Какая из экологических единиц включает в себя абиотические факторы?

17 ответов на вопрос “Какая из экологических единиц включает в себя абиотические факторы?”

  1. dema198003 Ответить

    Главная
    Биология
    Грибы-паразиты: представители, значение в природе (биология, 5 класс)
    Классификация и строение молекул липидов в организме
    Схема строения глаза и функции зрительного анализатора человека
    Пассивный иммунитет человека: естественный и искусственный
    Особенности внутреннего строения птиц: кровеносная и другие системы
    Годовой цикл и сезонные явления в жизни птиц
    Сообщение о двустворчатых моллюсках (биология, 7 класс)
    Типы и схемы природного и искусственного оплодотворения у растений
    Кратко об основных методах селекции растений
    Методы селекции животных, примеры и особенности
    Виды и примеры дикорастущих и культурных растений
    Характерные особенности и признаки типа членистоногих
    Примеры видоизменения листьев растений для урока биологии в 6-м классе
    Классификация млекопитающих и характеристика отрядов в таблицах
    Основные признаки растений семейства мотыльковых (бобовых)
    Характеристика, признаки и семейства растений класса однодольных
    Особенности и способы минерального питания растений
    Виды иммунитета человека и иммунные механизмы в таблице
    Гуморальная регуляция для биологии в 8 классе
    Виды вирусов, изучаемые на уроках биологии в 6 классе
    Строение и функции покровных тканей растений
    Отличие специфического и неспецифического иммунитета
    Семейство крестоцветных растений: характерные признаки, виды, значение
    Закономерности наследования признаков, сцепленных с полом
    Этапы и стадии эмбрионального периода развития
    Что называют природным сообществом: виды, признаки, примеры
    Сообщение про медузу для доклада по биологии
    Семейство сложноцветные: характеристика и формула цветка
    Строение и характеристика комплекса Гольджи в растениях и животных
    Выделительная и пищеварительная система паукообразных
    Дыхательная и кровеносная система млекопитающих и круги кровообращения
    Строение и общая характеристика семейства лилейных
    Злаки: строение, плоды и цветки растений этого семейства
    Строение, свойства и функции клетки человека
    Пищеварительная и кровеносная система моллюсков, строение
    Первые сообщения о коневодстве, направления и развитие отросли
    Школьный доклад-сообщение на тему «Красная книга России»
    Пищеварительная система членистоногих: тип и структура органов
    Экологическое видообразование: механизм и примеры
    Клеточная теория Шванна и Шлейдена — сущность учения
    Сообщение о представителях паукообразных скорпионах
    Особенности и схема размножения голосеменных растений
    Строение центральной нервной системы членистоногих и насекомых
    Главные признаки и отличия млекопитающих животных
    Какую роль в организме выполняют железы смешанной секреции
    Основные положения хромосомной теории наследственности Т. Моргана
    Роль бактерий в жизни человека и природе
    Определение и особенности неклеточной формы жизни
    Основные признаки и характеристика покрытосеменных растений
    Строение и основные функции животного клеточного центра
    Брюхоногие моллюски: внешний вид, строение, значение вида
    Ракообразные — общая характеристика класса
    Хламидомонада — особенности строения, общая характеристика, значение в биологии
    Щитовидная железа — гормоны и функции, роль в организме
    Тип кишечнополостные — общая характеристика
    Инфузория туфелька — особенности строения и процессов жизнедеятельности
    Хромосома — количество, строение, функции, типы
    Дыхательная система человека — строение и функции
    Паукообразные — внешнее и внутреннее строение, характеристика и значение класса
    Ланцетник — внешнее и внутреннее строение
    Дыхательный объем — норма, частота и глубина дыхания, как и в чем измеряется
    Рефлекторная дуга в биологии — виды, схема строения, примеры
    Структура биоценоза — виды и их характеристики
    Насекомые — виды и названия, общая характеристика класса
    Живая и неживая природа — определение, отличие, признаки, примеры явлений и предметов
    Рецепт блинов: вкусно и быстро
    Мейоз — кратко и понятно
    Зерновые культуры — список растений с названиями
    Автотрофы в биологии — определение и примеры автотрофных организмов
    Тип членистоногие — общая характеристика
    Модификационная изменчивость — свойства, примеры и значение
    Рыбы — классификация в биологии и особенности внутреннего и внешнего строения
    Пресноводная гидра — особенности и схема строения
    Люцерна — виды и сорта растения с фото и названиями
    Дезинфекция и стерилизация — современные методы и режимы
    Экосистема — определение, типы и виды, структура и состав
    Лишайники — виды и названия, особенности строения, значение
    Строение цветка в биологии — схема, главные части и их функции
    Голосеменные растения — общая характеристика и примеры
    Амеба — что такое в биологии, строение и жизненный цикл
    Клеточная мембрана в биологии — виды, строение и функции (таблица)
    Мхи — виды мхов с названиями и фото
    Прокариоты и эукариоты — что это за клетки и чем они отличаются друг от друга
    Водоросли — виды и названия, значение
    Хордовые животные — общая характеристика типа и примеры животных
    Что такое соцветие в биологии
    Абиотические факторы — характеристика и классификация
    Высшие растения — определение, характеристика и признаки
    Моллюски — виды, значение, характеристика типа
    Что такое экология
    Что такое белки — строение и функции
    Что такое почва — состав, типы и их характеристика
    Формы естественного отбора — таблица по биологии
    Митохондрии — строение и функции
    Хирургические инструменты — названия и фото в хирургии
    Биосинтез белка в клетке — кратко и понятно
    Деление клетки — митоз
    Нуклеиновые кислоты
    Животные занесенные в Красную книгу России
    Виды изменчивости — классификация и определение
    Виды и формы бесполого размножения
    Рибосомы — строение и функции
    Строение побега в биологии
    Спинной мозг человека — строение и функции
    Плоские черви — общая характеристика
    Критерии вида по биологии — таблица с примерами
    Что такое генотип и фенотип
    Строение стебля — функции и значение стебля для жизни растения
    Головной мозг человека — строение и функции
    Системы внутренних органов человека
    Царство бактерии — общая характеристика
    Строение животной клетки
    Ткани растений и их функции (таблица)
    Законы Менделя кратко и понятно
    Пищеварительная система человека — строение и функции
    Экологические факторы — классификация и характеристика групп
    Доказательства эволюции
    Одноклеточные организмы — список с названиями и примерами
    Растительноядные животные — список с примерами и названиями
    Класс птицы — общая характеристика
    Строение корня растения — зоны корня и их функции
    Cтроение растительной клетки — рисунок с подписями
    Круги кровообращения человека — схема кровеносной системы
    Клеточное строение листа (схема) — функции и свойства клеток
    Наследственная изменчивость — виды, характеристика и примеры
    Приспособленность организмов к среде обитания
    Условные и безусловные рефлексы — классификация и виды
    Пищевая цепочка в природе: её виды и значение в экосистеме
    Пресмыкающиеся — это какие животные: список названий
    Древние животные: характеристика класса земноводных
    Биологический процесс фотосинтеза и его значение в природе
    Млекопитающие животные: происхождение, строение и виды

  2. beregovaya2012 Ответить

    
    Вопрос 1. Что такое абиотические факторы среды? Перечислите основные абиотические факторы.
    Абиотические факторы – это прямо или косвенно действующие на организм факторы неживой природы – свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т.е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).
    Вопрос 2. Какую роль для жизнедеятельности организмов играют ультрафиолетовые лучи?
    Ультрафиолетовые лучи с длиной волны более 0,3 мкм составляют 10 % лучистой энергии, достигающей земной поверхности. В небольших дозах они необходимы животным и человеку. Под их воздействием в организме образуется витамин D. Насекомые зрительно различают ультрафиолетовые лучи и пользуются этим для ориентации на местности в облачную погоду.
    Вопрос 3. Какую часть спектра видимого излучения солнца наиболее активно поглощает хлорофилл зелёных растений?
    Синий (0,4–0,5 мкм) и красный (0,6–0,7 мкм) свет особенно сильно поглощается хлорофиллом.
    Вопрос 4. Приведите примеры теневыносливых и светолюбивых растений, произрастающих в вашей местности.
    К теневыносливым растениям относят ландыш майский, брусника обыкновенная, бузина черная, черника обыкновенная, смородина черная, купена лекарственная, манжетка обыкновенная.
    А к светолюбивым – мать-и-мачеха, клевер ползучий, мелисса лекарственная, лаванда узколистная, бессмертник итальянский
    Вопрос 5. Докажите, что световой режим играет важную роль в жизнедеятельности организмов.
    Чрезвычайно важную роль в регуляции активности живых организмов и их развития играет продолжительность воздействия света – фотопериод. В умеренных зонах, выше и ниже экватора, цикл развития растений и животных приурочен к сезонам года, и сигналом для подготовки к изменению температурных условий служит продолжительность светового дня, которая, в отличие от других сезонных факторов, в определённое время года в данном месте всегда одинакова. Фотопериод представляет собой как бы пусковой механизм, включающий физиологические процессы, последовательно приводящие к росту и цветению растений весной, плодоношению летом и сбрасыванию ими листьев осенью, а также к линьке и накоплению жира, миграции и размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых. Изменение длины дня воспринимается органами зрения у животных или специальными пигментами в листьях растений.
    Вопрос 6. Какие приспособления в условиях недостатка воды развиваются у растений; у животных?
    Для растений и животных, обитающих в зонах с недостаточной степенью увлажнения, характерно наличие эффективных приспособлений к неблагоприятным условиям засушливости. У растений мощно развита корневая система, повышено осмотическое давление клеточного сока, способствующее удержанию воды в тканях, утолщена кутикула листа, сильно уменьшена или превращена в колючки листовая пластинка. У некоторых растений, например у саксаула, листья утрачиваются, а фотосинтез осуществляется зелёными стеблями. При отсутствии воды рост пустынных растений прекращается, в то время как влаголюбивые растения в таких условиях увядают и гибнут. Кактусы способны запасать большие количества воды в тканях и экономно её расходовать.
    У пустынных животных также есть целый ряд физиологических приспособлений, позволяющих переносить недостаток воды. Мелкие животные – грызуны, пресмыкающиеся, членистоногие – извлекают воду из пищи. Источником воды служит и жир, накапливающийся у некоторых животных в больших количествах (горб у верблюдов). В жаркое время года многие животные (грызуны, черепахи) впадают в спячку, продолжающуюся несколько месяцев. К началу лета растения-эфемеры после кратковременного периода цветения сбрасывают листья, иногда у них полностью отмирают надземные части, сохраняют только луковицы и корневища до следующего вегетационного периода.
    Вопрос 7. Холоднокровных животных по-другому называют пойкилотермными, а теплокровных — гомойотермными. Используя дополнительные источники информации, объясните происхождение этих терминов.
    Пойкилотермные животные-от греческого означает пойкилос – различный и терм-тепло, что означает, что температура таких животных меняется в зависимости от температуры окружающей среды. А гомойтермные – от греческого хомойс – подобный, одинаковый и терм – тепло, что означает, что такие животные сохраняют относительно постоянной температуру тела при изменении температуры окружающей среды.
    Вопрос 8. Какое адаптивное значение имеет у животных зимняя или летняя спячка?
    В состоянии спячки многие животные переживают неблагоприятные для себя условия, такие как нехватка пищи, высокая или низкая температура. Накапливая значительный запас жира в своем теле, а также за счет пониженного уровня обмена веществ, животное таким образом предохраняется от действия неблагоприятных факторов среды.
    Вопрос 9. Используя дополнительные источники информации, приведите примеры других абиотических факторов, действующих на живые организмы.
    Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.
    Атмосферное давление, по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.
    Рассмотрим далее факторы водной среды.
    Водные условия создают своеобразную среду обитания организмов, отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физико-химическими свойствами водной среды являются: температурная стратификация, то есть изменение температуры по глубине водного объекта и периодические изменения температуры во времени, а также прозрачность воды, определяющая световой режим под ее поверхностью: от прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений.
    Как и в атмосфере, важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других газов, растворенных в воде и потому доступных организмам, сильно варьируется во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности. Несмотря на лучшую растворимость кислорода в воде по сравнению с азотом, даже в самом благоприятном случае в воде содержится меньше кислорода, чем в воздухе, примерно 1% по объему. На растворимость влияют температура воды и количество растворенных солей: при понижении температуры растворимость кислорода растет, при повышении солености – снижается. Запас кислорода в воде пополняется благодаря диффузии из воздуха и фотосинтезу водных растений. Кислород диффундирует в воду очень медленно, диффузии способствует ветер и движение воды. Как уже упоминалось, важнейшим фактором, обеспечивающим фотосинтетическую продукцию кислорода, является свет, проникающий в толщу воды. Таким образом, содержание кислорода меняется в воде в зависимости от времени суток, времени года и местоположения.
    Содержание углекислого газа в воде также может сильно варьироваться, но по своему поведению углекислый газ отличается от кислорода, а его экологическая роль мало изучена. Углекислый газ хорошо растворяется в воде, кроме того, в воду поступает СО2, образующийся при дыхании и разложении, а также из почвы или подземных источников. В отличие от кислорода углекислый газ вступает в реакцию с водой:
    Кислотность – концентрация водородных ионов (рН) – тесно связана с карбонатной системой. Значение рН изменяется в диапазоне от 0 до 14: при рН=7 среда нейтральная, при рН7 – щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора – толерантность сообщества к диапазону рН весьма значительна. Кислотность может служить индикатором скорости общего метаболизма сообщества. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.
    Соленость – содержание карбонатов, сульфатов, хлоридов и т.д. – является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, из них около 80 % приходится на карбонаты. Содержание минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.
    Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.
    Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атм (105 Па) . В самой глубокой части океана давление достигает 1000 атм (108 Па) . Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.
    Рассмотрим далее эдафические факторы.
    Почвой называют слой вещества, лежащий поверх горных пород земной коры. Русский ученый – естествоиспытатель Василий Васильевич Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. Советский академик почвовед Василий Робертович Вильямс дал еще одно определение почвы – это рыхлый поверхностный горизонт суши, способный производить урожай растений. Рост растений зависит от содержания необходимых питательных веществ в почве и от ее структуры.
    В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 50-60 % общего состава почвы), органическое вещество (до 10 %), воздух (15-25 %) и вода (25-30 %).
    Минеральный скелет почвы – это неорганический компонент, который образовался из материнской породы в результате ее выветривания.
    Свыше 50 % минерального состава почвы занимает кремнезем SiO2, от 1 до 25 % приходится на глинозем Al2О3, от 1 до 10 % – на оксиды железа Fe2О3, от 0,1 до 5 % – на оксиды магния, калия, фосфора, кальция. Минеральные элементы, образующие вещество почвенного скелета, различны по размерам: от валунов и камней до песчаных крупинок – частиц диаметром 0,02-2 мм, ила – частиц диаметром 0,002-0,02 мм и мельчайших частиц глины размером менее 0,002 мм в диаметре. Их соотношение определяет механическую структуру почвы. Она имеет большое значение для сельского хозяйства. Глины и суглинки, содержащие примерно равное количество глины и песка, обычно пригодны для роста растений, так как содержат достаточно питательных веществ и способны удерживать влагу. Песчаные почвы быстрее дренируются и теряют питательные вещества из-за выщелачивания, но их выгоднее использовать для получения ранних урожаев, так как их поверхность высыхает весной быстрее, чем у глинистых почв, что приводит к лучшему прогреванию. С увеличением каменистости почвы уменьшается ее способность удерживать воду.
    Органическое вещество почвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения – аморфное вещество, в котором уже невозможно распознать первоначальный материал, – называется гумусом. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.
    Одновременно с процессом гумификации жизненно важные элементы переходят их органических соединений в неорганические, например: азот – в ионы аммония NH4+, фосфор – в ортофосфатионы H2PO4-, сера – в сульфатионы SO42-. Этот процесс называется минерализацией.
    К абиотическим факторам среды обитания живых организмов относятся также факторы рельефа (топография). Влияние топографии тесно связано с другими абиотическими факторами, так как она может сильно сказываться на местном климате и развитии почвы.
    Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.
    Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.
    Среди абиотических факторов особого внимания заслуживает огонь или пожар. В настоящее время экологи пришли к однозначному мнению, что пожар надо рассматривать как один из естественных абиотических факторов наряду с климатическими, эдафическими и другими факторами.

  3. Toxa48rus Ответить

    Протокооперация – отношения между двумя популяциями, при которых каждая выигрывает от присутствия другой, но может существовать и без нее.
    При хищничестве наблюдается прямое уничтожение жертвы и, как правило, использование ее в качестве пищи. Хищники есть среди животных всех классов хордовых (акулы, крокодилы, орлы, волки) и среди других типов, например гидра, планария, морские звезды, божьи коровки и др. Есть хищники и среди растений (росянка). Разновидностью хищничества является каннибализм (внутривидовое хищничество) — поедание одними особями других своего же вида. Например, самка паука каракурта поедает самца после спаривания.
    Симбиозом является любое сожительство организмов разных видов, приносящее пользу хотя бы одному из них. Выделяют следующие формы симбиоза: мутуализм, синойкию, комменсализм и паразитизм.
    Мутуализм (взаимовыгодный симбиоз) – это совместное сожительство организмов разных видов, приносящее взаимную пользу. Например, лишайники являются симбиотическими организмами, тело которых построено из водорослей и грибов. Нити гриба снабжают клетки водоросли водой и минеральными веществами, а клетки водорослей осуществляют фотосинтез и, следовательно, снабжают гифы грибов органическими веществами.
    Синойкия (квартирантство) – сожительство, при котором особь одного вида использует особь другого вида только как жилище, не принося своему «живому дому» ни пользы, ни вреда. Например, пресноводная рыбка горчак откладывает икринки в мантийную полость двухстворчатых моллюсков. Развивающиеся икринки надежно защищены раковиной моллюска, но они безразличны для хозяина и не питаются за его счет.
    Комменсализм (нахлебничество) – совместное сожительство организмов разных видов, при котором один организм использует другой как жилище и источник питания, но не причиняет вреда партнеру. Например, некоторые морские полипы, поселяясь на крупных рыбах, в качестве пищи используют их испражнения. В желудочно-кишечном тракте чело века находится большое количество бактерий и простейших, питающихся остатками пищи и не причиняющих вреда хозяину.
    Паразитизм – это форма антагонистического сожительства организмов, относящихся к разным видам, при котором один организм (паразит), поселяясь на теле или в теле другого организма (хозяина), питается за его счет и причиняет вред. Болезнетворное действие паразитов слагается из механического повреждения тканей хозяина, отравления его продуктами обмена, питания за его счет. Паразитами являются все вирусы, многие бактерии, грибы, простейшие, некоторые черви и членистоногие. В отличие от хищника паразит использует свою жертву длительно и далеко не всегда приводит ее к смерти. Нередко вместе со смертью хозяина погибает и паразит. Связь паразита с внешней средой осуществляется опосредованно через организм хозяина.
    Среди факторов среды различаются также прямые и косвенные.
    Прямые экологические факторы непосредственно влияют на растения. Примеры прямых факторов: увлажнение, температура, богатство почвы питательными элементами и др.
    Косвенные экологические факторы действуют на растения опосредствованно – через прямые факторы среды. Примеры косвенных факторов: географическая широта и удаленность от океана, рельеф (высота над уровнем моря и экспозиция склона), механический состав почвы. С подъемом в горы изменяется климат (количество осадков и температурный режим); экспозиция и крутизна склона влияют на интенсивность прогревания поверхности почвы и режим ее увлажнения. Механический состав почвы (соотношение песчаных, глинистых и илистых частиц) влияет на растения и почвенную фауну через режим увлажнения и динамику питательных элементов.
    Кроме того, прямые абиотические факторы среды разделяются на условия и ресурсы.
    Условия – это факторы среды, которые организмы не потребляют. К их числу относятся температура, влажность воздуха, соленость воды, реакция почвенного раствора, содержание в воде и почве загрязняющих веществ, которые не используются растениями как элементы питания.
    Ресурсы– это факторы среды, которые потребляются организмами. Поэтому один более сильный организм может «съесть» ресурсов больше, и другому более слабому их останется меньше.Для растений ресурсами являются свет, вода, элементы минерального питания, диоксид углерода; для животных – биомасса растений, живые животные или мертвое органическое вещество. Необходимым ресурсом для подавляющего большинства организмов является кислород. Ресурсом может быть пространство. Растения для прохождения жизненного цикла, должны получить определенную площадь «под солнцем» и некоторый объем почвы для потребления воды и элементов минерального питания (площадь питания). Растительноядным животным нужен участок «пастбища» (для тли это будет часть листа, для косяка лошадей – десяток гектаров степи, для стада слонов – десятки квадратных километров), плотоядным животным – охотничий надел.
    В экологии под лимитирующим (ограничивающим) фактором понимается любой фактор, который ограничивает процесс развития или существования организма, вида или сообщества. Им может быть любой из действующих в природе экологических факторов: вода, тепло, свет, ветер, рельеф, содержание в почве необходимых для жизнедеятельности растений солей и химических элементов, а в водной среде — химизм и качество воды, количество доступного кислорода и углекислого газа. Такими факторами могут быть конкуренция со стороны другого вида, присутствие хищника или паразита. Для обозначения степени толерантности (устойчивости) видов к различным значениям лимитирующих факторов, их принято разделять на маловыносливые – стенобионты – и выносливые, или эврибионты (К ним относятся многие наземные животные). К стенобионтам можно отнести низших насекомых, обитающих в пещерах.
    Антропогенные факторы – факторы (воздействующие на живые организмы и экологические системы), возникающие в результате деятельности человека.
    К наиболее существенным антропогенным факторам относятся химическое загрязнение воды, атмосферы и почвы, техногенное нарушение экосистем при разработке полезных ископаемых, выпас скота, рекреационное влияние, промысел животных, заготовка растительного сырья и др.
    Антропогенные факторы можно разделить на 3 группы:
    1) оказывающие прямое воздействие на окружающую среду в результате внезапно начинающейся, интенсивной и непродолжительной деятельности, напр. прокладка автомобильной или железной дороги через тайгу, сезонная промысловая охота в определённом районе и т. д.;
    2) косвенноевоздействие – через хозяйственную деятельность долговременного характера и малой интенсивности, напр. загрязнение окружающей среды газообразными и жидкими выбросами завода, построенного у проложенной железной дороги без необходимых очистных сооружений, приводящее к постепенному усыханию деревьев и медленному отравлению тяжёлыми металлами животных, населяющих окрестную тайгу;
    3) комплексное воздействие вышеперечисленных факторов, приводящее к медленному, но существенному изменению окружающей среды (рост населения, увеличение численности домашних животных и животных, сопровождающих человеческие поселения – ворон, крыс, мышей и т. д., преобразование земельных угодий, появление примесей в воде и т. п.).
    Экологический критерий или экологическая характеристика вида – это совокупность факторов внешней среды, в которой существует вид. Среда обитания определяется совокупностью факторов (абиотических, биотических и антропогенных) и элементов, воздействующих на вид в месте обитания. Живые организмы, живущие совместно в сообществе, принадлежат к различным видам. Особи различных видов отличаются друг от друга по ряду критериев (морфологический, физиологический, цитогенетический, экологический и географический.) и не скрещиваются друг с другом, особи одного вида характеризуются сходными видовыми критериями. Каждый вид занимает определенную территорию, ареал. В пределах ареала вид существует в виде популяций — структурных и эволюционных единиц вида. Популяции организмов могут жить только в определенных экологических условиях, если группа популяций живет в географически однородной части видового ареала и отличается устойчивыми морфологическими особенностями от других популяций, то эта группа особей называется подвидом.
    Таким образом, к экологическим характеристикам вида относятся ареал, экологические условия, благоприятные для существования особей данного вида и популяционная структура вида. Например, зубры существуют на определенном ареале, предпочитают определенные условия обитания, в настоящее время известно несколько популяций зубров. У бизонов эти же характеристики будут уже другими.
    К важным экологическим характеристикам многих видов относятся так же численность вида, половой и возрастной состав, поведенческие адаптации к сезонному изменению климатических факторов.

  4. mashunya722 Ответить

    Цель: раскрыть особенности  абиотических факторов среды и рассмотреть их влияние на живые   организмы.
    Задачи: познакомить учащихся с экологическими факторами среды; раскрыть особенности абиотических факторов,   рассмотреть  влияние температуры, света и увлажнения на живые организмы; выделить различные группы живых организмов в зависимости от влияния на них разных абиотического фактора; выполнить практическое задание по определению групп организмов, в зависимости от абиотического фактора.
    Оборудование: компьютерная презентация, задания по группам с картинками  растений и  животных, практическое задание.
    Презентация.
    ХОД УРОКА
    Все живые организмы, населяющие Землю,  испытывают влияние экологических факторов среды.
    Экологические факторы – это отдельные свойства или элементы среды, воздействующие прямо или косвенно на живые организмы, хотя бы на протяжении одной из стадий индивидуального развития. Экологические факторы многообразны. Существует несколько квалификаций, в зависимости от подхода. Это по влиянию на жизнедеятельность организмов,  по степени изменчивости во времени, по длительности действия. Рассмотрим классификацию экологических факторов, основанную на их происхождении.

    Мы рассмотрим влияние первых трех абиотических факторов среды, так как их влияние более значительно – это температура, свет и влажность.
    Например, у майского жука личиночная стадия проходит в почве. На него влияют абиотические факторы среды: почва, воздух, косвенно влажность, химический состав почвы – совсем не влияет свет.
    Например, бактерии способны выжить в самых экстремальных условиях – их находят в гейзерах, сероводородных источниках, очень соленой воде, на глубине Мирового океана, очень глубоко в почве, во льдах Антарктиды, на самых высоких вершинах (даже Эвересте 8848 м), в телах живых организмов.
    ТЕМПЕРАТУРА
    Большинство видов растений и животных приспособлены к довольно узкому диапазону температур. Некоторые организмы, особенно в состоянии покоя или анабиоза способны выдерживать довольно низкие температуры. Колебание температуры в воде обычно меньше, чем на суше, поэтому пределы устойчивости к температуре у водных организмов хуже, чем у наземных. От температуры зависит интенсивность обмена веществ. В основном организмы живут при температуре от 0 до +50 на поверхности песка в пустыни и до – 70 в некоторых областях Восточной Сибири. Средний диапазон температур находится в пределах от  +50 до –50 в наземных местообитаниях и от +2 до +27 – в Мировом океане. Например, микроорганизмы выдерживают охлаждение до –200, отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре + 80, +88.
    Различают животные организмы:
    с постоянной температурой тела (теплокровные);
    с непостоянной температурой тела (хладнокровные).
    Организмы с непостоянной температурой тела (рыбы, земноводные, пресмыкающиеся)
    В природе температура не постоянна. Организмы, которые живут в умеренных широтах и подвергаются колебанию температур, хуже переносят постоянную температуру. Резкие колебания – зной, морозы – неблагоприятны для организмов. Животные выработали приспособления для борьбы с  охлаждением и перегревом. Например, с наступлением зимы растения и животные с непостоянной температурой тела впадают в состояние зимнего покоя. Интенсивность обмена веществ  у них резко снижается. При подготовке к зиме в тканях животных запасается много жира, углеводов, количество воды в клетчатке уменьшается, накапливаются сахара, глицерин, препятствующий замерзанию. Так морозостойкость зимующих организмов увеличивается.
    В жаркое время года наоборот, включаются физиологические механизмы, защищающие от перегрева.  У растений усиливается испарение влаги через устьица, что приводит к снижению температуры  листьев. У животных усиливается испарение воды через дыхательную систему и кожу.
    Организмы с постоянной температурой тела. (птицы, млекопитающие)
    У этих организмов произошли изменения во внутреннем строении органов, что способствовало их приспособленности к постоянной температуре тела. Это, например –
    4-х камерное сердце и наличие одной дуги аорты, обеспечивающие полное разделение артериального и венозного кровотока, интенсивный обмен веществ благодаря снабжению тканей артериальной кровью, насыщенной кислородом, перьевой или волосяной покров тела, способствующий сохранению тепла, хорошо развитая нервная деятельность). Все это позволило представителям птиц и млекопитающим сохранять активность при резких перепадах температур и освоить все места обитания.
    В природных условиях температура очень редко держится на уровне благоприятности для жизни. Поэтому у растений и животных возникает специальные приспособления, которые ослабляют резкие колебания температуры. У животных, например слонов большая ушная раковина, по сравнению с его предком  мамонтом,  живущем в холодном климате. Ушная раковина кроме органа слуха выполняет функцию  терморегулятора. У растений для защиты от перегрева появляется восковой налет, плотная кутикула.
    СВЕТ
    Свет обеспечивает все жизненные процессы, протекающие на Земле. Для организмов важна длина волны воспринимаемого излучения, его продолжительность и интенсивность воздействия. Например, у растений уменьшение длины светового дня и интенсивность освещения приводит к осеннему листопаду.

    По отношению к свету растения делят на :
    светолюбивые – имеют мелкие листья, сильно ветвящиеся побеги, много пигмента – хлебные злаки. Но увеличение интенсивности освещения сверх оптимального подавляет фотосинтез, поэтому в тропиках трудно получать хорошие урожаи.
    тенелюбивые – имеют тонкие листья, крупные, расположены горизонтально, с меньшим количеством устьиц.
    теневыносливые – растения способные обитать в условиях хорошего освещения, так и в условиях затенения
    Важную роль в регуляции активности живых организмов и их развитии играет продолжительность и интенсивность воздействие света – фотопериод.  В умеренных широтах цикл развития животных и растений приурочен к сезонам года, и сигналом для подготовки к изменению температуры служит продолжительность светового дня, которая в отличии от других факторов всегда остается постоянной в определенном месте и в определенное время. Фотопериодизм – это пусковой механизм, включающий физиологические процессы, приводящие к росту и цветению растений весной, плодоношению летом, сбрасыванию листьев осенью у растений. У животных к накоплению жира к осени, размножению животных, их миграции, перелету птиц и наступлению стадии покоя у насекомых. (Сообщение учащихся).
    Кроме сезонных, есть еще и суточные изменения режима освещенности, смена дня и ночи определяет суточный ритм физиологической активности организмов. Важное приспособление,  которое обеспечивает выживание особи – это своего рода «биологические часы», способность ощущать время.
    Животные, активность которых зависит от времени суток, бывают с дневным, ночным и сумеречным образом жизни.
    ВЛАЖНОСТЬ
    Вода – это необходимый компонент клетки, поэтому ее количество в тех или иных местах обитания является ограничивающим фактором для растений и животных и определяет характер флоры и фауны данной местности.
    Избыток влаги в почве приводит к заболачиванию почвы и появлению болотной растительности. В зависимости от влажности почвы (количество осадков) видовой состав растительности меняется. Широколиственные леса сменяются мелколиственными, затем лесостепной растительностью. Далее низкотравье,  и при 250 мл в год – пустыня. Осадки в течении года могут выпадать не равномерно, живым организмам приходится переносить длительные засухи. Например, растения и животные саванн, где интенсивность растительного покрова, а так же и интенсивное питание копытных животных зависит от сезона дождей.
    В природе происходят и суточные колебания влажности воздуха, которые влияют на активность организмов. Между влажностью и температурой есть тесная связь. Температура сильнее влияет на организм при влажность высокая или низкая. У растений и животных появились приспособления к разной влажности. Например, у растений – развита мощная корневая система, утолщена кутикула листа, листовая пластинка уменьшена или превращена в иголки и колючки. У саксаула фотосинтез идет зеленой частью стебля. Рост в период засухи у растений прекращается. Кактусы запасают влагу в расширенной части стебля, иголки вместо листьев уменьшают испарение.
    У животных тоже появились приспособленности, позволяющих переносить недостаток влаги. Мелкие животные – грызуны, змеи, черепахи, членистоногие – добывают влагу из пищи. Источником воды может стать жироподобное вещество например у верблюда. В жаркое время некоторые животные – грызуны, черепахи впадают в спячку, продолжавшуюся несколько месяцев. Растения – эфемеры к началу лета, после кратковременного цветения,  могут сбрасывать листья, отмирать наземные части и так переживать период засухи. При этом до следующего сезона сохраняются луковицы, корневища.
    По отношению к воде растения делят:
    водные растения повышенной влажности;
    околоводные растения,  наземно-водные;
    наземные растения;
    растения сухих и очень сухих мест, обитают в местах с недостаточным увлажнениям, могут переносить непродолжительную засуху;
    суккуленты – сочные, накапливают воду в тканях своего тел.
    По отношению к воде животных делят:
    влаголюбивые животные;
    промежуточная группа;
    сухолюбивые животные.
    Виды приспособленностей организмов к колебаниям температуры, влажности и света:
    теплокровностьподдержание организмом постоянной температуры тела;
    зимняя спячка – продолжительный сон животных в зимнее время года;
    анабиоз – временное состояние организма, при котором жизненные процессы замедленны до минимума и отсутствуют все видимые признаки жизни (наблюдается у холоднокровных и у животных зимой и в жаркий период времени);
    морозостойкость – способность организмов переносить отрицательные температуры;
    состояние покоя – приспособительное свойство многолетнего  растения, для которого характерно прекращение видимого роста и жизнедеятельности, отмирание наземных побегов у травянистых форм растений и опадение листьев у древесных форм;
    летний покой – приспособительное свойство раннецветущих растений (тюльпан, шафран) тропических районов, пустынь, полупустынь.
    (Сообщения учащихся.)
    Сделаем вывод, на все живые организмы, т.е. на растения и животные действуют абиотические факторы среды (факторы неживой природы), особенно температура, свет и увлажненность. В зависимости от  влияния  факторов неживой природы,  растения и животных делят на различные группы и у них появляются приспособленности к влиянию этих абиотических факторов.
    Практические задания по группам: (Приложение 1)
    1. ЗАДАНИЕ:  Из перечисленных животных назовите хладнокровных (т.е. с непостоянной температурой  тела).
    2. ЗАДАНИЕ:  Из перечисленных животных назовите теплокровных (т.е. с постоянной температурой  тела).
    3. ЗАДАНИЕ: выберите из предложенных растений те, которые являются светолюбивыми, тенелюбивыми и теневыносливыми и запишите в таблицу.
    4. ЗАДАНИЕ: выберите животных, ведущих дневной, ночной и сумеречный образ жизни.
    5. ЗАДАНИЕ: выберите растения, относящиеся к разным группам по отношению к воде.
    6. ЗАДАНИЕ: выберите животных, относящихся к разным группам по отношению к воде.
    Задания по теме «абиотические факторы среды», ответы (Приложение 2)
    Приложение 3.

  5. pes200s Ответить

    К абиотическим факторам среды относят субстрат и его состав, влажность, температуру, свет и другие виды излучений в природе, воздух и его состав, климат и микроклимат. Следует отметить, что температуру, состав воздуха, влажность и свет можно условно отнести к «индивидуальным», а субстрат, климат, микроклимат и др. — к «комплексным» факторам.
    Субстрат (буквально) — это место прикрепления. Например, для древесных и травянистых форм растений, для почвенных микроорганизмов это почва. В ряде случаев субстрат можно считать синонимом среды обитания (например, почва — это эдафическая среда обитания). Субстрат характеризуется определенным химическим составом, который оказывает влияние на организмы. Если субстрат понимается как среда обитания, то он в этом случае представляет собой комплекс характерных для него биотических и абиотических факторов, к которым приспосабливается тот или иной организм.

    Характеристика температуры как абиотического фактора среды

    Температура — это экологический фактор, связанный со средней кинетической энергией движения частиц и выражающийся в градусах различных шкал. Наиболее распространенной является шкала в градусах Цельсия (°С), в основу которой положена величина расширения воды (температура кипения воды составляет 100°С). В СИ принята абсолютная шкала температур, для которой температура кипения воды Т кип. воды = 373 К.
    Очень часто температура является лимитирующим фактором, определяющим возможность (невозможность) обитания организмов в той или иной среде обитания.
    По характеру температуры тел а все организмы разделяют на две группы: пойкилотермные (температура их тела зависит от температуры окружающей среды и является практически такой же, как и температура среды) и гомойотермные (температура их тела не зависит от температуры внешней среды и является более или менее постоянной: если и колеблется, то в небольших пределах — доли градуса).
    К пойкилотермным относятся растительные организмы, бактерии, вирусы, грибы, одноклеточные животные, а также животные с относительно низким уровнем организации (рыбы, членистоногие и т. д.).
    К гомойотермным относятся птицы и млекопитающие, включая человека. Постоянная температура тела уменьшает зависимость организмов от температуры внешней среды, дает возможность расселения по большему числу экологических ниш как в широтном, так и в вертикальном расселении по планете Земля. Однако и помимо гомойотермности организмы вырабатывают приспособления для преодоления воздействия низких температур.
    По характеру перенесения низких температур растения разделяют на теплолюбивые и холодостойкие. К теплолюбивым относят растения юга (бананы, пальмы, южные сорта яблонь, груш, персики, виноград и др.). К холодостойким относят растения средних и северных широт, а также растения, произрастающие высоко в горах (например, мхи, лишайники, сосна, ель, пихта, рожь и т. д.). В средней полосе России выращивают сорта морозостойких фруктовых деревьев, которые специально выводят селекционеры. Первые большие успехи в этой области были достигнуты И. В. Мичуриным и другими народными селекционерами.
    Норма реакции организма на температурный фактор (для отдельных организмов) часто узка, т.е. конкретный организм может нормально функционировать в достаточно узком интервале температур. Так, морские позвоночные гибнут при повышении температуры до 30-32°С. Но для живого вещества в целом границы температурного воздействия, при котором сохраняется жизнь, очень широки. Так, в Калифорнии в горячих источниках живет вид рыб, нормально функционирующий при температуре 52°С, а термостойкие бактерии, обитающие в гейзерах, выдерживают температуру до 80°С (это «нормальная» температура для них). В ледниках при температуре -44°С обитают некоторые сине-зеленые водоросли и т. д.
    Роль температуры как экологического фактора сводится к тому, что она влияет на обмен веществ: при низких температурах скорость биоорганических реакций сильно замедляется, а при высоких — значительно увеличивается, что приводит к нарушению равновесия в протекании биохимических процессов, а это вызывает различные заболевания, а иногда и летальный исход.

    Влияние температуры, на растительные организмы

    Температура не только является фактором, определяющим возможность обитания растений на той или иной территории, но она для некоторых растений оказывает влияние на процесс их развития. Так, озимые сорта пшеницы и ржи, которые при прорастании не подверглись процессу «яровизации» (воздействию низких температур), не дают семян при их произрастании в самых благоприятных условиях.
    Для перенесения воздействия низких температур растения имеют различные приспособления.
    1. В зимний период цитоплазма теряет воду и накапливает вещества, обладающие эффектом «антифриза» (это моносахара, глицерин и другие вещества) — концентрированные растворы таких веществ замерзают только при низких температурах.
    2. Переход растений в стадию (фазу), устойчивую к воздействию низких температур — стадия спор, семян, клубней, луковиц, корневищ, корнеплодов и т. д. Древесные и кустарниковые формы растений сбрасывают листья, стебли покрываются пробкой, обладающей высокими теплоизоляционными свойствами, а в живых клетках накапливаются вещества-антифризы.

    Влияние температуры на животные организмы

    Температура по-разному влияет на пойкилотермных и гомойотермных животных.
    Пойкилотермные животные активны только в период оптимальных для их жизнедеятельности температур. В период низких температур они впадают в спячку (земноводные, пресмыкающиеся, членистоногие и др.). Некоторые насекомые перезимовывают или в виде яиц, или в виде куколок. Нахождение организма в спячке характеризуется состоянием анабиоза, при котором процессы обмена очень сильно заторможены и организм может длительное время обходиться без пищи. В спячку пойкилотермные животные могут впадать и под воздействием высоких температур. Так, животные пустынь в нижних широтах в жаркое время дня находятся в норах, а период их активной жизнедеятельности приходится на раннее утро или поздний вечер (либо они ведут ночной образ жизни).
    В спячку животные организмы впадают не только за счет воздействия температуры, но и за счет других факторов. Так, медведь (гомойотермное животное) впадает в спячку зимой из-за недостатка пищи.
    Гомойотермные животные в меньшей степени в своей жизнедеятельности зависят от температуры, но температура влияет на них с точки зрения наличия (отсутствия) кормовой базы. Эти животные имеют следующие приспособления к преодолению воздействия низких температур:
    1) животные перемещаются из более холодных областей в более теплые (перелеты птиц, миграции млекопитающих);
    2) изменяют характер покрова (летний мех или оперение заменяются на более густой зимний; накапливают большой слой жира — дикие свиньи, тюлени и др.);
    3) впадают в спячку (например, медведь).
    Гомойотермные животные имеют приспособления для снижения воздействия температур (как повышенных, так и пониженных). Так, у человека имеются потовые железы, которые изменяют характер секреции при повышенных температурах (количество секрета увеличивается), изменяется просвет кровеносных сосудов в коже (при низких температурах он уменьшается, а при высоких — увеличивается) и т. д.

    Излучения как абиотический фактор

    И в жизни растений, и в жизни животных огромную роль играют различные излучения, которые или попадают на планету извне (солнечные лучи), или выделяются из недр Земли. Здесь рассмотрим в основном солнечные излучения.
    Солнечные излучения неоднородны и состоят из электромагнитных волн разной длины, а следовательно, обладают и различной энергией. Поверхности Земли достигают лучи как видимого, так и невидимого спектра. К лучам невидимого спектра относятся инфракрасные и ультрафиолетовые лучи, а лучи видимого спектра имеют семь наиболее различимых лучей (от красного до фиолетового). Энергия квантов излучений увеличивается от инфракрасного до ультрафиолетового (т. е. ультрафиолетовые лучи содержат кванты наиболее коротких волн и наибольшей энергии).
    Солнечные лучи имеют несколько экологически важных функций:
    1) благодаря солнечным лучам на поверхности Земли реализуется определенный температурный режим, имеющий широтный и вертикальный зональный характер;
    2) солнечная энергия — источник энергии для всех организмов, живущих на Земле (исключая небольшую группу организмов-хемосинтетиков). Энергия Солнца является и источником энергии для гетеротрофных организмов (животных, бактерий, грибов и др.), так как эти организмы используют энергию химических связей веществ, синтезированных фотосинтетиками (т. е. растениями);
    3) солнечная энергия является регулятором циклов жизни различных организмов.
    Рассмотрим роль отдельных излучений в природных экологических процессах.
    Инфракрасные излучения несут большой запас тепловой энергии и обеспечивают тепловой режим планеты.
    Растения, реализуя автотрофный способ питания, усваивают энергию оранжево-красного спектра (правда, отдельные водоросли — красные и бурые — могут усваивать энергию синего и даже фиолетового спектра). Зеленые лучи полностью отражаются растениями (отсюда и цвет растений).
    Ультрафиолетовые лучи оказывают вредное воздействие на различные организмы (особенно «жесткий ультрафиолет»). Большинство ультрафиолетовых лучей не доходят до поверхности земли за счет наличия «озонового экрана». В небольших количествах ультрафиолетовые лучи могут быть полезными для некоторых организмов. Так, воздействуя на верхний слой кожи человека (при «загорании»), ультрафиолетовые лучи вызывают синтез меланина, из которого синтезируется витамин О. Ультрафиолетовые лучи позволяют ориентироваться некоторым организмам во внешней среде (летучие мыши).
    Растения (в среднем) усваивают 1% солнечной энергии, доходящей до поверхности Земли. Водоросль хлорелла может усваивать 3% этой энергии, что представляет определенный интерес для хозяйственной деятельности человека и ее интенсификации.

    Роль солнечного света в жизни растений

    Роль света в жизни растений трудно переоценить, так как солнечная энергия является основой для реализации всех процессов жизнедеятельности, начиная от питания и заканчивая отправлением отдельных физиологических функций.
    По отношению к свету различают несколько групп растений.
    1. Светолюбивые — растения открытых пространств, на которые падает прямой свет. К ним относят растения степей, пустынь, полупустынь (ковыли, полыни, различные виды злаковых, например пшеница и др.), а также растения верхних ярусов лесов (сосна, береза и др.).
    2. Теневыносливые — растения, которые могут произрастать в условиях некоторого затенения, например бук, дуб, граб, ель и др.
    3. Тенелюбивые — растения, которые не могут существовать в условиях попадания на них прямого света. К ним относятся растения, живущие под пологом леса, например, папоротники, звездчатка, ландыши и др.
    Кроме того, что солнечный свет для растений является источником энергии, он регулирует процессы их жизнедеятельности. Это явление называется фотопериодизмом. Итак, фотопериодизм — регуляция биоритма живых существ при помощи света. Различают суточный и сезонный фотопериодизм, а также периодизм процессов, протекающих на Солнце. Наиболее изучены суточный и сезонный фотопериодизм.
    У растений днем реализуются процессы световой фазы фотосинтеза и, частично, темновой фазы, а ночью — темновая фаза фотосинтеза. С фотопериодизмом у растений связано явление фототропизм — движение отдельных органов растения к свету, например, движение головки подсолнуха в течение дня по ходу движения Солнца, раскрытие соцветий одуванчика утром и закрытие их вечером, рост комнатных растений в освещенную сторону и т. д. (суточный фотопериодизм).
    Сезонный фотопериодизм ярко наблюдается в широтах со сменой времен года (в средних и северных широтах). Весной дни становятся длиннее, температура воздуха повышается, поэтому в растениях начинается сокодвижение, почки набухают и раскрываются. С наступлением осени, которая растениями воспринимается изменением не температуры, а длины светового дня, начинается закладка почек, подготовка к зиме, к листопаду, происходит формирование прочного древесного покрова у древесных и кустарниковых форм. Для эфемеров — растений с коротким сроком жизни — ранней весной начинается интенсивный период жизнедеятельности, который к наступлению неблагоприятного периода высоких температур и засухи завершается, и растения в форме луковиц и других приспособлений «пережидают» время до наступления благоприятного периода.
    Свет оказывает влияние и на процесс развития растительных организмов. Некоторые растения эволюционно формировались при «коротком дне» (не более 12 часов в сутки), их называют растениями «короткого дня», а другие растения (они произрастают в средних и высоких широтах) — при «длинном дне» (продолжительность дня может достигать 20 часов и более), их называют растениями «длинного дня» (клюква, морошка и др.). Растения «длинного дня» не могут нормально развиваться на юге (они не дают семян), то же относится и к растениям «короткого дня», если их выращивать на севере, создавая все благоприятные условия, сохраняя продолжительность светлого времени суток.

    Роль солнечного света в жизни животных

    Солнечная энергия непосредственно животными не усваивается, и, тем не менее, она является источником их жизнедеятельности (почему?). Кроме того, что солнечная энергия — источник жизни животных, она играет огромную роль в их жизни за счет следующих процессов.
    1. Солнечный свет определяет суточный фотопериодизм жизни животных и их распределение по экологическим нишам. Различают животных, ведущих дневной и ночной образ жизни, что исключает конкуренцию за источники пищи. Большое значение свет играет и в жизни людей. Так, у некоторых людей наблюдается повышенная работоспособность в утренние часы («жаворонки»), а у других — в ночные часы («совы»). Солнечным днем эмоциональный настрой большинства людей значительно более высокий, чем в пасмурные или дождливые дни и т. д.
    2. Солнечный свет позволяет животным легко ориентироваться в окружающей среде; свет эволюционно способствовал развитию органов зрения.
    3. Свет определяет и сезонный фотопериодизм, с которым связано изменение в ходе физиологических процессов (с наступлением осени интенсифицируется накопление запасных веществ в организме, меняется характер покровов и т. д.). Организмы, для которых характерны миграции (например, перелетные птицы), готовятся к ним и мигрируют, несмотря на наличие тепла и кормовой базы. Однако не все явления можно объяснить фотопериодизмом, например, миграции птиц из мест зимовки в теплые края, где длина дня сезонно не меняется, можно объяснить наличием «биологических часов», возникших в процессе эволюции и заложенных в генетическом коде.

    Влажность как абиотический фактор

    Вода является важнейшим химическим соединением, содержащимся в живом веществе, поэтому наличие (отсутствие) воды в окружающей среде (именуемое «влажностью») является важнейшим экологическим фактором, оказывающим огромное воздействие на жизнедеятельность различных организмов, в том числе и человека.
    Влажность — содержание воды в окружающей среде. Она зависит от климата, т.е. от количества осадков и их распределения по временам года, и местонахождения данной среды обитания на планете. В ряде случаев влажность может являться лимитирующим фактором в развитии той или иной общности организмов. Недостаток влаги приводит к резкому снижению продуктивности живого вещества. Часто от влажности на данной территории зависит характер органического мира, проживающего на ней. Так, флору и фауну пустынь и полупустынь определяет большой дефицит влаги, а органический мир болот — избыточное ее количество. С влажностью связана географическая зональность органического мира — тундра, лесотундра, тайга, лесостепь, степь, полупустыни, пустыни (от одной зоны к другой количество влаги закономерно понижается). Эти зоны связаны с одновременным изменением влажностного и температурного фактора (тундра и тайга).

    Влияние влажности на экологические особенности растений

    Строение и функции растений в значительной степени зависят от наличия влаги в среде обитания. По отношению к влажности растения разделяют на группы:
    1. Ксерофиты — растения, которые живут в условиях недостаточной увлажненности. Это растения степей, полупустынь и пустынь. Они могут выдерживать недостаток влаги за счет того, что в их составе содержатся соединения, способные удерживать большое количество связанной воды. Для ксерофитов характерны узкие длинные листья, покрытые толстым слоем кутикулы, восковым налетом и сильной опушенностью. Листья этих растений имеют сероватый тусклый оттенок, листовые пластинки мелкие, а в ряде случаев листья подверглись редукции (их или совсем нет, или они превратились в колючки или чешуйки, а функции листьев выполняет стебель).
    Вышеуказанные приспособления в значительной степени уменьшают транспирацию (испарение воды растением). У ксерофитов очень сильно развита корневая система, которая у растения размером несколько десятков сантиметров может достигать 10 м и более. К ксерофитам относят различные виды полыней, ковыль, саксаул и др.
    2. Суккуленты — группа растений, близких к ксерофитам, но в отличие от них обладающих сильно утолщенным мясистым стеблем, содержащим большое количество воды. У суккулентов практически нет листьев или эти листья также сильно утолщены. Биологические особенности суккулентов сходны с таковыми для ксерофитов, так как они произрастают в тех же условиях, что и данная группа растений. К суккулентам относят кактусы, молодило, столетник и т. д.
    3. Мезофиты — растения, произрастающие в условиях среднего увлажнения, что означает достаточное количество осадков для реализации процессов жизнедеятельности растений, в том числе и для транспирации. У мезофитов поверхность листьев достаточно крупная, растения испаряют довольно много воды, но устьица, как правило, располагаются на нижней поверхности листа, за счет чего в период недостаточного увлажнения транспирация ослабляется, что позволяет успешно пережить неблагоприятное для растений время. К мезофитам относят тополь, березу, айву, грушу, травянистые растения лугов и т. д.
    4. Гигрофиты — растения, живущие в условиях повышенной влажности, произрастающие на болотистых почвах и требующие для нормальной жизнедеятельности большого количества воды (осока, камыш, растения влажных джунглей и т. д.).
    5. Гидрофиты — водные растения, живущие либо полностью погруженными в воду, либо на ее поверхности находятся листовые пластинки, а остальная часть растения расположена в воде. Примером гидрофитов являются кувшинки, элодея, водоросли.

    Экологическая роль воды в жизни животных

    Относительно воздействия воды на животных их разделяют на сухопутных, водных и земноводных. Сухопутных животных можно разделить на животных лесов, степей и пустынь, так как эти зоны отличаются увлажненностью.
    К сухопутным животным относят многих млекопитающих, различных пресмыкающихся и других животных.
    К водным животным относятся рыбы, водные млекопитающие (киты), водные членистоногие, головоногие и другие моллюски и т. д.
    К земноводным относят класс земноводных (лягушки, жабы и т.д.), класс млекопитающих (например, тюлени, гиппопотам и др.).
    Необходимость в воде сухопутные животные восполняют за счет поглощения воды либо в водоемах (питье), либо с пищей. Наибольший дефицит воды испытывают животные степей, пустынь и полупустынь. Они по-разному приспособлены к перенесению недостатка влаги. Так, лошади способны преодолевать большие расстояния в поисках воды и пищи. Верблюды могут длительное время обходиться без воды, накапливая ее в форме жира в горбах (а курдючные овцы — в особых расширениях хвоста — курдюках); при окислении жиров образуется большое количество воды, которую организм использует для своей жизнедеятельности. При недостатке воды некоторые животные впадают в спячку. Приспособлением к преодолению недостатка воды у животных является переход к ночному образу жизни.

    Характеристика воздуха, климата и микроклимата как абиотических факторов

    Одним из важных абиотических факторов является воздух.
    Воздух — это природная смесь газов, имеющая относительно постоянный состав. В норме он содержит, % по объему: молекулярного азота — 78, молекулярного кислорода — 21, углекислого газа — 0,03, инертных газов — 1, небольшое количество паров воды.
    Постоянство состава природного воздуха может нарушаться как за счет природных явлений (например, извержения вулканов, землетрясения, лесные пожары), так и в результате деятельности человека. Воздух необходим для любых аэробных организмов (и для растений, и для животных), так как обеспечивает процесс дыхания (газообмен), а для растений является источником газового минерального питания (без углекислого газа невозможен фотосинтез).
    При отсутствии воздействия человека состав воздуха, тем не менее, может различаться в зависимости от высоты над уровнем моря (с высотой содержание кислорода и углекислого газа уменьшается, так как эти газы тяжелее азота). Воздух приморских районов обогащен парами воды, в которых содержатся морские соли в растворенном состоянии. Воздух леса отличается от воздуха полей примесями соединений, выделяемых различными растениями (так, воздух соснового бора содержит большое количество смолистых веществ и эфиров, убивающих болезнетворные микроорганизмы, поэтому этот воздух является целебным для больных туберкулезом).
    Важнейшим комплексным абиотическим фактором является климат.
    Климат — это совокупный абиотический фактор, включающий в себя определенный состав и уровень солнечной радиации, связанный с ним уровень температурного и влажностного воздействия и определенный режим ветров. Климат зависит также от характера растительности, произрастающей на данной территории, и от рельефа местности.
    На Земле наблюдается определенная широтная и вертикальная климатическая зональность. Различают влажный тропический, субтропический, резко континентальный и другие разновидности климата.
    Повторите сведения о различных видах климата по учебнику физической географии. Рассмотрите особенности климата той территории, на которой вы живете.
    Климат как совокупный фактор формирует тот или иной тип растительности (флоры) и тесно связанный с ним тип фауны. Большое влияние на климат оказывают поселения людей. Климат больших городов отличается от климата пригородных зон.
    Сравните температурный режим города, в котором вы живете, и режим температур области, где находится город.
    Как правило, температура в черте города (особенно в центре) всегда выше, чем в области.
    С климатом тесно связан микроклимат. Причиной возникновения микроклимата являются различия в рельефе на данной территории, наличие водоемов, что приводит к изменению условий на разных территориях данной климатической зоны. Даже на относительно небольшой территории дачного участка на отдельных его частях могут возникать различные условия для произрастания растений из-за разных условий освещения.

  6. tipokkk Ответить

    Все живое на Земле связано со средой обитания, которая включает разнообразные географические области и населяющие их сообщества живых организмов. По характеру действия связи организма со средой могут быть абиотическими (сюда относятся факторы неживой природы – физические и химические условия среды) и биотическими (факторы живой природы – межвидовые и внутривидовые взаимоотношения).
    Жизнедеятельность организмов невозможна без постоянного притока энергии извне. Ее источником является Солнце. Вращение Земли вокруг своей оси приводит к неравномерному распределению энергии Солнца, его теплового излучения. В связи с этим атмосфера над сушей и океаном нагревается неодинаково, а различия в температуре местности и давлении вызывают перемещения воздушных масс, изменение влажности воздуха, что влияет на ход химических реакций, физических превращений и прямо или косвенно – на все биологические явления (характер расселения жизни, биоритмы и т. п.). Регулирующее влияние на плотность жизни оказывает комплекс факторов: свет, температура, вода, минеральные питательные вещества и др. Эволюция жизни осуществлялась в направлении эффективного приспособления к этим факторам: ‘колебаниям влажности, освещения, температуры, ветра, силы тяжести и др. Взаимосвязи организмов между собой и со средой обитания изучает наука экология. Рассмотрим значение, отдельных экологических факторов.
    Свет – основной источник энергии на Земле. Природа света двойственна: с одной стороны он представляет собой поток элементарных физических частиц – корпускул, или фотонов, не имеющих заряда, с другой – обладает волновыми свойствами. Чем меньше длина волны фотона, тем выше его энергия, и наоборот. Энергия фотонов служит источником обеспечения энергетических потребностей растений при фотосинтезе, поэтому зеленое растение не может существовать без света.
    Свет (освещенность) представляет собой мощный стимул активности организмов – фотопериодизма в жизни растений (рост, цветение, опадание листвы) и животных (линька, накопление жира, миграции и размножение птиц и млекопитающих, наступление стадии покоя – диапаузы, поведенческие реакции и др.). Продолжительность светового дня зависит от географической широты. С этим связано существование растений длинного дня, цветение которых наступает при продолжительности светлого периода суток 12 ч и более (картофель, рожь, овес, пшеница и др.), и растений короткого дня с фотопериодом 12 ч и менее (большинство тропических цветковых растений, соя, просо, конопля, кукуруза и многие другие растения умеренной зоны). Но есть растения, цветение которых не зависит от длины дня (томаты, одуванчик и др.). Ритмы освещенности вызывают у животных различную активность в дневное и ночное время суток или в сумерки, а также сезонные явления: весной – подготовку к размножению, осенью – к зимней спячке, линьку.
    Коротковолновая радиация Солнца (290 нм) представляет собой ультрафиолетовые лучи (УФ). Большая часть их поглощается слоем озона в верхних участках атмосферы; на Землю проникают УФ-лучи с меньшей энергией (300-400 нм), которые губительны для многих микроорганизмов и их спор; в организме человека и животных эти лучи активируют синтез витамина Д из холестерина и образование пигментов кожи и глаза. Средневолновая радиация (600-700 нм) представляет собой оранжевую часть спектра и поглощается растением при фотосинтезе.
    Как проявление приспособительных реакций на смену дня и ночи у животных и человека наблюдается суточная ритмичность интенсивности обмена веществ, частоты дыхания, сердечных сокращений и уровня кровяного давления, температуры тела, клеточных делений и т.д. У человека выявлено более ста физиологических процессов биоритмологического характера, благодаря которым у здоровых людей наблюдается согласованность различных функций. Исследование биоритмов имеет большое значение для разработки мер, облегчающих адаптацию человека к новым условиям при дальних перелетах, переселении людей в районы Сибири, Дальнего Востока, Севера, Антарктиды.
    Считают, что нарушение регуляторных механизмов по поддержанию внутренней среды организма (гомеостаза) – последствие урбанизации и индустриализации: чем дольше организм изолирован от внешних климатических факторов и находится в комфортных условиях микроклимата помещения, тем заметнее снижаются его приспособительные реакции к перемене погодных факторов, нарушается способность к терморегуляции, чаще возникают расстройства сердечно-сосудистой деятельности.
    Биологический эффект фотонов состоит в том, что их энергия в организме животных вызывает возбужденное состояние электронов в молекулах пигментов (порфиринов, каротиноидов, флавинов), которые возникший избыток своей энергии передают другим молекулам, и таким путем запускается цепь химических превращений. Белки и нуклеиновые кислоты поглощают УФ-лучи с длиной волны 250-320 нм, что может вызвать генетический эффект (генные мутации); лучи меньшей длины волны (200 нм и меньше) не только возбуждают молекулы, но и могут их разрушить.
    В последние годы большое внимание уделяется изучению процесса фотореактивации – способности клеток Микроорганизмов ослаблять и полностью устранять повреждающий эффект УФ-облучения ДНК, если облученные клетки выращивать затем не в темноте, а на видимом свету. Фотореактивация – явление универсальное, осуществляется при участии специфических клеточиых ферментов, действие которых активируется квантами света определенной длины волны.
    Температура оказывает регулирующее влияние на многие процессы жизни растений и животных, изменяя интенсивность обмена веществ. Активность клеточных ферментов лежит в пределах от 10 до 40 °С, при низких температурах реакции идут замедленно, но при достижении оптимальной температуры активность ферментов восстанавливается. Пределы выносливости организмов в отношении температурного фактора для большинства видов не превышают 40-45 °С, пониженные температуры оказывают менее неблагоприятное воздействие на организм, чем высокие. Жизнедеятельность организма осуществляется в пределах от -4 до 45 °С. Однако небольшая группа низших организмов способна обитать в горячих источниках при температуре 85 °С (серные бактерии, синезеленые водоросли, некоторые круглые черви), многие низшие организмы легко выдерживают очень низкие температуры (их устойчивость к замерзанию объясняется высокой концентрацией солей и органических веществ в цитоплазме).
    У каждого вида животных, растений и микроорганизмов выработались необходимые приспособления как к высоким, так и к низким температурам. Так, многие насекомые при наступлении холодов скрываются в почве, под корой деревьев, в трещинах скал, лягушки зарываются в ил на дне водоемов, некоторые наземные животные впадают в спячку и оцепенение. Приспособление от перегрева в жаркое время года у растений выражается в увеличении испарения воды через устьица, у животных – в виде испарения воды через дыхательную систему и кожные покровы. Животные, не обладающие системой активной терморегуляции (холоднокровные, или пойкилотермные), колебания внешней температуры переносят плохо, поэтому их ареалы на суше относительно ограничены (амфибии, рептилии). С наступлением холодов у них снижается обмен веществ, потребление пищи и кислорода, они погружаются в спячку или впадают в состояние анабиоза (резкое замедление жизненных процессов при сохранении способности к оживлению), а при благоприятных погодных условиях пробуждаются и снова начинают активную жизнь. Споры и семена растений, а среди животных – инфузории, коловратки, клопы, клещи и др. – могут много лет находиться в состоянии анабиоза. Теплокровность у млекопитающих и птиц дает им возможность переносить неблагоприятные условия в активном состоянии, пользуясь убежищами, поэтому они в меньшей степени зависят от окружающей среды. В период чрезмерного повышения температуры в условиях пустыни животные приспособились переносить жару путем погружения в летнюю спячку. Растения пустынь и полупустынь весной за очень короткий срок завершают вегетацию и после созревания семян сбрасывают листву, вступая в фазу покоя (тюльпаны, мятлик луковичный, иерихонская роза и др.).
    Вода. Энергией Солнца вода поднимается с поверхности морей и океанов и возвращается на Землю в виде разнообразных осадков, оказывая разностороннее влияние на организмы. Вода – важнейший компонент клетки, на ее долю приходится 60-80% ее массы. Биологическое значение воды обусловлено ее физико-химическими свойствами. Молекула воды полярна, поэтому она способна притягиваться к различным другим молекулам и ослаблять интенсивность взаимодействия между зарядами этих молекул, образуя с ними гидраты, т. е. выступать в качестве растворителя. Многие, вещества вступают в разнообразные химические реакции только в присутствии воды.
    Диэлектрические свойства, наличие связей между молекулами обусловливают большую теплоемкость воды, что создает в живых системах “тепловой буфер”, предохраняя неустойчивые структуры клетки от повреждения при местном кратковременном освобождении тепловой энергии. Поглощая тепло при переходе из жидкого в газообразное состояние, вода производит охлаждающий; эффект испарения, используемый организмами для регуляции температуры тела. Благодаря большой теплоемкости вода играет роль основного терморегулятора климата. Ее медленное нагревание и охлаждение регулируют колебания температуры океанов и озер: летом и днем в них накапливается тепло, которое они отдают зимой и ночью. Стабилизации климата способствует также постоянный обмен диоксидом углерода между воздушной и водной оболочками земного шара и горными породами, а также растительным и животным миром. Вода выполняет транспортную роль в перемещении веществ почвы сверху вниз и в обратном направлении. В почве они служит средой обитания для одноклеточных организмов (амебы, жгутиковые, инфузории, водоросли).
    В зависимости от режима влаги растения в местах и обычного произрастания подразделяются на гигрофиты-растения избыточного увлажненных мест, мезофиты-растения достаточно увлажненных мест и ксерофиты – растения сухих местообитаний. Есть еще группа водных цветковых растений – гидрофиты, которые обитают в водной среде (стрелолист, элодея, роголистник). Недостаток влаги служит ограничивающим фактором, определяющим границы жизни и ее зональное распределение. При недостатке воды у животных и растений вырабатываются приспособления к ее добыванию и сохранению. Одна из функций листопада – приспособление против избыточной потери воды. У растений засушливых мест листья мелкие, иногда в форме чешуек (в этом случае стебель принимает на себя функцию фотосинтеза); той же цели служит распределение устьиц на листе, которое может уменьшать испарение воды. Животные в условиях сильно пониженной влажности во избежание потери воды активны ночью, днем они скрываются в норах и даже впадают в оцепенение или спячку. Грызуны не пьют воду, а пополняют ее с растительной пищей. Своеобразным резервуаром воды для животных пустынь являются жировые отложения (горб у верблюда, подкожные отложения жира у грызунов, жировое тело у насекомых), из которых поступает вода, образующаяся в организме при окислительных реакциях в ходе расщепления жира. Таким образом, все факты приспособленности организмов к условиям жизни – яркая иллюстрация целесообразности в живой природе, возникшей под влиянием естественного отбора.
    Ионизирующее излучение. Излучение с очень высокой энергией, которое способно приводить к образованию пар положительных и отрицательных ионов, называется ионизирующим. Его источником являются радиоактивные вещества, содержащиеся в горных породах; кроме того, оно поступает из космоса. Из трех видов ионизирующего излучения, имеющих важ-ное экологическое значение, два представляют собой корпу-скулярное излучение (альфа- и бета-частицы), а третье- электромагнитное (гамма.-излучение и близкое ему рентге-новское излучение). Гамма-излучение легко проникает в живые ткани; это излучение может пройти сквозь организм, не оказав никакого воздействия, или же может вызвать ионизацию на большом отрезке своего пути.
    В целом ионизирующее излучение оказывает на более высокоразвитые и сложные организмы наиболее , губительное действие; человек отличается особой чувствительностью.
    Загрязняющие вещества. Эти вещества можно разделить на две группы: природные соединения, являющиеся отходами технологических процессов, и искусственные соединения, не встречающиеся в природе.
    К 1-й группе относятся сернистый ангидрид, углекислый газ, оксиды азота, углерода, углеводороды, соединения меди, цинка и ртути и др., минеральные удобрения.
    Во 2-ю группу входят искусственные вещества, обла-дающие специальными свойствами, удовлетворяющими по-требности человека:пестициды, используемые для борьбы с животными–вредителями сельскохозяйственных культур, антибиотики, применяемые в медицине и ветеринарии для лечения инфекционных заболеваний. К пестицидам относятся инсектициды – средства для борьбы с вредныминасекомыми и гербициды –. средства для борьбы с сорняками.
    Все они обладают определенной токсичностью (ядовитостью) для человека.
    К абиотическим факторам относятся также атмосферные газы, минеральные вещества, барометрическое давление, движение воздушных масс и гидросферы (течение), минеральная основа почвы, соленость воды и почвы.
    Остановимся на значении минеральных элементов. Ряд неорганических веществ находится в организме в составе солей, а при диссоциации образуют ионы (катионы и анионы): Na+, Mg2+, РО43-, Сl-, К+, Са2+, СО32-, NO3-. Значение ионного состава в клетке выявляется на многих сторонах ее жизнедеятельности. Например, калий избирательно взаимодействует с сократительным белком мышц – миозином, снижая вязкость клеточного сока и вызывая расслабление мышц. Кальций усиливает вязкость цитоплазмы и стимулирует мышечное сокращение, снижает порог возбудимости нервов и освобождается из мембранной системы при мышечном сокращении. В больших дозах кальций потребляется моллюсками и позвоночными, которым он необходим для роста раковины и костей. Натрия много у животных преимущественно во внеклеточной жидкости, а калия – внутри клетки; их взаимоперемещение создает разность электрических потенциалов между жидкостями внутри и вне клеток, что лежит в основе передачи нервных импульсов.
    Ионы магния оказывают влияние на агрегацию рибосом: при снижении их концентрации рибосома распадается на две части. Магний входит в состав молекулы хлорофилла и некоторых ферментов. Для осуществления фотосинтеза растениям необходимы Mn, Fe, Cl, Zn; для азотистого обмена – Мо, В, Со, Сu, Si. В состав молекулы гемоглобина входит железо, в состав гормона щитовидной железы – йод. Цинк участвует во многих реакциях гидролиза, разрывая связи между атомами углерода и кислорода. Отсутствие или недостатокNa+, Mg2+, К+, Са2+, ведет к потере возбудимости клетки и ее гибели.
    В природных условиях недостаток тех или других микроэлементов приводит к развитию эндемичных (свойственных только определенной местности) заболеваний человека: эндемического зоба (недостаток йода в питьевой воде), флюороза и крапчатости зубов (избыточное поступление в организм фтора) и др. Недостаток меди в травах, произрастающих на болотистых и торфяных почвах, ведет к анемии у крупного рогатого скота, расстройству пищеварительной системы, поражению центральной нервной системы, изменению цвета шерсти и т. д.
    Нежелателен также избыток микроэлементов. В частности, в некоторых местностях известен стронциевый рахит и хронический молибденовый токсикоз у животных понос у крупного рогатого скота, падение удоя, изменение цвета шерсти). Многие вопросы о роли микроэлементов в возникновении тех или иных физиологических нарушений изучены пока недостаточно.

  7. Alchimic123 Ответить

    К абиотическим факторам относятся разнообразные воздействия неживых (физико-химических) компонентов природы на биологические системы.
    Выделяют следующие основные абиотические факторы:
    – световой режим (освещенность);
    – температурный режим (температура);
    – водный режим (влажность),
    – кислородный режим (содержание кислорода);
    – физико-механические свойства среды (плотность, вязкость, давление);
    – химические свойства среды (кислотность, содержание разнообразных химических веществ).
    Кроме того, существуют дополнительные абиотические факторы: движение среды (ветер, течение воды, прибой, ливни), неоднородность среды (наличие убежищ).
    Иногда действие абиотических факторов приобретает катастрофический характер: при пожарах, наводнениях, засухах. При крупных природных и техногенных катастрофах может наступать полная гибель всех организмов.
    По отношению к действию основных абиотических факторов выделяют экологические группы организмов.
    Для описания этих групп используются термины, включающие корни древнегреческого происхождения: -фиты (от «фитон» – растение), -филы (от «филео» – люблю), -трофы (от «трофе» – пища), -фаги (от «фагос» – пожиратель). Корень -фиты употребляется по отношению к растениям и прокариотам (бактериям), корень -филы – по отношению к животным (реже по отношению к растениям, грибам и прокариотам), корень -трофы – по отношению к растениям, грибам и некоторым прокариотам, корень -фаги – по отношению к животным, а также некоторым вирусам.
    Световой режим оказывает прямое влияние, в первую очередь, на растения. По отношению к освещенности выделяют следующие экологические группы растений:
    1. гелиофиты – светолюбивые растения (растения открытых пространств, постоянно хорошо освещаемых местообитаний).
    2. сциофиты – тенелюбивые растения, которые плохо переносят интенсивное освещение (растения нижних ярусов тенистых лесов).
    3. факультативные гелиофиты – теневыносливые растения (предпочитают высокую интенсивность света, но способны развиваться и при пониженной освещенности). Эти растения обладают частично признаками гелиофитов, частично – признаками сциофитов.
    Температурный режим. Повышение устойчивости растений к пониженным температурам достигается изменением структуры цитоплазмы, уменьшением поверхности (например, за счет листопада, преобразованием типичных листьев в хвою). Повышение устойчивости растений к высоким температурам достигается изменением структуры цитоплазмы, уменьшением нагреваемой площади, образованием толстой корки (существуют растения-пирофиты, которые способны переносить пожары).
    Животные осуществляют регуляцию температуры тела различными способами:
    – биохимическая регуляция – изменение интенсивности обмена веществ и уровня теплопродукции;
    – физическая терморегуляция – изменение уровня теплоотдачи;
    В зависимости от климатических условий у близких видов животных наблюдается изменчивость размеров и пропорций тела, которые описываются эмпирическими правилами, установленными в XIX веке. Правило Бергмана – если два близких вида животных отличаются размерами, то более крупный вид обитает в более холодных условиях, а мелкий – в теплом климате. Правило Аллена – если два близких вида животных обитают в разных климатических условиях, то отношение поверхности тела к объему тела уменьшается с продвижением в высокие широты.
    Водный режим. Растения по способности поддерживать водный баланс делятся на пойкилогидрические и гомейогидрические. Пойкилогидрические растения легко поглощают и легко теряют воду, переносят длительное обезвоживание. Как правило, это растения со слабо развитыми тканями (мохообразные, некоторые папоротники и цветковые), а также водоросли, грибы и лишайники. Гомейогидрические растения способны поддерживать постоянное содержание воды в тканях. Среди них выделяют следующие экологические группы:
    1. гидатофиты – растения, погруженные в воду; без воды они быстро погибают;
    2. гидрофиты – растения крайне переувлажненных местообитаний (берега водоемов, болота); характеризуются высоким уровнем транспирации; способны произрастать лишь при постоянном интенсивном поглощении воды;
    3. гигрофиты – требуют влажных почв и высокой влажности воздуха; как и растения предыдущих групп не переносят высыхания;
    4. мезофиты – требуют умеренного увлажнения, способны переносить кратковременную засуху; это большая и неоднородная группа растений;
    5. ксерофиты – растения, способные добывать влагу при ее недостатке, ограничивать испарение воды или запасать воду;
    6. суккуленты – растения с развитой водозапасающей паренхимой в разных органах; сосущая сила корней невелика (до 8 атм.), фиксация углекислого газа происходит ночью (кислый метаболизм толстянковых);
    В ряде случаев вода имеется в большом количестве, но малодоступна для растений (низкая температура, высокая соленость или высокая кислотность). В этом случае растения приобретают ксероморфные признаки, например, растения болот, засоленных почв (галофиты).
    Животные по отношению к воде делятся на следующие экологические группы: гигрофилы, мезофилы и ксерофилы.
    Сокращение потерь воды достигается различными способами. В первую очередь, развиваются водонепроницаемые покровы тела (членистоногие, рептилии, птицы). Совершенствуются выделительные органы: мальпигиевы сосуды у паукообразных и трахейно-дышащих, тазовые почки у амниот. Повышается концентрация продуктов азотного обмена: мочевины, мочевой кислоты и других. Испарение воды зависит от температуры, поэтому важную роль в сохранении воды играют поведенческие реакции избегания перегрева. Особое значение имеет сохранение воды при эмбриональном развитии вне материнского организма, что приводит к появлению зародышевых оболочек; у насекомых формируются серозная и амниотическая оболочки, у яйцекладущих амниот – сероза, амнион и аллантоис.
    Химические свойства среды.
    Кислородный режим. По отношению к содержанию кислорода все организмы делятся на аэробных (нуждающихся в повышенном содержании кислорода) и анаэробных (не нуждающихся в кислороде). Анаэробы делятся на факультативных (способных существовать и при наличии, и при отсутствии кислорода) и облигатных (не способных существовать в кислородной среде).
    Содержание доступных элементов минерального питания наиболее важно для растений. По отношению к валовому содержанию элементов минерального питания выделяют следующие экологические группы растений:
    1. олиготрофные – нетребовательны к содержанию элементов минерального питания в почве;
    2. эутрофные, или мегатрофные – требовательны к плодородию почв; среди эутрофных растений выделяются нитрофилы, требующие высокого содержания в почве азота;
    3. мезотрофные – занимают промежуточное положение между олиготрофными и мегатрофными растениями.
    Среди организмов, всасывающих готовые органические вещества всей поверхностью тела (например, среди грибов), различают следующие экологические группы:
    – Подстилочные сапротрофы – разлагают подстилку.
    – Гумусовые сапротрофы – разлагают гумус.
    – Ксилотрофы, или ксилофилы – развиваются на древесине (на мертвых или ослабленных частях растений).
    – Копротрофы, или копрофилы – развиваются на остатках экскрементов.
    Кислотность почвы (рН) также важна для растений. Различают ацидофильные растения, предпочитающие кислые почвы (сфагнумы, хвощи, пушица), кальциефильные, или базофильные, предпочитающие щелочные почвы (полынь, мать-и-мачеха, люцерна) и растения, нетребовательные к рН почвы (сосна, березы, тысячелистник, ландыш).

  8. Сергей РќРёРє1954 Ответить

    4. Паразитизм – такой вид взаимосвязи, при котором оба организма: и паразит, и хозяин – ощущают на себе неблагоприятное влияние друг друга. Короче, делают сами себе плохо, а все равно живут.
    Биотические факторы (примеры):
    Сосуществование рыб и коралловых полипов, жгутиковых простейших и насекомых, деревьев и птиц (например, дятлов), скворцов-майн и носорогов.
    Вывод
    Несмотря на то, что биотические факторы могут приносить вред животным, растениям и человеку, от них есть и очень большая польза.
    3. Абиотические факторы – воздействие неживой природы на разнообразные организмы

    Да, и неживая природа тоже играет немаловажную роль в жизненных процессах животных, растений и человека. Пожалуй, самым главным абиотическим фактором является погода.
    Абиотические факторы: примеры

    Абиотические факторы – это температура, влажность, освещенность, соленость воды и почвы, а также воздушная среда и ее газовый состав.
    Вывод
    Абиотические факторы могут наносить вред животным, растениям и человеку, но все-таки в основном они приносят им пользу
    Итог
    Единственный фактор, не приносящий никому пользы – это антропогенный. Да, человеку он тоже не приносит ничего хорошего, хотя тот уверен, что изменяет природу для своего блага, и не задумывается, во что превратится для него и его потомков это “благо” через десяток лет. Человеком уже полностью уничтожены многие виды животных и растений, которые имели свое место в мировой экосистеме. Биосфера Земли похожа на фильм, в котором нет второстепенных ролей, все они являются главными. А вот теперь представьте, что некоторые из них убрали. Что получится в фильме? Вот так и в природе: если исчезнет самая малая песчинка, рухнет великое здание Жизни.

  9. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *