Как проверить полевой транзистор мультиметром не выпаивая?

14 ответов на вопрос “Как проверить полевой транзистор мультиметром не выпаивая?”

  1. Perinin Ответить

    Для проверки полевого транзистора понадобятся мультиметр и источник питания 9-12 вольт. Проверяться будет полевой транзистор n-типа IRF740. Расположение выводов и иные параметры на IRF740 можно посмотреть в datasheet.

    Для проверки транзисторов черный щуп подключается к гнезду “COM” мультиметра, красный – к гнезду “V/ ?”. Мультиметр включается в режим проверки полупроводников.

    Пинцетом или перемычкой замкните кратковременно исток и затвор транзистора. Потенциалы затвора и истока уравняются, транзистор будет гарантированно закрыт.

    Присоедините красный щуп мультиметра к истоку, черный к стоку. Если транзистор исправен, мультиметр покажет падение напряжения на паразитном диоде (этот диод образуется при изготовлении транзистора).

    Присоедините красный щуп мультиметра к стоку, черный к истоку. Если транзистор исправен, мультиметр покажет отсутствие замыкания и утечки.

    Соедините минус источника питания (9-12 вольт) с истоком транзистора, на секунду присоедините плюс источника питания к затвору транзистора, при этом исправный транзистор откроется.

    Далее присоедините красный щуп мультиметра к истоку, черный к стоку. Если транзистор исправен, мультиметр покажет короткое замыкание.

    Присоедините красный щуп мультиметра к стоку, черный к истоку. Если транзистор исправен, мультиметр покажет короткое замыкание.

    http://www.sdelai-sam.su/kak-proverit-diod-na-rabotosposobnost.html – как проверить диод мультиметром.
    http://www.sdelai-sam.su/Kak-proverit-tranzistor-multimetrom.html – как проверить транзистор мультиметром.
    Для проверки полевых транзисторов n-типа можно собрать несложную схему. При нажатии кнопки лампочка загорается, при отпускании тухнет.

    В этом видео показано как проверить полевой транзистор мультиметром:

  2. Бобо Ответить

    В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.
    Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.
    Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.
    Полевой транзистор с изолированным затвором мы знаем под более привычным названием МОП -транзистор (метал -окисел-полупроводник), МДП -транзистор(метал -диэлектрик-полупроводник), либо в английском варианте MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)
    Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

    Структура полевого MOSFET транзистора.

    Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

    Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.
    На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

    Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.
    Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

    Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

    Выводы транзистора называются исток, затвор и сток.
    Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

    Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.
    Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.
    По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

    Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.
    МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

    В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

  3. Kagagar Ответить

    В дополнение к статье [url=]wiki.rom.by/index.php/%D0%9A%D0%B0%D0%BA_%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1…[/url]
    Хочу поделиться методом, позволяющим оценить работоспособность мосфета прямо на плате, ничего не отпаивая. Скажу сразу – возможно работает не всегда, но на материнках он мне часто помогал. Также хочу отметить, что для осуществления этого метода нужен мультиметр с колодкой для измерения hfe биполярных транзисторов и без доработки мультиметра, к сожалению, можно проверять только N-канальные транзисторы.
    Не могу утверждать его 100% точность, но, по крайней мере он позволяет отсеять живые транзисторы в большинстве случаев.
    Итак, на примере IRLML2402, N-канальный мосфет в корпусе SOT-23, маркировка A5Z3S.

    Берем дополнительный проводок, втыкаем его в гнездо E (PNP) колодки для измерения hfe, не секрет, что там присутствует постоянное напряжение около +3 В относительно черного провода мультиметра.

    Сверившись с даташитом, подключаем мультиметр: красный щуп на исток, а черный щуп на сток, транзистор закрыт, мультиметр показывает падение напряжения на встроенном диоде.

    А теперь подаем дополнительным проводом +3В на затвор, транзистор открыт.

    Если транзистор веде себя не так – отпаиваем его и проверяем дополнительно.
    Таким же способом, в принципе, можно оценивать состояние P-канальных транзисторов, но задача усложняется отсутствием возможности получить напряжение -3В относительно черного провода непосредственно из мультиметра. Приходится цеплять дополнительно батарейку типа CR2032, плюс к черному проводу, минус – на затвор мосфета.

  4. APEO Ответить

    Порядок проверки исправности n-канального транзистора мультиметром следующий:
    Снять статическое электричество с транзистора.
    Перевести мультиметр в режим проверки диодов.
    Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
    Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.

    Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
    Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
    Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
    При смене полярности щупов мультиметра величина показаний не должна измениться.
    Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
    При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.
    По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.

  5. ВДЫХАЙ Ответить

    Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.
    Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.
    Рисунок 2. Фрагмент спецификации на 2SD2499
    Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.
    Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

    Проверка биполярного транзистора мультиметром

    Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.
    С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).
    Рисунок 3. «Диодные аналоги» переходов pnp и npn
    Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «V?mA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:
    Присоединяем черный щуп к выводу «Б», а красный (от гнезда «V?mA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
    Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.
    Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.
    Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.
    Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:
    Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
    Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.
    Отклонения от этих значений говорят о неисправности компонента.

  6. Taujind Ответить

    Если изначально нет информации относительно расположения базы, коллектора, эмиттера, это нетрудно определить. Измерительный прибор устанавливается в состояние п. 1 и п. 2 вышеприведенной схемы. К (плюс) помещается на правый вывод полупроводника. Ч (минус) поочередно замыкается на средний и левый выводы. Если в обоих случаях тестер покажет «1», то данный контакт и есть база. В противном случае аналогичным образом тестируем оставшиеся контакты. Остается найти эмиттер и коллектор. Для этого необходимо просто замерить сопротивление коллекторных и эмиттерных переходов. Ч помещается на базу. К поочередно замыкается на оставшиеся выводы. Полученные значения должны лежать в диапазоне от 500–1200 Ом. При этом большее значение будет относиться к коллекторному переходу, а меньшее, соответственно к эмиттерному.

    Полевой транзистор

    Обладает значительно меньшим энергопотреблением по сравнению с биполярным. Основная область применения – это приборы, работающие в ждущем или следящем режимах. Импортные элементы обычно имеют маркировку, упрощающую идентификацию выводов: G-затвор, S-исток, D-сток. Полевой транзистор или, как его еще называют, мосфет, бывает n-канальный и p-канальный. Алгоритмы проверки работоспособности полупроводников обоих типов похожи.

    Определение функциональности n-канального полупроводника.

    Поскольку у таких компонентов между стоком и истоком часто встраивается диод, то, для проверки функциональности, на измерительном устройстве устанавливается в режим проверки диодов. Ч идет на минус тестера, а К – на плюс.
    К помещается на исток элемента, а Ч – на сток. Напряжение должно быть от 500 до 700 мВ.
    К – на сток, а Ч – на исток. Значение в этом случае должны выходить за пределы измерений мультиметра. Об этом свидетельствует цифра «1» на экране прибора.
    Ч – на истоке. Касание К затвора открывает транзистор. Ч остается на истоке, а К соединяется со стоком. Замеренное напряжение должно лежать в диапазоне от 0 до 800 мВ и не зависеть от смены полярности проводов тестера.
    Замыкание К на исток, а Ч – на затвор проводит к закрытию прибора и переводу его в изначальное состояние.

    Для определение работоспособности p-канального полупроводника Ч подключается к плюсу мультиметра, а К – к минусу. Дальнейшая последовательность действий аналогична методике проверки элемента n-канального типа.

    Составной транзистор

    Также известен как пара Дарлингтона. Является каскадом из двух и более биполярных транзисторов. Тестирование таких элементов одним лишь мультиметром, без сборки дополнительных схем, не представляется возможным. Вопрос монтажа подобных вспомогательных схем выходит за рамки данной статьи.

    Однопереходный транзистор

    В основном используются во всевозможных реле и пороговых устройствах. У элементов данного типа присутствует только один p-n переход. Для проверки его работоспособности мультиметром замеряется сопротивление между ножками «Б1» и «Б2». Если полученная величина незначительна, то компонент неисправен.

    Проверка элемента без выпаивания его из схемы

    Часто возникает вопрос, как проверить smd транзистор мультиметром. SMD – это аббревиатура от английского Surface Mounted Device (устройство, монтируемое на поверхность). Такие полупроводники не вставляются в отверстия плат. Их просто напаивают сверху на контактные дорожки. В современных платах плотность таких дорожек невероятно велика. Более того, часто они располагаются в несколько слоев. Поэтому если какая-то из дорожек располагается в середине такого «пирога», то ее может быть просто не видно. Становится понятно, что поскольку демонтаж и обратный монтаж smd компонентов на контактные дорожки печатных плат зачастую сопряжен со значительными сложностями, то лучше всего было бы осуществить проверку функциональности элемента, не выпаивая его. К сожалению, такое подход возможен только для биполярных транзисторов. Однако даже при положительных итогах проверки нельзя быть полностью уверенным в результате. В большинстве же случаев только лишь демонтаж элемента с печатной планы позволяет гарантированно проверить его работоспособность.

  7. Hromfi Ответить

    Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.

    Биполярные приборы

    Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.

    Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.
    Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области. Внутренняя область — база.
    Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.
    Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.
    На схемах вывод эмиттера обозначается стрелкой, которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.

    Полевые транзисторы

    Транзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).
    Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности. Эти приборы ещё называют униполярными.

    Проверка мультиметром

    Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.

    Приборы биполярного типа

    Их схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.
    Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное. Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.
    Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.
    При этом сопротивление каждого будет находиться в диапазоне (600?1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.
    Так как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.
    Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.
    Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:
    определение типа прибора и схемы его выводов;
    проверка сопротивлений его «p — n» переходов в прямом направлении;
    смена полярности щупов и определение сопротивлений переходов при таком подключении;
    проверка сопротивления «коллектор — эмиттер» в обоих направлениях.
    Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.
    К признакам неисправности биполярных транзисторов можно отнести следующие:
    «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
    «p — n» переход не «прозванивается» в обе стороны.
    В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.
    Второй случай показывает внутренний обрыв в структуре прибора.
    В обоих случаях данный экземпляр не может быть использован для работы в схеме.

    Полевые транзисторы

    Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.
    Для проверки элемента первого типа необходимо выполнить следующие действия:
    определить сопротивление участка «сток — исток» закрытого транзистора;
    произвести открытие перехода;
    определить сопротивление открытого полевика;
    произвести закрытие перехода;
    повторно сделать замер сопротивления закрытого полевого транзистора.
    Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».
    Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).
    Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.
    Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.
    При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.
    Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя. К таким проверенным мерам можно отнести простое касание рукой батареи центрального отопления. Специалисты применяют браслет, обладающий антистатическими свойствами.
    При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.

    Проверка приборов в схеме

    Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.

    Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.
    Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.
    Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.
    Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.
    Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.

  8. JoJojas Ответить

    Полевой транзистор выпускается с тремя выводами, один из них управляющий, называемый затвор. Другой исток, соответствующий эмиттерному выводу в биполярном приборе, и третий сток, вывод с которого снимается сигнал. В каждом типе устройства есть транзисторы с n-каналом и p-каналом.
    Работа прибора с управляющим каналом, например, n-типа, основана на следующем принципе. Источник питания, подключённый к прибору, создаёт на его переходе обратное напряжение. Если уровень входного сигнала изменяется, то изменяется и обратное напряжение. Это приводит к тому, что меняется площадь, через которую протекают основные носители заряда. Такая площадь называется каналом. Полевые транзисторы изготавливаются методом сплавления или диффузией.
    Мосфет с изолированным затвором представляет собой металлический канал, отделённый от полупроводникового слоя диэлектриком. Общепринятое название прибора — MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
    Основанием элемента служит пластинка из кремния с дырочной электропроводностью. В ней создаются области с электронной проводимостью, соответственно образующие исток и сток. Такой мосфет работает в режиме обеднения или обогащения. В первом случае на затвор подаётся напряжение относительно истока отрицательного значения, из канала выдавливаются электроны, и ток истока уменьшается. Во втором режиме, наоборот, ток увеличивается из-за втягивания новых носителей заряда.
    Транзистор с индуцированным каналом, открывается при возникновении разности потенциалов между затвором и истоком. Для полевика с p-каналом к затвору прикладывается отрицательное напряжение, а с n-каналом положительное. Особенность мощных транзисторов состоит в том, что вывод истока соединяется с корпусом прибора. При этом соединяется база с эмиттером. Такое соединение образует диод, который в закрытом состоянии не влияет на работу прибора.

    Биполярный тип с изолированным затвором

    Устройства такого типа называются IGBT (Insulated Gate Bipolar Transistor). Это сложный прибор, в котором, например, полевой n-канальный транзистор управляется биполярным устройством типа PNP.
    К эмиттеру биполярного транзистора подключается коллектор мосфета. Если на затвор подаётся напряжение положительной величины, то между эмиттером и базой транзистора возникает проводящий канал. В результате транзистор IGBT отпирается, падение напряжения на PN переходе уменьшается. Когда значение напряжения увеличивается, то пропорционально увеличивается и ток канала в базе биполярного прибора, а падение напряжения на IGBT транзисторе уменьшается. Если полевой транзистор заперт, то и ток биполярного прибора будет почти нулевым.

    Как пользоваться цифровым мультиметром

    Для того чтобы провести измерения, тестер подключается набором проводов к измеряемому элементу. На одном конце каждого из проводов находится штекер, предназначенный для установки в гнездо измерителя, а на другом — контактный щуп. Порядок измерения электронным мультиметром в общем виде можно представить в виде следующих действий:
    Включить устройство, нажав на кнопку ON/OFF.
    Вставить штекера проводов в соответствующие гнёзда на панели. COM — общее гнездо для подключения щупа. V/? — положительное гнездо для подключения щупа.
    Поворотный выключатель установить в положение диодной прозвонки «o)))».
    Прижать измерительные щупы к выводам прибора.
    Снять показания с экрана.
    Кроме метода прозвонки, если позволяет тестер, можно провести измерения полупроводникового элемента установив переключатель в положение hFE. В таком случае провода и щупы не понадобятся. Но этот метод подходит только для биполярных приборов.

    Проверка биполярного прибора тестером

    Проверку прибора можно осуществить двумя способами. Для этого в тестере используется режим прозвонки или специально предназначенный режим проверки биполярных транзисторов.

  9. CrazyFedd Ответить

    В этой теме хочу поделиться с новичками о методе проверки полевых транзисторов мультиметром для первичной диагностики и поиска неисправности без выпаивания самого транзистора.
    Сперва вступительная информация.
    Что такое полевой транзистор и о его видах можно узнать здесь – https://ru.wikipedia.org/wiki/%D0%9F%D0 … 0%BE%D1%80
    Полевые транзисторы бывают 2-ух типов: N-канальные и P-канальные (так же бывают и сборки – это когда в одном корпусе собрано сразу несколько транзисторов, но смысл один и тот же). Что бы точно знать с каким транзистором имеем дело, а так же его распиновку (назначение каждого вывода данного транзистора), необходимо по маркировке найти даташит (паспорт с характеристиками) на этот транзистор. Для поиска даташита рекомендую сайт http://www.alldatasheet.com/
    У полевого транзистора 3 вывода (колличество ножек может быть и 8, но просто часть из них будут объединены/замкнуты внутри корпуса), обозначаются:
    G – gate / затвор
    D – drain / сток
    S – source / исток
    Теперь практика.
    Для начала проверки, необходимо обесточить цепи – вытащить батареи, отсоединить блок питания. Выставляем на мультиметре режим измерения диодов, измерения будут показаны в милливольтах – мВ.
    Если измеряемый транзистор N-канальный, то:
    – Измеряем падение напряжения между выводами D-S – черный щуп ставим на D, а красный на S. Если падение напряжения скажем 500 мВ или больше, то скорее всего здесь нет неисправности. Если падение напряжения составляет 50 мВ и меньше – то это уже подозрительно. Если падение напряжения 5 мВ и менее (до 0), то возможно транзистор неисправен. Переходим к следующим измерениям
    – Измеряем падение напряжения между выводами D-G – черный щуп ставим на D, а красный на G. Если падение напряжения большое (может быть 1000 мВ и больше), то скорее всего здесь нет неисправности. Если падение напряжения близко или равно измеренному между выводами D-S, то это подозрительно. Если падение напряжения маленькое (может 50 мВ или меньше), да еще и близко или равно измеренному между D-S, то возможно транзистор неисправен. Переходим к следующему измерению.
    – Измеряем падение напряжения между выводами S-G – черный щуп ставим на вывод S, а красный на G. Если падение напряжения большое (может быть 1000 мВ и больше), то скорее всего здесь нет неисправности. Если падение напряжения близко или равно измеренному между выводами D-S, то это подозрительно. Если падение напряжения маленькое (может 50 мВ или меньше), да еще и близко или равно измеренному между D-S и/или D-G, то возможно транзистор неисправен.
    Итого, если по всем трем измерениям у нас получается, что “транзистор возможно неисправен”, то 99% так оно и есть. А для окончательной проверки, нужно будет выпаять этот транзистор и проверить догадку. Как проверить полевой транзистор –

  10. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *