Какую роль в эволюции играют дрейф генов и популяционные волны?

8 ответов на вопрос “Какую роль в эволюции играют дрейф генов и популяционные волны?”

  1. Tuzragore Ответить

    Факторы эволюции
    Мы можем рассматривать дрейф генов как один из факторов эволюции популяций. Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Поэтому результаты дрейфа оказываются разными в разных популяциях – в одних фиксируется один набор аллелей, в других – другой. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны – к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования.
    В ходе эволюции популяций дрейф генов взаимодействует с другими факторами эволюции, прежде всего с естественным отбором. Соотношение вкладов этих двух факторов зависит как от интенсивности отбора, так и от численности популяций. При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен.
    Как мы уже знаем, наиболее частым последствием дрейфа генов является обеднение генетического разнообразия внутри популяций за счет фиксации одних аллелей и утраты других. Мутационный процесс, напротив, приводит к обогащению генетического разнообразия внутри популяций. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования.
    Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А, а в другой а, то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие.
    Популяционные волны и дрейф генов. Численность популяций редко остается постоянной во времени. За подъемами численности следуют спады. С.С.Четвериков одним из первых обратил внимание на периодические колебания численности природных популяций, популяционные волны. Они играют очень важную роль в эволюции популяций. Дрейф генов мало сказывается на частотах аллелей в многочисленных популяциях. Однако в периоды резкого спада численности его роль сильно возрастает. В такие моменты он может становиться решающим фактором эволюции. В период спада частота определенных аллелей может резко и непредсказуемо меняться. Может происходить утеря тех или иных аллелей и резкое обеднение генетического разнообразия популяций. Потом, когда численность популяции начинает возрастать, популяция будет из поколения в поколение воспроизводить ту генетическую структуру, которая установилась в момент прохождения через «бутылочное горлышко» численности. Примером могут служить ситуация с гепардами – представителями кошачьих. Ученые обнаружили, что генетическая структура всех современных популяций гепардов очень сходна. При этом генетическая изменчивость внутри каждой из популяций крайне низка. Эти особенности генетической структуры популяций гепардов можно объяснить, если предположить, что относительно недавно (пару сотен лет назад) данный вид прошел через очень узкое горлышко численности, и все современные гепарды являются потомками нескольких (по подсчетам американских исследователей) особей.
    Эффект бутылочного горлышка сыграл, по-видимому, очень значительную роль в эволюции популяций человека. Предки современных людей в течение десятков тысяч лет расселялись по всему миру. На этом пути, множество популяций полностью вымирало. Даже те, которые уцелели, часто оказывались на грани вымирания. Их численность падала до критического уровня. Во время прохождения через «бутылочное горлышко» численности частоты аллелей менялись по-разному в разных популяциях. Определенные аллели утрачивались полностью в одних популяциях и фиксировались в других. После восстановления численности популяций их измененная генетическая структура воспроизводилась из поколения в поколение. Эти процессы, по-видимому, и обусловили, то мозаичное распределение некоторых аллелей, которое мы сегодня наблюдаем в локальных популяциях человека. Ниже представлено распределение аллеля В по системе групп крови АВ0 у людей. Значительные отличия современных популяций друг от друга могут отражать последствия дрейфа генов, который происходил в доисторические времена в моменты прохождения предковых популяций через «бутылочное горлышко» численности.
    Эффект основателя. Животные и растения, как правило, проникают на новые для вида территории (на острова, на новые континенты) относительно малыми группами. Частоты тех или иных аллелей таких группах могут значительно отличаться от частот этих аллелей в исходных популяциях. За вселением на новую территорию следует увеличение численности колонистов. Возникающие многочисленные популяции воспроизводит генетическую структуру их основателей. Это явление американский зоолог Эрнст Майр, один их основоположников синтетической теории эволюции, назвал эффектом основателя.
    Эффект основателя играл, по-видимому, ведущую роль в формировании генетической структуры видов животных и растений, населяющих вулканические и коралловые острова. Все эти виды происходят от очень небольших групп основателей, которым посчастливилось достигнуть островов. Ясно, что эти основатели представляли собой очень маленькие выборки из родительских популяций и частоты аллелей в этих выборках могли сильно отличаться. Вспомним наш гипотетический пример с лисицами, которые, дрейфуя на льдинах, попадали на необитаемые острова. В каждой из дочерних популяций частоты аллелей резко отличались друг от друга и от родительской популяции. Именно эффект основателя объясняет удивительно разнообразие океанических фаун и флор и обилие эндемичных видов на островах. Эффект основателя сыграл важную роль и в эволюции человеческих популяций. Обратите внимание, что аллель В полностью отсутствует у американских индейцев и у аборигенов Австралии. Эти континенты были заселены небольшими группами людей. В силу чисто случайных причин среди основателей этих популяций могло не оказаться ни одного носителя аллеля В. Естественно, этот аллелей отсутствует и в производных популяциях.
    Дрейф генов и молекулярные часы эволюции. Конечным результатом дрейфа генов является полное устранение одного аллеля из популяции и закрепление (фиксация) в ней другого аллеля. Чем чаще тот или иной аллель встречается в популяции, тем выше вероятность его фиксации вследствие дрейфа генов. Расчеты показывают, что вероятность фиксации нейтрального аллеля равна его частоте в популяции.
    Каждый аллель из тех, что мы наблюдаем в популяциях, когда-то возник в результате мутации. Мутации происходят со средней частотой 10-5 на ген на гамету на поколение. Следовательно, чем меньше популяция, тем меньше вероятность, что в каждом поколении хотя бы одна особь в этой популяции окажется носителем новой мутации. В популяции, состоящей из 100000 особей, в каждом новом поколении с вероятностью близкой к единице найдется новый мутантный аллель, но частота его в популяции (1 на 200000 аллелей) и, следовательно, вероятность его фиксации будет очень низкой. Вероятность того, что эта же мутация в том же поколении возникнет у хотя бы одной особи в популяции, состоящей из 10 особей, ничтожно мала, но если такая мутация все же произойдет в этой популяции, то частота мутантного аллеля (1 на 20 аллелей) и шансы на его фиксацию будут относительно высокими.
    Большие популяции недолго «ждут» мутационного возникновения нового аллеля, но долго его фиксируют, а малые популяции очень долго «ждут» возникновения мутации, но после того, как она возникла, она может быть быстро зафиксирована. Из этого следует парадоксальный на первый взгляд вывод: вероятность фиксации нейтральных аллелей зависит только от частоты их мутационного возникновения и не зависит от численности популяций.
    Поскольку частоты возникновения нейтральных мутаций примерно одинаковы у разных видов, то и скорость фиксации этих мутаций должна быть примерно одинаковой. Отсюда следует, что число мутаций, накопленных в одном и том же гене, должно быть пропорционально времени независимой эволюции этих видов. Иными словами, чем больше времени прошло с момента выделения двух видов из общего передкового вида, тем больше нейтральных мутационных замен различают эти виды. На этом принципе строится метод «молекулярных часов эволюции» – определения времени, прошедшего с момента, когда предки разных систематических групп стали эволюционировать независимо друг от друга.
    Американские исследователи Э. Цукуркендл и Л.Поллинг впервые обнаружили, что количество различий в последовательности аминокислот в гемоглобине и цитохроме с у разных видов млекопитающих тем больше, чем раньше разошлись их эволюционные пути. В дальнейшем эта закономерность была подтверждена на огромном экспериментальном материале, включающем десятки разных генов и сотни видов животных, растений и микроорганизмов. Оказалось, что молекулярные часы идут, как и следует из теории дрейфа генов, с постоянной скоростью. Калибровка молекулярных часов производится для каждого гена в отдельности, поскольку разные гены могут различаться по частоте возникновения нейтральных мутаций. Для этого оценивают количество замен накопленных в определенном гене у представителей таксонов, время дивергенции которых надежно установлено по палеонтологическим данным. После того, как молекулярные часы откалиброваны, их можно использовать для того, чтобы измерять время дивергенции между разными таксонами, даже в том случае, когда их общий предок пока не обнаружен в палеонтологической летописи.

  2. Aragor Ответить

    В природных условиях постоянно происходят периодические колебания численности популяций, их называют популяционными волнами, или волнами жизни. Численность популяций претерпевает значительные изменения, связанные с сезонными изменениями, годовыми колебаниями абиотических факторов среды, с биотическими факторами, с природными явлениями, катастрофами, др. Масштабы колебаний численности популяций являются различными и могут быть значительными. Например, нередки случаи резкого сокращения численности популяции, связанные с пожарами, наводнениями, длительными засухами, извержениями вулканов. Известны случаи массового размножения популяций отдельных видов, например, саранчи, грибов, болезнетворных бактерий (эпидемии). Есть примеры резкой вспышки численности видов, представители которых оказались в новых для них условиях, где нет врагов, и имеется хорошая кормовая база (колорадский жук в Европе, кролики в Австралии). Процессы эти носят случайный характер, приводя к гибели одни генотипы и вызывая развитие других, вследствие чего происходят существенные перестройки генофонда популяции. Редкий перед колебанием численности генотип (аллель) может сделаться обычным и будет подхвачен естественным отбором. Влияние популяционных волн может быть особенно заметно в популяциях очень малой величины, обычно при численности размножающихся особей не более 500. В этих условиях популяционные волны могут подставлять под действие естественного отбора редкие мутации или устранять обычные варианты. Явления перестройки генофонда и изменения частот встречаемости существующих аллелей (гена), связанные с резким и случайным изменением численности популяций, утраты генов, получили название дрейфа генов. Популяционные волны и связанные с ними явления дрейфа генов случайно изменяют концентрацию разных генотипов и мутаций, приводят к отклонениям от генетического равновесия в популяциях. Эти изменения могут быть подхвачены отбором и способны повлиять на дальнейшие процессы эволюционных преобразований.
    Классификация популяционных волн: 1) периодические колебания численности короткоживущих организмов – сезонные колебания численности микроорганизмов, большинства насекомых, однолетних растений, грибов; 2) непериодические колебания численности, зависящие от сложного сочетания разных факторов (ослабление пресса хищников для жертв, увеличение кормовых ресурсов), обычно такие колебания численности касаются многих видов в экосистемах и порой ведут к коренным перестройкам всей экосистемы; 3) вспышки численности видов в новых районах, где отсутствуют их естественные враги (элодея канадская в водоёмах Европы, американская норка и ондатра в Евразии); 4) резкие непериодические колебания численности, связанные с природными «катастрофами» (несколько засушливых лет). Действие популяционных волн, как и действие другого элементарного эволюционного фактора – мутационного процесса, статистично и ненаправленно. Популяционные волны служат поставщиком элементарного эволюционного материала.

  3. Олигофрен Ответить

    Дрейф генов как фактор эволюции.
    Дрейф генов, или генетико-автоматические процессы, — это явление ненаправленного изменения частот аллельных вариантов генов в популяции.
    Мы можем рассматривать дрейф генов как один из факторов эволюции популяций. Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Поэтому результаты дрейфа оказываются разными в разных популяциях – в одних фиксируется один набор аллелей, в других – другой. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны – к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования. В ходе эволюции популяций дрейф генов взаимодействует с другими факторами эволюции, прежде всего с естественным отбором. Соотношение вкладов этих двух факторов зависит как от интенсивности отбора, так и от численности популяций. При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен. Как мы уже знаем, наиболее частым последствием дрейфа генов является обеднение генетического разнообразия внутри популяций за счет фиксации одних аллелей и утраты других. Мутационный процесс, напротив, приводит к обогащению генетического разнообразия внутри популяций. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования. Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А, а в другой а, то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие. Эффект бутылочного горлышка сыграл, по-видимому, очень значительную роль в эволюции популяций человека. Предки современных людей в течение десятков тысяч лет расселялись по всему миру. На этом пути, множество популяций полностью вымирало. Даже те, которые уцелели, часто оказывались на грани вымирания. Их численность падала до критического уровня. Во время прохождения через «бутылочное горлышко» численности частоты аллелей менялись по-разному в разных популяциях. Определенные аллели утрачивались полностью в одних популяциях и фиксировались в других. После восстановления численности популяций их измененная генетическая структура воспроизводилась из поколения в поколение. Эти процессы, по-видимому, и обусловили, то мозаичное распределение некоторых аллелей, которое мы сегодня наблюдаем в локальных популяциях человека. Ниже представлено распределение аллеля В по системе групп крови АВ0 у людей. Значительные отличия современных популяций друг от друга могут отражать последствия дрейфа генов, который происходил в доисторические времена в моменты прохождения предковых популяций через «бутылочное горлышко» численности.
    Популяционные волны и дрейф генов.
    Численность популяций редко остается постоянной во времени. За подъемами численности следуют спады. С.С.Четвериков одним из первых обратил внимание на периодические колебания численности природных популяций, популяционные волны. Они играют очень важную роль в эволюции популяций. Дрейф генов мало сказывается на частотах аллелей в многочисленных популяциях. Однако в периоды резкого спада численности его роль сильно возрастает. В такие моменты он может становиться решающим фактором эволюции. В период спада частота определенных аллелей может резко и непредсказуемо меняться. Может происходить утеря тех или иных аллелей и резкое обеднение генетического разнообразия популяций. Потом, когда численность популяции начинает возрастать, популяция будет из поколения в поколение воспроизводить ту генетическую структуру, которая установилась в момент прохождения через «бутылочное горлышко» численности. Примером могут служить ситуация с гепардами – представителями кошачьих. Ученые обнаружили, что генетическая структура всех современных популяций гепардов очень сходна. При этом генетическая изменчивость внутри каждой из популяций крайне низка. Эти особенности генетической структуры популяций гепардов можно объяснить, если предположить, что относительно недавно (пару сотен лет назад) данный вид прошел через очень узкое горлышко численности, и все современные гепарды являются потомками нескольких (по подсчетам американских исследователей, 7) особей.
    Эффект основателя.
    Животные и растения, как правило, проникают на новые для вида территории (на острова, на новые континенты) относительно малыми группами. Частоты тех или иных аллелей таких группах могут значительно отличаться от частот этих аллелей в исходных популяциях. За вселением на новую территорию следует увеличение численности колонистов. Возникающие многочисленные популяции воспроизводит генетическую структуру их основателей. Это явление американский зоолог Эрнст Майр, один их основоположников синтетической теории эволюции, назвал эффектом основателя. Эффект основателя играл, по-видимому, ведущую роль в формировании генетической структуры видов животных и растений, населяющих вулканические и коралловые острова. Все эти виды происходят от очень небольших групп основателей, которым посчастливилось достигнуть островов. Ясно, что эти основатели представляли собой очень маленькие выборки из родительских популяций и частоты аллелей в этих выборках могли сильно отличаться. Вспомним наш гипотетический пример с лисицами, которые, дрейфуя на льдинах, попадали на необитаемые острова. В каждой из дочерних популяций частоты аллелей резко отличались друг от друга и от родительской популяции. Именно эффект основателя объясняет удивительно разнообразие океанических фаун и флор и обилие эндемичных видов на островах. Эффект основателя сыграл важную роль и в эволюции человеческих популяций. Обратите внимание, что аллель В полностью отсутствует у американских индейцев и у аборигенов Австралии. Эти континенты были заселены небольшими группами людей. В силу чисто случайных причин среди основателей этих популяций могло не оказаться ни одного носителя аллеля В. Естественно, этот аллелей отсутствует и в производных популяциях.
    Дрейф генов и молекулярные часы эволюции.
    Конечным результатом дрейфа генов является полное устранение одного аллеля из популяции и закрепление (фиксация) в ней другого аллеля. Чем чаще тот или иной аллель встречается в популяции, тем выше вероятность его фиксации вследствие дрейфа генов. Расчеты показывают, что вероятность фиксации нейтрального аллеля равна его частоте в популяции. Каждый аллель из тех, что мы наблюдаем в популяциях, когда-то возник в результате мутации. Мутации происходят со средней частотой 10-5 на ген на гамету на поколение. Следовательно, чем меньше популяция, тем меньше вероятность, что в каждом поколении хотя бы одна особь в этой популяции окажется носителем новой мутации. В популяции, состоящей из 100000 особей, в каждом новом поколении с вероятностью близкой к единице найдется новый мутантный аллель, но частота его в популяции (1 на 200000 аллелей) и, следовательно, вероятность его фиксации будет очень низкой. Вероятность того, что эта же мутация в том же поколении возникнет у хотя бы одной особи в популяции, состоящей из 10 особей, ничтожно мала, но если такая мутация все же произойдет в этой популяции, то частота мутантного аллеля (1 на 20 аллелей) и шансы на его фиксацию будут относительно высокими. Большие популяции недолго «ждут» мутационного возникновения нового аллеля, но долго его фиксируют, а малые популяции очень долго «ждут» возникновения мутации, но после того, как она возникла, она может быть быстро зафиксирована. Из этого следует парадоксальный на первый взгляд вывод: вероятность фиксации нейтральных аллелей зависит только от частоты их мутационного возникновения и не зависит от численности популяций. Поскольку частоты возникновения нейтральных мутаций примерно одинаковы у разных видов, то и скорость фиксации этих мутаций должна быть примерно одинаковой. Отсюда следует, что число мутаций, накопленных в одном и том же гене, должно быть пропорционально времени независимой эволюции этих видов. Иными словами, чем больше времени прошло с момента выделения двух видов из общего передкового вида, тем больше нейтральных мутационных замен различают эти виды. На этом принципе строится метод «молекулярных часов эволюции» – определения времени, прошедшего с момента, когда предки разных систематических групп стали эволюционировать независимо друг от друга. Американские исследователи Э. Цукуркендл и Л.Поллинг впервые обнаружили, что количество различий в последовательности аминокислот в гемоглобине и цитохроме с у разных видов млекопитающих тем больше, чем раньше разошлись их эволюционные пути. В дальнейшем эта закономерность была подтверждена на огромном экспериментальном материале, включающем десятки разных генов и сотни видов животных, растений и микроорганизмов. Оказалось, что молекулярные часы идут, как и следует из теории дрейфа генов, с постоянной скоростью. Калибровка молекулярных часов производится для каждого гена в отдельности, поскольку разные гены могут различаться по частоте возникновения нейтральных мутаций. Для этого оценивают количество замен накопленных в определенном гене у представителей таксонов, время дивергенции которых надежно установлено по палеонтологическим данным. После того, как молекулярные часы откалиброваны, их можно использовать для того, чтобы измерять время дивергенции между разными таксонами, даже в том случае, когда их общий предок пока не обнаружен в палеонтологической летописи. 1. Почему популяционные волны численности усиливают эффекты дрейфа генов? 2. Какую роль играет дрейф генов в формировании островных фаун и флор? 3. Объясните принцип молекулярных часов эволюции и его применение в эволюционных исследованиях.
    Дрейф генов, или генетико-автоматические процессы, — это явление ненаправленного изменения частот аллельных вариантов генов в популяции.
    Мы можем рассматривать дрейф генов как один из факторов эволюции популяций. Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Поэтому результаты дрейфа оказываются разными в разных популяциях – в одних фиксируется один набор аллелей, в других – другой. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны – к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования. В ходе эволюции популяций дрейф генов взаимодействует с другими факторами эволюции, прежде всего с естественным отбором. Соотношение вкладов этих двух факторов зависит как от интенсивности отбора, так и от численности популяций. При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен. Как мы уже знаем, наиболее частым последствием дрейфа генов является обеднение генетического разнообразия внутри популяций за счет фиксации одних аллелей и утраты других. Мутационный процесс, напротив, приводит к обогащению генетического разнообразия внутри популяций. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования. Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А, а в другой а, то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие. Эффект бутылочного горлышка сыграл, по-видимому, очень значительную роль в эволюции популяций человека. Предки современных людей в течение десятков тысяч лет расселялись по всему миру. На этом пути, множество популяций полностью вымирало. Даже те, которые уцелели, часто оказывались на грани вымирания. Их численность падала до критического уровня. Во время прохождения через «бутылочное горлышко» численности частоты аллелей менялись по-разному в разных популяциях. Определенные аллели утрачивались полностью в одних популяциях и фиксировались в других. После восстановления численности популяций их измененная генетическая структура воспроизводилась из поколения в поколение. Эти процессы, по-видимому, и обусловили, то мозаичное распределение некоторых аллелей, которое мы сегодня наблюдаем в локальных популяциях человека. Ниже представлено распределение аллеля В по системе групп крови АВ0 у людей. Значительные отличия современных популяций друг от друга могут отражать последствия дрейфа генов, который происходил в доисторические времена в моменты прохождения предковых популяций через «бутылочное горлышко» численности.
    Популяционные волны и дрейф генов.
    Численность популяций редко остается постоянной во времени. За подъемами численности следуют спады. С.С.Четвериков одним из первых обратил внимание на периодические колебания численности природных популяций, популяционные волны. Они играют очень важную роль в эволюции популяций. Дрейф генов мало сказывается на частотах аллелей в многочисленных популяциях. Однако в периоды резкого спада численности его роль сильно возрастает. В такие моменты он может становиться решающим фактором эволюции. В период спада частота определенных аллелей может резко и непредсказуемо меняться. Может происходить утеря тех или иных аллелей и резкое обеднение генетического разнообразия популяций. Потом, когда численность популяции начинает возрастать, популяция будет из поколения в поколение воспроизводить ту генетическую структуру, которая установилась в момент прохождения через «бутылочное горлышко» численности. Примером могут служить ситуация с гепардами – представителями кошачьих. Ученые обнаружили, что генетическая структура всех современных популяций гепардов очень сходна. При этом генетическая изменчивость внутри каждой из популяций крайне низка. Эти особенности генетической структуры популяций гепардов можно объяснить, если предположить, что относительно недавно (пару сотен лет назад) данный вид прошел через очень узкое горлышко численности, и все современные гепарды являются потомками нескольких (по подсчетам американских исследователей, 7) особей.
    Эффект основателя.
    Животные и растения, как правило, проникают на новые для вида территории (на острова, на новые континенты) относительно малыми группами. Частоты тех или иных аллелей таких группах могут значительно отличаться от частот этих аллелей в исходных популяциях. За вселением на новую территорию следует увеличение численности колонистов. Возникающие многочисленные популяции воспроизводит генетическую структуру их основателей. Это явление американский зоолог Эрнст Майр, один их основоположников синтетической теории эволюции, назвал эффектом основателя. Эффект основателя играл, по-видимому, ведущую роль в формировании генетической структуры видов животных и растений, населяющих вулканические и коралловые острова. Все эти виды происходят от очень небольших групп основателей, которым посчастливилось достигнуть островов. Ясно, что эти основатели представляли собой очень маленькие выборки из родительских популяций и частоты аллелей в этих выборках могли сильно отличаться. Вспомним наш гипотетический пример с лисицами, которые, дрейфуя на льдинах, попадали на необитаемые острова. В каждой из дочерних популяций частоты аллелей резко отличались друг от друга и от родительской популяции. Именно эффект основателя объясняет удивительно разнообразие океанических фаун и флор и обилие эндемичных видов на островах. Эффект основателя сыграл важную роль и в эволюции человеческих популяций. Обратите внимание, что аллель В полностью отсутствует у американских индейцев и у аборигенов Австралии. Эти континенты были заселены небольшими группами людей. В силу чисто случайных причин среди основателей этих популяций могло не оказаться ни одного носителя аллеля В. Естественно, этот аллелей отсутствует и в производных популяциях.
    Дрейф генов и молекулярные часы эволюции.
    Конечным результатом дрейфа генов является полное устранение одного аллеля из популяции и закрепление (фиксация) в ней другого аллеля. Чем чаще тот или иной аллель встречается в популяции, тем выше вероятность его фиксации вследствие дрейфа генов. Расчеты показывают, что вероятность фиксации нейтрального аллеля равна его частоте в популяции. Каждый аллель из тех, что мы наблюдаем в популяциях, когда-то возник в результате мутации. Мутации происходят со средней частотой 10-5 на ген на гамету на поколение. Следовательно, чем меньше популяция, тем меньше вероятность, что в каждом поколении хотя бы одна особь в этой популяции окажется носителем новой мутации. В популяции, состоящей из 100000 особей, в каждом новом поколении с вероятностью близкой к единице найдется новый мутантный аллель, но частота его в популяции (1 на 200000 аллелей) и, следовательно, вероятность его фиксации будет очень низкой. Вероятность того, что эта же мутация в том же поколении возникнет у хотя бы одной особи в популяции, состоящей из 10 особей, ничтожно мала, но если такая мутация все же произойдет в этой популяции, то частота мутантного аллеля (1 на 20 аллелей) и шансы на его фиксацию будут относительно высокими. Большие популяции недолго «ждут» мутационного возникновения нового аллеля, но долго его фиксируют, а малые популяции очень долго «ждут» возникновения мутации, но после того, как она возникла, она может быть быстро зафиксирована. Из этого следует парадоксальный на первый взгляд вывод: вероятность фиксации нейтральных аллелей зависит только от частоты их мутационного возникновения и не зависит от численности популяций. Поскольку частоты возникновения нейтральных мутаций примерно одинаковы у разных видов, то и скорость фиксации этих мутаций должна быть примерно одинаковой. Отсюда следует, что число мутаций, накопленных в одном и том же гене, должно быть пропорционально времени независимой эволюции этих видов. Иными словами, чем больше времени прошло с момента выделения двух видов из общего передкового вида, тем больше нейтральных мутационных замен различают эти виды. На этом принципе строится метод «молекулярных часов эволюции» – определения времени, прошедшего с момента, когда предки разных систематических групп стали эволюционировать независимо друг от друга. Американские исследователи Э. Цукуркендл и Л.Поллинг впервые обнаружили, что количество различий в последовательности аминокислот в гемоглобине и цитохроме с у разных видов млекопитающих тем больше, чем раньше разошлись их эволюционные пути. В дальнейшем эта закономерность была подтверждена на огромном экспериментальном материале, включающем десятки разных генов и сотни видов животных, растений и микроорганизмов. Оказалось, что молекулярные часы идут, как и следует из теории дрейфа генов, с постоянной скоростью. Калибровка молекулярных часов производится для каждого гена в отдельности, поскольку разные гены могут различаться по частоте возникновения нейтральных мутаций. Для этого оценивают количество замен накопленных в определенном гене у представителей таксонов, время дивергенции которых надежно установлено по палеонтологическим данным. После того, как молекулярные часы откалиброваны, их можно использовать для того, чтобы измерять время дивергенции между разными таксонами, даже в том случае, когда их общий предок пока не обнаружен в палеонтологической летописи. 1. Почему популяционные волны численности усиливают эффекты дрейфа генов? 2. Какую роль играет дрейф генов в формировании островных фаун и флор? 3. Объясните принцип молекулярных часов эволюции и его применение в эволюционных исследованиях.”/>
    2017-03-22
    2017-11-29
    Vetatlas

  4. Centritius Ответить

    Дрейф генов – генетико – автоматические процессы, изменение частоты генов в популяции в ряду поколений под действием случайных факторов, приводящие, как правило, к снижению наследственной изменчивости популяций. Наиболее отчетливо проявляется при резком сокращении численности популяции в результате стихийных бедствий (пожар, наводнение) массового распространения вредителей. Под действие дрейфа генов происходит усиление процесса гомозиготности особей, которая нарастает с уменьшением численности популяции. Это обусловлено тем, что в популяциях ограниченного размера увеличивается частота близкородственных скрещиваний, и в результате заметных случайных колебаний частот отдельных генов происходит закрепление одних аллелей при одновременной утрате других. Некоторые выщепившиеся гомозиготные формы в новых условиях среды могут оказаться приспособительно ценными.
    Они будут подхвачены отбором и смогут получить широкое распространение при последующем увеличении популяций. Колебание численности организмов получило название популяционных волн. Популяционные волны – одна из частых причин дрейфа генов. Особенно сильно колебания численности выражены у насекомых, хищников, растительноядных животных.

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *