Какие вещества входят в состав клеточной мембраны?

9 ответов на вопрос “Какие вещества входят в состав клеточной мембраны?”

  1. ВмЕсТо_ЖиЗнИ Ответить

    В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.
    В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.
    В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).
    За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.
    Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.
    Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.
    Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.
    Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

    Функции клеточной мембраны

    Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.
    Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).
    При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).
    Бывает также транспорт против градиента концентрации, но с затратой энергии.
    Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.
    Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.
    Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример — натрий-калиевый насос.
    Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.
    Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.
    Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.
    Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.
    Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.
    Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.
    В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.
    Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

  2. Выгнали из ада Ответить

    Составляющие клеточной мембраны
    В мембране находятся липиды разных классов:
    Фосфолипиды;
    Гликолипиды;
    Холестерол.
    Мембрана являет из себя очень важную функциональную составляющую клетки, ее значение сравнимо с любым другим органоидом (ядра, митохондрии и других). А благодаря своему строению она имеет, без преувеличения, уникальные свойства.

    Функции клеточной мембраны: большие обязанности маленькой оболочки

    Самая основная функция клеточной мембраны – это механическая. Она состоит в том, чтобы обеспечить каждой конкретной клетке ее автономность, то есть ограничить одну клетку от другой, при этом не нарушая их целостного соединения друг с другом в однородную ткань.
    Особенное, уникальное устройство клеточной мембраны обеспечивает ей такую обширную многофункциональность.
    Еще одной из важнейших задач мембраны является барьерная функция. Клеточная мембрана всегда «стоит на страже», и именно она решает кто имеет, а кто не имеет права миновать оболочку клетки. Для того, чтобы попасть внутрь клетки, молекулы органических соединений должны пройти своеобразный «кастинг» и иметь строгие параметры – определенный электрический заряд, размер, химические свойства.
    Другие функции клеточной мембраны:
    Транспортная, обеспечивающая различные виды обмена, транспортировку веществ в клетку и из нее.
    Матричная, которая определяет расположение органоидов внутри клетки и их взаимодействие.
    Энергетическая, с помощью нее проходят процессы фотосинтеза и дыхания клеток, в которых принимают участие белки.
    Рецепторная, благодаря которой клетки получают различные сигналы.
    Ферментативная, когда белки клеточной мембраны выполняют роль ферментов.
    Биопотенциальная функция мембраны обеспечивает постоянную концентрацию ионов, что поддерживает разность потенциалов внутри и снаружи клетки.
    Еще одна уникальная функция клеточной мембраны – маркировочная. Каждый тип клеток, с помощью гликопротеинов (специальных белков мембраны) получает ярлык, по которому клетки распознают друг друга. Именно эта особенность и дает возможность, к примеру, иммунным клеткам организма человека, распознавать «своих» и уничтожать «чужих».

    Оболочка клетки: что нам дают знания о ней

    В старших классах школы, на уроках биологии, часто можно услышать вопрос – назовите какие вещества входят в состав клеточной мембраны или каковы функции наружной плазматической мембраны? Нехотя отвечая, школьники даже не подозревают при этом о важности подобных знаний для медицинской науки.
    Негативные факторы человеческой жизни нарушают работу клеточных мембран
    Открытия в области строения и функций мембран клетки человека помогли ученым сделать настоящий прорыв в науке и в медицине.
    Теория является ценной тогда, когда ее можно применить на практике. В данном случае теория принесла знания о том, почему люди все чаще болеют онкологическими заболеваниями. Негативные факторы человеческой жизни нарушают работу клеточных мембран, их питание и дыхание, что приводит к закисленности организма.
    Как нарушения в работе мембраны приводит к раку:
    Образуются условия, не благоприятствующие нормальному функционированию клеток;
    Раковым клеткам для жизни не нужен кислород и щелочная среда;
    В плохих условия, здоровые клетки, пытаясь приспособиться, становятся раковыми;
    Так образуется рак.
    Таким образом, используя данные о том из чего состоит плазматическая мембрана и как она выполняет свои функции, врачи могут оказывать воздействие на организм в случае болезни. Современные лекарства уже основываются только на адресном воздействии, не убивая всех подряд, а выискивая и уничтожая возбудителей болезней.

    Строение клетки и функции ее органоидов (видео)

    Можно с уверенностью сказать, что в основе современной медицинской науки лежат знания о строении и функциях клеточных мембран, и именно это помогает диагностировать, проводить лечебные мероприятия и спасать ежедневно человеческие жизни.

  3. РыСь Ответить


    Содержание:
    Что такое клеточная мембрана
    История исследования клеточной мембраны
    Свойства и функции клеточной мембраны
    Строение клеточной мембраны
    Клеточная мембрана, видео
    Ни для кого не секрет, что все живые существа на нашей планете состоят их клеток, этих бесчисленных «атомов» органической материи. Клетки же в свою очередь окружены специальной защитной оболочкой – мембраной, играющей очень важную роль в жизнедеятельности клетки, причем функции клеточной мембраны не ограничиваются только лишь защитой клетки, а представляют собой сложнейший механизм, участвующий в размножении, питании, регенерации клетки.

    Что такое клеточная мембрана

    Само слово «мембрана» с латыни переводится как «пленка», хотя мембрана представляет собой не просто своего роду пленку, в которую обернута клетка, а совокупность двух пленок, соединенных между собой и обладающих различными свойствами. На самом деле клеточная мембрана это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой, так звучит академическое определение того что, представляет собой клеточная мембрана.
    Значение мембраны просто огромно, ведь она не просто отделяет одну клетку от другой, но и обеспечивает взаимодействие клетки, как с другими клетками, так и окружающей средой.

    История исследования клеточной мембраны

    Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году. Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.
    В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране. Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения. Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.
    В 1950 году с появлением электронного микроскопа теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.
    В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения термодинамики клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»
    И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны. В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении. А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.

    Рисунок клеточной мембраны.

    Свойства и функции клеточной мембраны

    Теперь давайте разберем, какие функции выполняет клеточная мембрана:
    Барьерная функция клеточной мембраны — мембрана как самый настоящий пограничник, стоит на страже границ клетки, задерживая, не пропуская вредные или попросту неподходящие молекулы
    Транспортная функция клеточной мембраны – мембрана является не только пограничником у ворот клетки, но и своеобразным таможенным пропускным пунктом, через нее постоянно проходит обмен полезными веществами с другими клетками и окружающей средой.
    Матричная функция – именно клеточная мембрана определяет расположение органоидов клетки относительно друг друга, регулирует взаимодействие между ними.
    Механическая функция – отвечает за ограничение одной клетки от другой и параллельно за правильно соединение клеток друг с другом, за формирование их в однородную ткань.
    Защитная функция клеточной мембраны является основой для построения защитного щита клетки. В природе примером этой функции может быть твердая древесина, плотная кожура, защитный панцирь у черепахи, все это благодаря защитной функции мембраны.
    Энергетическая функция – фотосинтез и клеточное дыхание были бы невозможны без участия белка, содержащегося в клеточной мембране. Именно через белковые каналы происходит важный клеточный энергообмен, в этом заключаются самые главные функции белка в клеточной мембране.
    Рецепторная функция – и опять возвращаемся к белкам мембраны, помимо собственно энергообмена они обладают еще одной очень важной функцией – они служат рецепторами клеточной мембраны, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. Все это необходимо для нормального течения гормональных процессов и проведения нервного импульса.
    Ферментативная функция – еще одна важная функция, осуществляемая некоторыми белками клетки. Например, благодаря этой функции в эпителии кишечника происходит синтез пищеварительных ферментов.
    Также помимо всего этого через клеточную мембрану осуществляется клеточный обмен, который может проходить тремя разными реакциями:
    Фагоцитоз – это клеточный обмен, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают различные питательные вещества.
    Пиноцитоз – представляет собой процесс захвата мембраной клетки, соприкасающиеся с ней молекулы жидкости. Для этого на поверхности мембраны образуются специальные усики, которые как будто окружают каплю жидкости, образуя пузырек, которые впоследствии «проглатывается» мембраной.
    Экзоцитоз – представляет собой обратный процесс, когда клетка через мембрану выделяет секреторную функциональную жидкость на поверхность.

    Строение клеточной мембраны

    В клеточной мембране имеются липиды трех классов:
    фосфолипиды (представляются собой комбинацию жиров и фосфора),
    гликолипиды (представляют собой комбинацию жиров и углеводов),
    холестерол.
    Фосфолипиды и гликолипиды в свою очередь состоят из гидрофильной головки, в которую отходят два длинных гидрофобных хвостика. Холестерол же занимает пространство между этими хвостиками, не давая им изгибаться, все это в некоторых случаях делает мембрану определенных клеток весьма жесткой. Помимо всего этого молекулы холестерола упорядочивают структуру клеточной мембраны.
    Но как бы там ни было, а самой важной частью строения клеточной мембраны является белок, точнее разные белки, играющие различные важные роли. Несмотря на разнообразие белков содержащихся в мембране есть нечто, что их объединяет – вокруг всех белков мембраны расположены аннулярные липиды. Аннулярные липиды – это особые структурированные жиры, которые служат своеобразной защитной оболочкой для белков, без которой они бы попросту не работали.
    Структура клеточной мембраны имеет три слоя: основу клеточной мембраны составляет однородный жидкий билипидный слой. Белки же покрывают его с обеих сторон наподобие мозаики. Именно белки помимо описанных выше функций также играют роль своеобразных каналов, по которым сквозь мембрану проходят вещества, неспособные проникнуть через жидкий слой мембраны. К таким относятся, например, ионы калия и натрия, для их проникновения через мембрану природой предусмотрены специальные ионные каналы клеточных мембран. Иными словами белки обеспечивают проницаемость клеточных мембран.
    Если смотреть на клеточную мембрану через микроскоп, мы увидим слой липидов, образованный маленькими шарообразными молекулами по которому плавают словно по морю белки. Теперь вы знаете, какие вещества входят в состав клеточной мембраны.

    Клеточная мембрана, видео

    И в завершение образовательное видео о клеточной мембране.

  4. Chillwind Ответить

    Многие клетки поглощают вещества посредством таких процессов, как фагоцитоз и пиноцитоз. При первом варианте гибкой наружной мембраной создается маленькое углубление, в котором оказывается захватываемая частица. Затем диаметр углубления становится больше, пока окруженная частица не попадет в клеточную цитоплазму. Посредством фагоцитоза подпитываются некоторые простейшие, например амебы, а также кровяные тельца – лейкоциты и фагоциты. Аналогичным образом клетки поглощают жидкость, которая содержит необходимые полезные вещества. Такое являние носит название пиноцитоз.
    Наружная мембрана тесно соединена с эндоплазматической сетью клетки.
    У многих типов основных составляющих ткани на поверхности мембраны расположены выступы, складки, микроворсинки. Растительные клетки снаружи этой оболочки покрыты еще одной, толстой и отчетливо различимой в микроскоп. Клетчатка, из которой они состоят, помогает формировать опору тканям растительного происхождения, например, древесину. Клетки животных также обладают рядом внешних структур, которые находятся поверх клеточной мембраны. Они носят исключительно защитный характер, пример тому – хитин, содержащийся в покровных клетках насекомых.
    Помимо клеточной, существует внутриклеточная мембрана. Ее функция заключается в разделении клетки на несколько специализированных замкнутых отсеков – компартментов или органелл, где должна поддерживаться определенная среда.

    Таким образом, невозможно переоценить роль такой составляющей основной единицы живого организма, как клеточная мембрана. Строение и функции предполагают значительное расширение общей площади поверхности клетки, улучшение обменных процессов. В состав этой молекулярной структуры входят белки и липиды. Отделяя клетку от внешней среды, мембрана обеспечивает ее целостность. С ее помощью межклеточные связи поддерживаются на достаточно крепком уровне, образовывая ткани. В связи с этим можно сделать вывод, что одну из важнейших ролей в клетке играет клеточная мембрана. Строение и функции, выполняемые ею, радикально отличаются в различных клетках, в зависимости от их предназначения. Посредством этих особенностей достигается разнообразие физиологической активности клеточных оболочек и их ролей в существовании клеток и тканей.

  5. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *