлекают в своем движении пыль и сухие листья, могучие вихри эфира вовлекают в свое движение небесные тела. Гипотеза Декарта давала очень наглядную картину и пользовалась в свое время большой популярностью. Но и в ней ни слова не говорилось о том, какая это сила, — вихри, и все. Правда, многие догадывались о том, что главную роль здесь должны играть силы притяжения. Существовала очень любопытная гипотеза итальянского натуралиста Джованни Борелли (1608—1679). Одно время он изучал движение спутников Юпитера и пришел к выводу, что движение небесных тел объясняется взаимодействием двух сил: одной — направленной к центру вращения, и другой — от центра. Предположим, рассуждал Борелли, что планета находится на таком расстоянии от Солнца и движется с такой скоростью, что стремление от центра (сегодня мы называем его «центробежной силой») меньше силы притяжения. Тогда планета начнет приближаться к светилу по спирали, пока обе силы не уравновесятся. Но вот по инерции, открытой Галилеем, планета проскочила нейтральную орбиту и подошла к Солнцу ближе положенного. Тогда сохранившаяся скорость движения заставит центробежную силу преодолеть притяжение. И планета снова начнет удаляться от светила по спирали…
    В гипотезе Борелли нет ни строчки математических доказательств. Он просто предполагает существование силы притяжения и из нее логически выводит криволинейное движение планеты.
    Ньютон знал об этой гипотезе. Но отсутствие математики, отсутствие количественного анализа его не удовлетворяло. «Гипотез не изобретаю», — любил повторять английский ученый. Он только кратко формулировал результаты наблюдаемого действия. И эти формулировки, выведенные с помощью логики и математических расчетов, становились законами.
    Работая над вопросами тяготения, Ньютон много внимания уделял теории движения Луны. Это очень сложная математическая задача, решить которую сначала нужно было принципиально. «Что удерживает Луну от падения на Землю и какая сила движет ею по орбите?» Ученый думал упорно и в конце концов понял, что никакой силы для движения тела в пустоте прилагать не нужно. Ведь именно это следует из первого закона движения Галилея. Если на тело не действует никакая сила, то оно продолжает двигаться по прямой с постоянной скоростью. Правда, в законе речь идет о прямолинейном движении. А Луна и планеты движутся криволинейно. Значит, сила нужна не для того, чтобы планеты двигались вообще, а лишь для того, чтобы искривить траекторию их движения! Что же это за сила? Откуда она взялась и чему равна? Не попробовать ли применить к полету по орбите второй закон движения: сила пропорциональна произведению массы на ускорение? Орбита Луны и других планет — почти окружность. Ускорение же равномерного движения по окружности всегда направлено к центру по радиусу и равно квадрату скорости, разделенному на этот радиус (v?/R). Тогда и сила должна иметь направление по радиусу к центру орбиты. То есть Луна в своем движении вокруг Земли должна постоянно испытывать ускорение в сторону нашей планеты. Иначе говоря, двигаясь свободно, прямолинейно в пространстве, Луна все время под действием какой-то силы падает на Землю. Падает, но никак не может упасть. Потому что в каждый последующий момент она, падая с прямолинейного пути, пролетает такое расстояние, что снова и снова оказывается на орбите. Так, как это показано на рисунке. А откуда берется эта сила? Вот тут-то и пришла очередь яблока.

    Схема «вечного падения» Луны на Землю
    Если Земля притягивает яблоко, заставляя его падать на поверхность планеты, то чем Луна хуже яблока? И Ньютон предположил, что именно тяжесть или — более привычно — вес Луны удерживает ее на орбите, не дает улететь в пространство. Дальше ход его рассуждений шел примерно в таком направлении: если бы Луна находилась, как яблоко, совсем близко к поверхности Земли, ускорение свободного падения у нее было бы такое же, как у яблока. То есть примерно 9,81 м/сек?. Но Луна — дальше. Какое же ускорение должна она иметь на своей орбите?.. Тут нужно было посчитать! Но для точных расчетов требовались и точные сведения об орбите Луны, о периоде ее обращения… Ньютон же наблюдениями не занимался. Приходилось обращаться с просьбами к королевскому астроному Флемстиду, который как раз в это время скрупулезно наблюдал движение нашего спутника. Однако упрямый и желчный королевский астроном вовсе не был намерен потакать «причудам мистера Ньютона», как он неоднократно выражался. Это приводило к осложнениям и неприятным спорам. Ньютон споров не любил. И тем не менее буквально ни один его самостоятельный научный шаг не обходился без дискуссии.
    Вопросы связи силы тяжести с законами Кеплера стояли в центре внимания всего ученого общества того времени и вызывали к себе весьма ревнивое отношение со стороны многих джентльменов.
    Однажды астроном Галлей встретился в лондонской кофейне с архитектором Реном — строителем знаменитого собора святого Павла в Лондоне — и Робертом Гуком, физиком, математиком, экспериментатором и теоретиком, которого вечно обуревали тысячи идей и ни одну из них он не доводил до конца. Разговор зашел о науке, о научных проблемах. Оказалось, что все трое отдали немало времени и сил одной и той же задаче — доказательству, что под действием силы тяжести, убывающей обратно пропорционально квадрату расстояний, движение небесных тел должно совершаться по эллиптическим орбитам. Но никто успехом похвастаться не мог. Тогда Рен, самый богатый из всех троих, чисто в английском вкусе, предложил на пари выплатить премию тому, кто решит проблему.
    Как-то, зайдя к Ньютону, Галлей рассказал тому о споре и о пари, заключенном в кофейне. А когда через некоторое время случай снова привел молодого астронома в Кембридж, Ньютон сообщил ему, что решение задачи у него в руках. И ровно через месяц Галлей получил от Ньютона рукопись краткого мемуара с объяснением решения. По просьбе Ньютона мемуар этот не был напечатан в журнале Королевского общества, но его зарегистрировали на случай споров о приоритете.
    Естественно, мы не можем восстановить все детали сложного логического пути, которым Ньютон пришел к закону всемирного тяготения. Но если вы любите математику, то можете попробовать самостоятельно разобраться в ходе конечных рассуждений великого физика. Для этого подведем краткий итог того, что было известно.
    1. Ньютон знал примерное расстояние от Земли до Луны — шестьдесят земных радиусов.
    2. Известно ему было и ускорение свободного падения тела у поверхности Земли — 9,81 м/сек?.
    3. Знал он и замечательные законы Кеплера и Галилея.
    4. Наконец, идея того, что тяготение между двумя небесными телами должно быть обратно пропорционально квадрату расстояния между ними, витала в воздухе.
    Вряд ли можно проследить точно тот путь, по которому мысль гения стремится к поставленной перед собой цели. Но попробуем вывести закон всемирного тяготения, используя только те данные, которые были известны Ньютону.
    Итак, прежде всего некоторое допущение, для упрощения расчетов. Вы помните, что Кеплер доказал: орбиты планет — эллипсы. Но эллипсы с очень незначительными эксцентриситетами. Поэтому, ради простоты, примем их за окружности с Солнцем, расположенным точно в центре. И рассмотрим движение какой-то планеты, делающей один оборот по круговой орбите.
    Прежде всего вспомним несколько формул из курса физики: скорость движения V прямо пропорциональна пути и обратно пропорциональна времени движения: V = S/T. Здесь путь планеты S (ее орбита) равен длине окружности S = 2?R. А время движения T есть время одного оборота (или период обращения). R — радиус-расстояние от планеты до Солнца. Подставив введенные обозначения, мы получим скорость движения планеты по орбите в виде формулы: V = 2?R/T.
    Теперь найдем ускорение, которое испытывает наша планета, двигаясь по круговой орбите: a = 2?V/T.
    Объединив два последних уравнения, получим формулу для ускорения в виде: a = 4??R/T?.
    Вот когда можно переходить к главной задаче — искать выражение для силы F, создающей найденное нами ускорение a.
    Согласно закону, выведенному самим Ньютоном, сила равна произведению ускорения тела на его массу m1; F = a·m1. Подставив в эту формулу выражение для полученного нами ускорения, мы получим: F = (4??R/T?) ·m1. Чтобы исключить из уравнения период и выразить силу только через массу и расстояние, Ньютон использовал третий закон Кеплера, гласящий, что квадраты времен обращения планет вокруг Солнца относятся, как кубы их средних расстояний от Солнца. Что на языке математики имеет вид: R13/R23 = T12/T22. Из этого закона легко понять, что отношение куба расстояния к квадрату периода обращения — величина постоянная. Обозначим ее k, тогда: R13/T12 = k, или T? = R13/k. Выражение T? подставим в уравнение для силы притяжения: F = 4??k(m1/R12)). Мы получили математическое выражение закона обратных квадратов. Но это еще не закон всемирного тяготения. Еще нужно решить, что представляет собой множитель k.
    Из третьего закона Кеплера видно, что величина этого множителя одна и та же для любой планеты, обращающейся вокруг Солнца. Значит, и зависеть этот коэффициент может только от Солнца как центрального тела системы. Тогда силу притяжения между Солнцем и нашей планетой с массой m1 можно выразить тем же уравнением, но с солнечным коэффициентом k?:F = (4??k?/R12)·m1.
    Ньютон первым предположил, что величина 4??k? пропорциональна массе Солнца, скажем, так: 4??k? = Gm?, где m? — масса Солнца, а G — коэффициент пропорциональности.
    Таким образом, уравнение взаимного притяжения между Солнцем и выбранной нами планетой будет иметь вид: F1 = G((mm1)/R12). Точно так же для Солнца и Земли: F2 = G((mm?)/R?2).
    Но чем отличается, например, система Солнце — Земля от системы Земля — Луна? В принципе ничем. То же центральное тело, вокруг которого обращается другое небесное тело. Значит, для системы Земля — Луна тоже должно быть справедливо уравнение, выведенное раньше.
    Только массы и расстояния нужно подставить в него другие…
    Наконец наступила пора перейти к закону всемирного тяготения и написать его в общем виде для любых двух тел во Вселенной: F = G((mm2)/R2).
    Вот какой примерно путь нужно было проделать только формально, чтобы, имея под рукой готовые формулы и точно зная направление, сформулировать величайший фундаментальный закон природы.
    Зная расстояние от Земли до Луны и ускорение силы тяжести на поверхности нашей планеты, Ньютон нашел ускорение Луны. Сравнив его с точными наблюдениями Флемстида, он убедился, что его результат весьма близок к истине.
    Год спустя после появления мемуара «О движении», в большой степени благодаря убеждениям и уговорам Галлея, появилась сначала рукопись, а затем и первая книга манускрипта, названного Ньютоном «Математические начала натуральной философии».
    — Сэр Исаак разработал руду, которую я откопал, — ядовито, хотя и не без горечи заметил Флемстид.
    — Если он откопал руду, то я смастерил из нее золотое кольцо, — отпарировал Ньютон, который, несмотря на нелюбовь к спорам, еще меньше любил, когда о его работе отзывались без должного уважения и последнее слово в дискуссии оставалось за противником.
    Ньютоновские «Начала» были удивительной книгой. «По убедительности аргументации, подкрепленной физическими доказательствами, книга эта не имеет себе равных во всей истории науки, — пишет Джон Бернал. — В математическом отношении ее можно сравнить только с «Элементами» Евклида, а по глубине физического анализа и влиянию на идеи того времени — только с «Происхождением видов» Дарвина».
    Решающий вывод о том, что сила, заставляющая тела падать на Землю, и сила, заставляющая Луну обращаться вокруг нашей планеты, одна и та же, имел большое философское значение.
    Три основных закона механики и закон всемирного тяготения оказались универсальными для Земли и для неба. Это еще раз подчеркивало единство мира, который некогда делился философами на две несовместимые части — земную и небесную.
    Принципы Ньютона без дополнительных условий, гипотез и допущений объясняли движения тел в космосе и на Земле. И все-таки теория всемирного тяготения не сразу завоевала всеобщее признание. Во Франции, да и в самой Англии, еще долгое время пользовались учебниками, построенными на взглядах Декарта.
    В заключение можно сказать, что скорее Луна, а не знаменитое яблоко, подтолкнула мысль Ньютона к созданию теории тяготения. Но только «подтолкнула», потому что одна лишь теория движения Луны дать закон ВСЕМИРНОГО тяготения не могла. Она была бы недостаточно убедительной. Следовало распространить выведенный закон и на остальные небесные тела. Но для этого надо было доказать, что планеты удерживает на орбитах та же сила. Исходя из гипотезы о всемирном притяжении Ньютон математически строго вывел законы Кеплера и подтвердил стройную кеплеровскую картину мироздания. Отныне одним и тем же законам подчинялись и планеты, и их спутники, даже редкие гости — «вестники ужаса» — кометы. Отныне все небесные тела двигались по единой рациональной схеме.
    Согласитесь, дорогой читатель, что большего требовать от человека, даже такого, как Ньютон, невозможно.
    Исследуя движение Луны, он пришел к выводу, что на нее действует не только земное притяжение. Многие силы отклоняли ее с пути равномерного кругового движения. Так, при новолунии наш спутник на расстояние диаметра орбиты ближе к Солнцу, чем при полнолунии. Значит, сила солнечного притяжения меняется, и это ведет к замедлению и ускорению движения Луны в течение месяца. Кроме того, зимой Земля ближе к Солнцу, чем летом. Это тоже влияет на скорость движения Луны, но уже с годичным периодом.
    Изменение солнечного притяжения меняет эллиптичность лунной орбиты, отклоняет ее плоскость, заставляя ее медленно вращаться.
    Разработать теорию движения Луны полностью, во всех деталях, то есть рассчитать траекторию нашего спутника с учетом притяжения не только Земли, но и Солнца, чрезвычайно трудно. Это знаменитая в истории астрономии «проблема трех тел»… Задача, сыгравшая огромную роль в развитии и становлении теоретической «астрономии тяготения», превратившейся в широкую отрасль науки, называемую «небесной механикой».
    Открыть свои замечательные законы движения планет удалось Кеплеру лишь потому, что масса Солнца во много раз больше массы всех планет (примерно в 750 раз). Поэтому влияние планет друг на друга несравнимо меньше, чем влияние центрального светила. Фактически, в первом приближении, рассматривать движение каждой планеты можно вообще не обращая внимания на существование остальных членов солнечного семейства. Только планета и Солнце, и тогда это — «задача двух тел», решение которой относительно несложно.
    Слово «относительно» здесь не случайно, потому что вы, наверное, помните, что Кеплер, решив задачу практически, так и не смог объяснить, почему небесные тела движутся по эллиптическим орбитам. Ньютон заново четко сформулировал условия «задачи двух тел» и очень изящно решил ее. Он доказал, что «под действием силы взаимного тяготения, изменяющейся обратно пропорционально квадрату расстояния, одно тело будет описывать вокруг другого конические сечения — эллипс, параболу или гиперболу, в зависимости от начальной скорости».
    Решение Ньютона приближенное. Стоит добавить в условия влияние третьего тела, как задача неимоверно усложнится. Ньютон первым понял это, и именно ему принадлежит честь формулировки «задачи трех тел». Однако решить ее не смог даже он.
    Немало людей бралось за нее в дальнейшем, но лишь в 1912 году финскому математику Сундману удалось получить впервые решение «задачи трех тел» в виде так называемых бесконечных рядов. К сожалению, это сложное теоретическое решение почти ничего не дает практике. Между тем сегодня, в век развития космонавтики, «задача трех тел» приобретает особое значение. И, судя по успехам полетов советских автоматических межпланетных станций, вы понимаете, что она решается, и решается неплохо. Но достигается это большим трудом и только с помощью таких замечательных помощников человека, как электронные счетные машины.
    Решил Ньютон и другую, чрезвычайно интересную задачу. Он сравнил силу притяжения одних тел другими с силой притяжения Луны Землей и узнал, например, во сколько раз Солнце или Юпитер тяжелее Земли. Он оценил массы Солнца и всех известных ему планет и их спутников в единицах массы нашей планеты! Это было замечательным достижением гениального ученого.
    Не все идеи Ньютона получали безоговорочное признание. Интересен спор, который возник между английскими и французскими астрономами по поводу формы Земли. Начался он с того, что в 1671 году французская астрономическая экспедиция отправилась к экватору, чтобы в условиях темного безоблачного неба наблюдать звезды. Но славу экспедиции принесло другое, совершенно случайное открытие. Для измерений времени при наблюдениях астроном Рише — один из членов экспедиции — захватил с собой из Франции маятниковые часы. Прибыв в Кайенну, Рише заметил, что часы стали отставать в сутки на две минуты. Пришлось укоротить маятник. Однако по возвращении в Париж часы «побежали», опережая истинное время опять на две минуты. Рише задумался и пришел к выводу, что на экваторе центробежная сила уменьшает тяготение.
    Ньютон не мог согласиться с таким утверждением. Зная радиус Земли и скорость ее вращения, центробежную силу трудно вычислить. Она получалась значительно меньшей, чем нужно для объяснения опыта с маятником.
    Обдумывая этот вопрос, Ньютон произвел мысленный эксперимент. «Предположим, — говорил он себе, — что у нас есть две шахты. Одна — от полюса к центру Земли, другая — от экватора к центру. Заполним обе шахты водой. Однако, поскольку Земля вращается, на экваторе действует еще и центростремительная сила. Значит, вес воды в экваториальной шахте должен быть больше, чем в полярной. А это значит, что и воды там должно быть больше. Но если обе шахты — от поверхности до центра, следовательно, радиус Земли по экватору должен быть больше радиуса полярного». Ньютон подсчитал разницу и получил примерно 24 километра1. Это навело его на мысль, что некогда, на заре возникновения, Земля была пластичной. В результате вращения ее тело сплюснулось…

    Схема мысленного опыта Ньютона по оценке экваториальной выпуклости Земли
    Примерно в то же время французские астрономы предприняли измерение дуги меридиана. Экспедиции вели работы на разных широтах и в результате пришли к выводу, что Земля не сплюснута у полюсов, а, наоборот, вытянута. Французы вообще довольно долго не признавали взглядов Ньютона, отдавая предпочтение философии своего соотечественника Декарта. В конце концов, разногласия точек зрения зашли так далеко, что вызвали насмешку остроумного Вольтера. Вот что писал он в 1730 году в своих «Письмах из Лондона об английском»:
    «Француз, который попадет в Лондон, обнаруживает, что все совершенно изменилось в философии — точно так же, как и во всем другом. Там он оставил заполненный мир, здесь — нашел его пустым. В Париже вы видели Вселенную, наполненную круговыми вихрями из тончайшей материи, в Лондоне вы ничего этого не видите. У французов давление Луны вызывает приливы на море, у англичан море притягивается к Луне…
    Кроме того, вы можете заметить, что Солнце, которое во Франции в это дело не вмешивается, здесь вносит в него свою четвертую часть. У картезианцев2 все происходит благодаря давлению, которое, правда, само непонятно. У месье Ньютона все происходит благодаря притяжению, причина которого известна ничуть не лучше. В Париже Земле придают форму дыни, в Лондоне она сплюснута у полюсов».
    Впрочем, этот сарказм не помешал Вольтеру в специальном сочинении «Элементы философии Ньютона» блестяще рассказать о сути ньютоновской теории и стать горячим пропагандистом идей Ньютона у себя на родине.
    Для разрешения споров о форме нашей планеты понадобились новые тщательные исследования и измерения Земли. Французская академия снарядила две новые экспедиции. Одну — в Перу, другую — в Лапландию. Результаты их работ подтвердили правоту Ньютона.
    С помощью таких же рассуждений доказал Ньютон и сплюснутость Юпитера. Более того, поскольку гигантская планета вращается быстрее Земли, то и сжата она у полюсов должна быть сильнее.
    Прошло всего четыре года после выхода «Начал» — и это утверждение Ньютона было подтверждено путем наблюдений…
    Ньютон занимался и вопросом о «маленьких лунах».

    Траектории движения тел в поле притяжения Земли
    Проделаем еще один мысленный эксперимент. На вершине горы установим пушку и начнем из нее стрелять, посылая снаряды параллельно земной поверхности. Если заряд мал, снаряд летит медленно и падает, как нам кажется, на поверхность по параболе, фокус которой находится близко к вершине горы. На самом же деле траектория падения снаряда — эллипс, второй фокус которого в центре Земли. Различить параболу и эллипс на малом участке траектории очень трудно.
    Если увеличить заряд и придать снаряду большую скорость, он полетит вокруг Земли по круговой орбите, наподобие Луны, став спутником нашей планеты. Если начальную скорость полета еще и еще увеличивать, траектория снаряда будет представлять собой последовательно сначала эллипс, с ближайшим фокусом в центре Земли, потом гигантскую параболу и наконец гиперболу. В последнем случае снаряд навсегда покинет Землю и уйдет в космическое пространство. Скорость «убегания» нетрудно рассчитать. И вы, конечно, сами понимаете, насколько такие расчеты важны в наше время.

    Примечания

    1. По современным данным разница между экваториальным и полярным радиусами Земли составляет чуть больше 21 километра.
    2. Свои труды Декарт подписывал на латинский манер именем Картезий, потому и называли сторонников его учения — картезианцами.
    Предыдущая страница
    К оглавлению
    Следующая страница

  12. Delalace Ответить


    Исаака Ньютона называют одним из создателей классической физики. Его открытия объясняют многие явления, причину которых до него не удалось разгадать никому.
    Принципы классической механики формировались в течение длительного времени. Многие века учёные пытались создать законы движения материальных тел. И только Ньютон обобщил все накопленные к тому времени знания о движении физических тел с точки зрения классической механики. В 1867 г. им была опубликована работа «Математические начала натуральной философии». В этой работе Ньютон систематизировал все знания о движении и силе, подготовленные до него Галилеем, Гюгенсом и другими учёными, а также знания, известные ему самому. На основе всех этих знаний им были открыты известные законы механики и закон всемирного тяготения. В этих законах устанавливаются количественные зависимости между характером движения тел и силами, действующими на них.

    Закон всемирного тяготения


    Существует легенда, что к открытию закона тяготения Ньютона подтолкнуло наблюдение падающего с дерева яблока. По крайне мере, об этом упоминает Уильям Стьюкли, биограф Ньютона. Говорят, что ещё в молодости Ньютон задумывался над тем, почему яблоко падает вниз, а не в сторону. Но решить эту задачу ему удалось намного позже. Ньютон установил, что движение всех предметов подчиняется общему закону всемирного тяготения, который действует между всеми телами.
    «Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними».
    Яблоко падает на землю под воздействием силы, с которой Земля воздействует на него силой своего гравитационного притяжения. А какое ускорение оно получает, Ньютон объяснил с помощью трёх своих законов.

    Первый закон Ньютона


    Сам великий Ньютон сформулировал этот закон так: «Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».
    То есть, если тело неподвижно, то оно так и останется в таком состоянии до тех пор, пока на него не начнёт действовать какая-то внешняя сила. И, соответственно, если тело движется равномерно и прямолинейно, то оно будет продолжать своё движение до момента начала воздействия внешней силы.
    Первый закон Ньютона называют ещё Законом инерции. Инерция – это сохранение телом скорости движения, когда на него не оказывают действие никакие силы.

    Второй закон Ньютона


    Если первый закон Ньютона описывает, как ведёт себя тело, если на него не действуют силы, то второй закон помогает понять, что происходит с телом, когда сила начинает действовать.
    Величина силы, действующей на тело, равна произведению массы тела на ускорение, которое получает тело, когда на него начинает действовать сила.
    В математическом виде этот закон выгляди так:
    F = ma
    Где F – сила, действующая на тело;
    m – масса тела;
    a – ускорение, которое получает тело под воздействием приложенной силы.
    a = F/m
    Из этого уравнения видно, что чем больше величина силы, воздействующей на тело, тем большее ускорение оно получит. И чем больше масса тела, на которое воздействует эта сила, тем меньше ускорит своё движение тело.

    Третий закон Ньютона


    Закон гласит, что если тело А воздействует на тело В с какой-то силой, то и тело В воздействует с такой же силой на тело А. Иными словами сила действия равна силе противодействия.
    Например, ядро, вылетающее из пушки, действует на пушку с силой, равной силе, с какой пушка выталкивает ядро. В результате действия этой силы после выстрела пушка откатывается назад.
    Из своих общих законов движения Ньютон вывел множество следствий, которые позволили сделать теоретическую механику практически совершенной. Открытый им закон всемирного тяготения связал все планеты, находящиеся на огромном расстоянии друг от друга, в единую систему и положил начало небесной механике, которая изучает движение планет.
    С момента создания Ньютоном его законов прошло много времени. Но все эти законы актуальны до сих пор.

  13. Heart of Xavor Ответить

    Двадцать два года молчания
    Ньютон открыл закон всемирного тяготения в 1666 году, но еще 22 года не заявлял о нем миру. Никто не знает, почему так произошло, однако существует несколько версий. Одна из них состоит в том, что, когда Ньютон сравнил влияние силы притяжения Земли на расстоянии Луны и на Земле, он не смог получить подтверждения закона обратных квадратов. Возможно, его расчет расстояния, произведенный в XVII веке, оказался неверен. К тому моменту, когда он это понял и провел повторные вычисления, он уже переключился на другие научные задачи.
    Еще одна возможная причина, по которой Ньютон не опубликовал свой труд о всемирном тяготении сразу же: он полагал притяжение Земли таким, как будто вся ее масса сконцентрирована в центре. Напомню, что при доказательстве закона об ратных квадратов Ньютон сравнивал расстояние до Луны от центра Земли с расстоянием от яблока до центра Земли.
    Суть теории Ньютона о всемирном тяготении состоит в том, что гравитация — это сила, действующая между всеми элементами материи. Это означает, что сила притяжения, с которой Земля воздействует на Луну, равна силе притяжения, с которой на Луну воздействует и Эверест, и каждая песчинка на каждом берегу каждого земного континента… По сути, гравитационное воздействие на Луну равно сумме гравитационных воздействий всех бесчисленных частиц материи, из которых состоит Земля.
    Ньютон полагал, что значение этого притяжения всегда одинаково, как если бы вся материя на Земле была сконцентрирована в одной точке в ее центре. Разумеется, он не мог это подтвердить, но, как говорил физик ХХ века Ричард Фейнман, можно знать больше, чем ты в состоянии доказать32. С Ньютоном дело обстояло именно так.
    Сила его интуиции была попросту пугающей. После нескольких часов, или дней, или даже недель концентрации он ясно видел перед собой решение задачи во всей его неизбежности, очевидности и правильности. Но знать правду недостаточно — нужно еще и убедить в ней остальных. А это означало, что ему нужно было проводить много часов за столом с пером и листами бумаги и облекать свою интуицию в слова, шаг за шагом объясняя собственные идеи на языке обычных людей, то есть математики.
    Одна вещь была для Ньютона совершенно очевидна. Мир имеет форму мяча, разделенного на две части, а между ними располагается невидимая нить, соединяющая Луну с центром Земли. Благодаря этой симметрии гравитационные силы, с которыми все частицы материи в одном полушарии воздействуют на все частицы материи в другом, компенсируются гравитационными силами, исходящими от всех частиц другого полушария. Они поглощают друг друга. Соответственно, сила притяжения, с которой Земля влияет на Луну, будет направлена вдоль линии, соединяющей Луну с центром нашей планеты. Этого достаточно для начала, но до утверждения о том, что притяжение будет действовать таким образом, как если бы вся масса Земли была сконцентрирована в одной точке, еще далеко. В 1666 году Ньютон понимал, что это так, но не мог доказать.
    Или, возможно, мог, но никто из живших в 1666 году просто не понял бы его доказательства.
    В мае 1666 года Ньютон изобрел интегральное исчисление, которое назвал обратным методом флюксий. Это элемент математической магии, с помощью которого он смог суммировать значения силы, исходящей от бесчисленного количества бесконечно маленьких масс (на самом деле не только масс, а вообще чего угодно). Данный метод позволял доказать, что сила притяжения Земли равна той силе, которая исходила бы от нее, если бы вся ее масса была сконцентрирована в центре. Но так как Ньютон изобрел это исчисление недавно и никому о нем не рассказал, то и доказательство, полученное с его помощью, мог бы понять только он сам33. Вряд ли можно произвести хорошее впечатление на других, если сказать им: «У меня есть блестящее доказательство, но чтобы вы его поняли, для начала я должен обучить вас новой отрасли математики, которую я только что открыл».
    Ньютон был сложным и противоречивым человеком, а потому против представления его закона всемирного тяготения в 1666 году могли иметься не только научные, но и психологические мотивы. Начну с того, что он был безумно скрытным. В грантемской школе над ним издевался местный хулиган, вероятно понявший, что Ньютон не такой, как все. Сам Ньютон вспоминает, как однажды этот мальчик ударил его в живот, а будущий ученый в ответ схватил его за ухо, отволок к церкви и приложил носом о стену34. Несмотря на победу в конфликте, после этого травмирующего опыта Ньютон начал бояться открытости — не только физической, но и интеллектуальной. Будучи крайне чувствительным человеком, Ньютон был не в состоянии рассматривать скептицизм своих коллег как часть научного процесса и считал его личными нападками глупцов на свои идеи. Он даже не пытался их защищать, так как был уверен в собственной правоте.
    Ньютон был обидчивым, вспыльчивым и довольно мстительным человеком, и со многими своими коллегами он вел долгую и изнурительную вражду. Когда читаешь высказывание Ньютона: «Мы строим слишком много стен и недостаточно мостов», хочется воскликнуть: «Кто бы говорил!» В его утверждении: «Я могу рассчитать движение небесных тел, но не безумие людей» — тоже чувствуется некоторая ирония.
    «Такт — это искусство настоять на своем, не нажив себе врага», — говорил Ньютон. К сожалению, сам он так и не научился этому искусству. Он понимал, как нужно себя вести, но не умел действовать в соответствии с этим пониманием.
    Разумеется, в каждом человеке есть свои противоречия. Живший в ХХ веке физик Георгий Гамов рассказывал о Ньютоне такую историю (которая, конечно же, может быть выдумкой)35. Ньютон очень любил свою кошку и, чтобы та в любой момент могла попасть в его кабинет, вырезал в двери дыру. Затем у кошки появились котята. Что же сделал Ньютон? Вырезал в двери несколько дыр поменьше, по числу котят. Он был величайшим гением всех времен, но не смог понять, что все котята могли бы проходить через одну большую дыру.
    Одержимость Ньютона секретностью могла иметь и более глубинные мотивы. Несмотря на то что он родился раньше срока и был слабым ребенком, ученый дожил до преклонного возраста и до самой старости сохранил идеальное зрение и все зубы, кроме одного36. После смерти от него осталась коробка с бумагами, которые следовало опубликовать для потомков. Содержание этих документов было настолько скандальным, что священник, открывший коробку, чтобы бегло просмотреть бумаги, в ужасе захлопнул ее 37. Помимо прочего, в документах содержались рассуждения Ньютона о религии. Он был глубоко верующим человеком и признавал только одного Бога. Он полностью отрицал догмат о Святой Троице — Отце, Сыне и Святом Духе. Изучив источники, он пришел к выводу, что идея «трех богов в одном» была хитростью навязана церкви на Первом соборе в Никее, созванном в 325 году императором Константином I.
    Ньютон знал, что одних его еретических унитаристских взглядов было бы достаточно, чтобы сделать его изгоем. Существовавшие в то время в Англии законы запрещали людям, разделявшим веру Ньютона, занимать важные государственные посты, а в некоторых случаях предусматривали и тюремное заключение. Ньютон был членом совета Тринити-колледжа (колледжа Святой Троицы) в Кембридже, и ни один человек даже на секунду не заподозрил, насколько он презирал основные принципы данного учебного заведения. Возможно, Ньютон был вынужден держать свою жизнь в секрете, потому что в мире, где доминировала строгая церковная догматика, от этого зависела его жизнь. Так или иначе, он был полностью пропитан секретностью.
    Итак, Ньютон прогуливался по изъезженным дорогам вокруг Вулсторпа, бродил по его лесам и тропинкам, делал невероятные открытия об окружающем мире и держал их при себе. Он ни разу не выпрыгнул из ванной с криком «Эврика!», вместо этого оставаясь в молчании.
    Разумеется, можно делать разные предположения относительно того, почему Ньютон не опубликовал данные о своем открытии сразу же, в 1666 году, но факт остается фактом — между открытием и его обнародованием прошло 20 лет.
    Подробнее о книге можно узнать здесь.

  14. Dokazahn Ответить

    На склоне своих дней Исаак Ньютон рассказал, как это произошло: он прогуливался яблоневым садом в имении своих родителей и вдруг увидел Луну в дневном небе. И вдруг на его глазах от ветки оторвалось и упало на землю яблоко.
    Поскольку Ньютон в это время как раз работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, а значит, на него влияет какая-то сила, удерживающая его от того, чтобы сорваться с орбиты и полететь вдаль, в открытый космос. Здесь ему и пришло в голову, что, возможно, это одна и та же сила заставляет яблоко падать на землю, а Луна оставаться на околоземной орбите.
    Чтобы сполна оценить весь блеск этого озарения, вернемся ненадолго к его предыстории. Когда выдающиеся предшественники Ньютона, в частности Галилей, изучали равноускоренное движение тел, падающих на поверхность Земли, они были уверены, что наблюдают явление исключительно земной природы – такое, что существует только вблизи поверхности нашей планеты. Когда другие ученые, например, Иоганн Кеплер, изучали движение небесных тел, они считали, что в небесных сферах действуют совсем другие законы, отличающиеся от тех, которые управляют движением здесь, на Земле.
    История науки свидетельствует о том, что практически все представления о движении небесных тел до Ньютона заключались в основном в том, что небесные тела, будучи совершенными, движутся круговыми орбитами благодаря своей совершенства, поскольку круг – суть идеальная геометрическая фигура. Итак, выражаясь современным языком, считалось, что есть два типа гравитации, и это представление устойчиво закрепилось в сознании людей того времени. Все считали, что земная гравитация, действующая на несовершенной Земле и является гравитация небесная, действующая на совершенных небесах.
    Прозрение же Ньютона как раз и заключалось в том, что он объединил эти два типа гравитации в своем сознании. С этого момента искусственный и ложный разделение Земли и остальной Вселенной прекратил свое существование.
    Результаты расчетов Ньютона теперь называют законом всемирного тяготения Ньютона.

  15. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *