Какие условия для жизни на земле созданы наличием в биосфере озонового слоя?

7 ответов на вопрос “Какие условия для жизни на земле созданы наличием в биосфере озонового слоя?”

  1. Modora Ответить

    А чем же так опасны ультрафиолетовые лучи? Почему мы придаем такое большое значение озоновому слою, поглощающему их. Познакомимся с ультрафиолетовой частью спектра солнечного излучения поближе.
    Как влияет на растения ультрафиолетовая часть солнечного спектра? Вернемся снова к теории. Ультрафиолетовый диапазон длин волн подразделяют на «дальний», при 100-200 нм (нам до него дела нет, этот «свет» поглощается молекулами кислорода в верхних слоях атмосферы и поверхности Земли не достигает) и «ближний», при 200-380 нм, который, в свою очередь, условно делят на 3 части.
    УФА – «полезный», с длиной волны от 320 нм до привычного «фиолетового» (он начинается с 380 нм). Ультрафиолетовое излучение с этой длиной волны глубже всего проникает в ткани животных и растений. У человека, например, она участвует в выработке витамина D, некоторые виды ящериц его вообще видят глазами, не говоря уже о том, что УФА стимулирует некоторые виды рептилий во время брачного периода.
    УФВ – 280-320 нм – диапазон среднего ультрафиолета. Он вызывает не только преждевременное старение кожи человека и замедление вегетативного роста большинства растений, но и несмолкающие споры о своем влиянии на биосферу. Благодаря УФВ европейцы получают золотисто-коричневый цвет кожи во время летних отпусков. Чем ближе к границе с УФС (280 нм), тем смертоноснее лучи.
    И, наконец, УФС – «жесткий» ультрафиолет с длиной волны от 200 до 280 нм. Есть мнение, что на некоторых стадиях развития жизни на Земле УФС весьма активно участвовал в создании ДНК, потому что спектр поглощения нуклеиновых кислот имеет пик в области 254 нм. Продемонстрировано это на рис. 1. Как видно из рисунка, с УФС связано не только начало жизни на Земле, но и, при некоторых условиях, её конец. В диапазоне УФС, на длине волны 254 нм, излучают стерилизаторы – ртутные ультрафиолетовые лампы низкого давления, применяемые только в медицине.
    Итак, ультрафиолетовая солнечная радиация по степени воздействия на живые организмы делится на три вида:
    УФ-А (длина волны – 0,4–0,315 мкм) – наименее опасный для живого вещества вид ультрафиолетового излучения. До поверхности земли этих лучей доходит наибольшее количество.
    УФ-В (длина волны – 0,315–0,280 мкм) – доходит до земли лишь в небольших дозах.
    УФ-С (длина волны – 0,28–0,01 мкм) – наиболее опасный для живого вещества вид ультрафиолетовых лучей: даже в небольших дозах оказывает губительное воздействие на живые организмы. К счастью, УФ-С почти полностью поглощается озоновым слоем и до земли практически не доходит.
    В целом воздействие УФ на человека можно свести к следующему:
    распад белка;
    канцерогенное действие;
    ослабление иммунной системы;
    ожог или даже рак кожи;
    глазные (катаракта) и инфекционные заболевания;
    аллергические заболевания;
    мутагенное действие.
    Это была статья: Значение озонового слоя Земли – озоносферы. Воздействие ультрафиолетовых лучей Солнца на человека и другие живые организмы. Читайте далее: Разрушение и истощение озонового слоя Земли.
    Статьи на тему “Озоновый слой Земли”:
    История открытия озона и озонового слоя Земли.

  2. Mazushakar Ответить

    В последние несколько десятилетий отмечено интенсивное разрушение озонового слоя.
    Проблема впервые была замечена в 1982 году, когда атмосферный зонд, запущенный с британской станции в Антарктиде, зафиксировал на высоте 25-30 километров от земной поверхности резкое уменьшение концентрации озона. Впоследствии над Антарктидой постоянно существует озоновая «дыра» нестабильных форм и размеров, однако имеется постоянная тенденция к ее росту. В настоящее время ее площадь в 1,7 раза превышает площадь самого материка. С середины последнего десятилетия прошлого века она увеличилась незначительно.
    Позднее подобная дыра была обнаружена над Канадским арктическим архипелагом, затем над Шпицбергеном, а вскоре озоновые дыры стали появляться не только в приполярных широтах, но и в разных регионах Евразии в умеренном климатическом поясе, в частности, над Воронежем.
    Истощение озонового слоя является весьма грозной опасностью для всего живого на Земле, поскольку озон не пропускает опасное излучение из Космоса до поверхности Земли. В случае даже незначительного уменьшения количества озона в верхних слоях атмосферы человечеству грозит увеличение частоты случаев рака кожи и глазных заболеваний. Любое увеличение получаемой организмом дозы ультрафиолетовой радиации ослабляет иммунную систему человека.

  3. Gorod mky Ответить

    Биосфера — это оболочка Земли, состав, структура и энергетика которой определяются прошлой и современной деятельностью живых организмов.
    ¦ Термин «биосфера» ввел Э. Зюсс (Австрия, 1875 г.), учение о биосфере было создано В.И. Вернадским (Россия, 1926 г.).
    ¦ Биосфера — наиболее крупная экосистема, объединяющая все биогеоценозы планеты и осуществляющая глобальный круговорот веществ.
    Компоненты биосферы: живое вещество (см. ниже), биогенное вещество, биокосное вещество, косное вещество, радиоактивное вещество, космогенное вещество.
    Биогенное вещество — соединения и полезные ископаемые, создаваемые и перерабатываемые живыми организмами в процессе их жизнедеятельности (нефть, газ, уголь, известняк и др.).
    Биокосное вещество — вещество, образующееся в результате совместной деятельности живых организмов и абиогенных процессов (почва, грунт водоемов).
    Косное вещество — соединения, образующиеся без участия живых организмов (горные породы, минералы и др.).
    Радиоактивное вещество — радиоактивные руды и конечные продукты их распада.
    Космогенное вещество — метеориты, космическая пыль.
    Область жизни определяется наличием условий, необходимых для существования тех или иных живых организмов.
    Жизнь на Земле распространена в трех геологических оболочках — атмосфере, гидросфере и литосфере. Эти оболочки объединены в единую целостную систему посредством непрерывного обмена друг с другом веществом и энергией, обусловленного не только абиогенными процессами, но и деятельностью живых организмов.
    Атмосфера — воздушная оболочка Земли. Плотность воздуха быстро уменьшается с высотой: 75% массы атмосферы сосредоточено в слое ниже 10 км, 90% — ниже 15 км, 99% — ниже 30 км. Сухой воздух состоит из азота (78,08%), кислорода (20,95%), аргона (0,93%), углекислого газа (0,03%) и примесей других газов.
    Тропосфера — нижний слой атмосферы высотой от 8-10 км в полярных широтах до 16-18 км в экваториальной зоне. Выше тропосферы расположена стратосфера.
    Озоновый слой — область с повышенным содержанием озона О3 — находится в стратосфере на высотах 15-25 км. Он поглощает губительное для живых организмов коротковолновое ультрафиолетовое излучение Солнца.
    Водяной пар, присутствующий в атмосфере, участвует в природном круговороте воды;
    ¦ конденсируясь, он выпадает в виде дождей, обеспечивая влажностный режим земных территорий;
    ¦ вместе с СО2 он вносит главный вклад в парниковый эффект: удерживает отраженные от поверхности планеты длинноволновые тепловые лучи, благодаря чему нижние слои атмосферы оказываются теплыми.
    Гидросфера — это водная оболочка Земли, образованная водами ее океанов, морей, озер, рек, подземных и ледяных покровов.
    ¦ Средняя глубина Мирового океана — 3,8 км, максимальная (Марианская впадина в Тихом океане) — 11,034 км. 97% массы гидросферы составляют соленые океанические воды, 2,2% — воды ледников, 0,8% — подземные, озерные и речные пресные воды.
    Литосфера — внешняя твердая оболочка (кора) планеты. Состоит из трех слоев: верхнего — слоя осадочных пород, среднего -гранитного и нижнего, наиболее плотного — базальтового.
    Границы биосферы проходят там, где начинают преобладать природные факторы, делающие существование живых организмов невозможным.
    Верхняя граница биосферы определяется высокой интенсивностью ультрафиолетового солнечного излучения, низкой температурой среды, дефицитом кислорода и воды и проходит в атмосфере на высоте 25-27 км (у нижней границы озонового слоя).
    ¦ Отдельные споры бактерий и грибов найдены в тропосфере на высоте до 40 км.
    Нижняя граница биосферы в литосфере для большинства форм жизни определяется высокой плотностью, прочностью и высокой сопротивляемостью среды, отсутствием света, недостатком кислорода и проходит на глубине нескольких десятков метров.
    ¦ Неактивные формы жизни (споры, цисты) и нефтебактерии зарегистрированы на глубинах до 4 км. Эта граница, помимо перечисленных выше факторов, определяется также высокими давлением и температурой горных пород и подземных вод (на глубине 3 км температура около +100 °С).
    В гидросфере жизнь простирается на всю глубину Мирового океана. Здесь ограничивающими факторами являются давление толщи воды и отсутствие света (температура воды на дне океанических впадин — около 0 °С).
    ¦ По В.И. Вернадскому, нижняя граница биосферы проходит на 1-2 км глубже дна Мирового океана, в постепенно накапливающейся в океане толще осадочных пород, происхождение которых связано с деятельностью живых организмов.

    Живое вещество

    Живое вещество — совокупность всех существующих в данный момент живых организмов планеты, численно выраженная в элементарном химическом составе, массе или энергии.
    ¦ Количественные меры живого вещества — биомасса и продукция.
    Особенности живого вещества. Живое вещество:
    ¦ является главным компонентом биосферы;
    ¦ распределено по Земле неравномерно; его концентрация максимальна на границах раздела основных сред — в почве, в поверхностных слоях океана, на дне водоемов, в так называемых «пленках жизни»;
    ¦ по своему элементарному химическому составу близко к составу земной коры;
    ¦ является наиболее активным компонентом биосферы, обеспечивающим глобальный круговорот химических элементов;
    ¦ является гигантским аккумулятором и уникальным преобразователем энергии Солнца, связывая ее в химических связях сложных органических молекул в процессе фотосинтеза.
    Общее количество биомассы на Земле — 2423,2 млрд. т. Основная ее часть сосредоточена на континентах (свыше 99,8%) в зеленых растениях суши (более 99,2%). Организмы, не способные к фотосинтезу, составляют 1%.
    Распределение биомассы по континентальной и океанической частям биосферы (приведенное к сухому органическому веществу) представлено в таблице.

    Распределение по продукции и количеству образуемого кислорода: около половины продукции и объема кислорода создают растения суши (главным образом влажные тропические леса), другую половину — микроскопические водоросли гидросферы — фитопланктон (при этом биомасса фитопланктона примерно в 10 000 раз меньше биомассы растений суши). Причина — в значительно большей скорости образования продукции фитопланктоном по сравнению с растениями суши.
    Биогеохимический цикл — более или менее замкнутый путь, по которому осуществляется непрерывная циркуляция химических элементов в биосфере.
    Основные процессы круговорота воды, углерода и азота приведены в таблице; подробнее они рассмотрены ниже.

    Целостность биосферы: каждый ее компонент, развиваясь по своим законам, существует не изолированно, а постоянно испытывает влияние других и сам оказывает влияние на другие компоненты. Поэтому изменение любого компонента биосЛеры вызывает изменение других.
    Ряд компонентов биосферы, расположенных в порядке убывания скорости изменения: животный мир > растительность > почва > вода > климат > рельеф > литосфера.

    Круговорот воды и кислорода

    Круговорот воды
    Вода испаряется с поверхности водоемов (океанов, морей и т.д.) и суши и воздушными течениями переносится на различные расстояния. Большая часть испарившейся воды выпадает в виде осадков в океан, меньшая — на сушу. Выпавшая на поверхность суши вода способствует разрушению горных пород, размывает верхний слой почвы и возвращается вместе с растворенными и взвешенными в ней веществами в реки, моря и океаны.
    Растения извлекают воду из почвы и испаряют ее в атмосферу. Масса испаряемой при этом воды может быть весьма значительна (гектар леса испаряет 20-50 т воды в сутки), и в крупных лесных зонах основное количество осадков образуется из водяного пара, поступающего в атмосферу благодаря суммарному испарению с этих же зон.
    Растительный покров также удерживает воду путем замедления ее стока, поддерживает постоянным уровень грунтовых вод и др.
    Часть воды в процессе фотосинтеза расщепляется на водород и кислород. Водород используется для синтеза органических соединений, а кислород выделяется в атмосферу.
    Животные потребляют воду для поддержания осмотического давления и выделяют ее с продуктами диссимиляции.
    Вода полностью разлагается и восстанавливается в биотическом круговороте примерно за 2 млн. лет.
    Круговорот кислорода
    Практически весь атмосферный кислород имеет биогенное происхождение. Свободный кислород используется аэробными организмами при дыхании для окисления органических соединений. Один из конечных продуктов окисления — диоксид углерода, поступающий в атмосферу. Пополнение содержания кислорода в атмосфере происходит при разложении воды в процессе фотосинтеза. Весь кислород атмосферы проходит через организмы примерно за 2000 лет.

    Круговорот углерода и азота

    Круговорот углерода в биосфере (см. рис. 5.3) обусловливают в основном процессы фотосинтеза и дыхания. Углерод в атмосфере содержится в основном в составе диоксида углерода СО2. Первичный источник СО2 — вулканическая деятельность.
    Биосферный цикл углерода начинается с ассимиляции атмосферного диоксида углерода наземными и водными растениями и цианобактериями в процессе фотосинтеза. При этом образуются углеводы, часть которых используется самими растениями для получения энергии, а часть потребляется животными. Кроме того, соединения углерода используются морскими организмами для построения раковин и скелетных образований.
    Углерод возвращается в среду в виде диоксида, выделяемого в процессе дыхания животных и растений. Второй путь возврата -разложение мертвых растений и животных, при котором углерод их тканей окисляется и в виде СО2 поступает в атмосферу.
    Цикл круговорота углерода замкнут не полностью. Часть углерода на продолжительное время выводится из круговорота, концентрируясь в залежах торфа, каменного угля, нефти и горючих сланцев, образующихся при разложении мертвых организмов без доступа кислорода, а также в мощных отложениях известняков на дне морей и океанов, образованных из остатков раковин и скелетов отмерших морских организмов.
    Однако при сжигании ископаемого топлива, используемого человеком для получения энергии, образуется диоксид углерода, который возвращается в атмосферу. За счет этого за последние сто лет содержание СО2 в атмосфере возросло на 25%, что нарушает отрегулированный круговорот углерода и может привести к усилению парникового эффекта. Один цикл круговорота диоксид углерода проходит за 300 лет.
    Круговорот азота
    Азот — один из важнейших компонентов белков, нуклеиновых кислот, АТФ и других органических веществ. Его основные запасы содержатся в атмосфере в форме недоступного для растений молекулярного азота N2. В небольших количествах атмосферный азот связывается с кислородом в процессе грозовых разрядов в атмосфере, а затем с дождями поступает на поверхность Земли.
    Связывание атмосферного азота осуществляется цианобактериями, а также клубеньковыми азотфиксирующими бактериями, поселяющимися в клетках корней бобовых растений. Они синтезируют нитриты и нитраты, усваиваемые растениями. В растениях азот используется для построения нуклеиновых кислот и белков, которые затем употребляются в пищу животными и человеком.
    В процессе жизнедеятельности белковые молекулы расщепляются до конечных продуктов — воды, диоксида углерода, аммиака, мочевины и мочевой кислоты, выделяющихся во внешнюю среду. При гниении погибших животных и растений также образуется аммиак.
    Большая часть образующегося аммиака преобразуется нитрифицирующими бактериями в нитриты и нитраты, усваиваемые растениями. Небольшая часть аммиака уходит в атмосферу и вместе с СО2, водяным паром и другими газообразными веществами выполняет функцию удержания тепла планеты.
    Некоторые виды бактерий путем денитрификации могут восстанавливать нитриты и нитраты до газообразного азота, который поступает в атмосферу. В результате происходит обеднение почвы и воды соединениями азота и насыщение атмосферы молекулярным азотом.
    Интенсивное использование человеком азотных минеральных удобрений в целях получения больших урожаев сельскохозяйственных растений приводит к разбалансировке процессов нитрификации и денитрификации.

    Превращение энергии

    Биологический круговорот веществ возможен только при постоянном притоке и преобразовании солнечной энергии, поскольку полученная от Солнца энергия связывается в органических веществах и при движении по ступеням пищевой цепи уменьшается (большая ее часть тратится на осуществление процессов жизнедеятельности организмов и рассеивается в виде тепла).
    Биосфера — открытая система, постоянно получающая солнечную энергию. В процессе фотосинтеза эта энергия превращается в энергию химических связей органических веществ. Живым веществом Земли ежегодно создается 4,2 * 1017 Дж энергии.
    Накопленная энергия частично расходуется растениями в процессах жизнедеятельности, а частично переходит к растительноядным организмам. Эти организмы также используют часть энергии в процессах жизнедеятельности, а оставшаяся ее часть поступает к плотоядным животным и т.д. Таким образом, энергия запасается в тканях растений и животных в виде органических соединений. Запас энергии в биосфере Земли оценивается в 4,2 * 1018 Дж. Часть энергии законсервирована в нефти, угле, сланцах, торфе.
    Выделение энергии происходит при разрушении органических веществ в процессах дыхания, брожения и гниения. В настоящее время живым веществом Земли ежегодно выделяется 4,2 • 1017 Дж энергии — столько же, сколько и создается, т.е. в биосфере поддерживается баланс энергии.

    Эволюция биосферы

    Биосфера — сложная, относительно стабильная, но не застывшая, а развивающаяся, эволюционирующая экологическая система.
    Доказательством и источником знаний о развитии биосферы служат ископаемые остатки древних организмов.
    ¦ Считают, что за время существования биосферы ее населяли около 500 млн. видов организмов.
    ¦ Причины относительной стабильности биосферы:
    ¦ непрерывное поступление солнечной энергии, используемой фототрофными организмами;
    ¦ многообразие живых организмов;
    ¦ адаптация организмов к жизни в разнообразных условиях четырех сред;
    ¦ поддержание непрерывного биогенного круговорота веществ;
    ¦ постепенно сложившийся в течение сотен миллионов лег баланс жизнедеятельности всего многообразия организмов -продуцентов, консументов и редуцентов.
    ? Основная причина эволюции биосферы — первичная химическая эволюция (приведшая к появлению органических макромолекул и первых живых организмов — прокариот) и геологические и климатические процессы, изменявшие условия жизни на Земле (приведшие к изменению содержания кислорода в атмосфере, формированию озонового слоя, изменению содержания воды на планете и влажности атмосферы и г.д.).
    ? Два основных исторических этапа эволюции биосферы:
    ¦ биогенез;
    ¦ ноогенез.
    Биогенез — первый и самый длительный этап эволюции биосферы от появления прокариот до формирования человеческого общества.

    Ноогенез — второй этап развития биосферы, начавшийся с момента становления человеческого общества и продолжающийся в настоящее время; характеризуется значительным и все возрастающим влиянием деятельности человечества на биосферу.
    Ноосфера — «оболочка разума, сфера разумной жизни» (В.И. Вернадский), сфера, охваченная взаимодействием человеческого общества и природы.
    Ноосфера — это новое состояние биосферы, при котором разумная деятельность человека становится главным, определяющим фактором ее развития
    Метки: биосфера, Экология

  4. VideoAnswer Ответить

  5. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *