Почему популяционные волны численности усиливают эффекты дрейфа генов?

10 ответов на вопрос “Почему популяционные волны численности усиливают эффекты дрейфа генов?”

  1. hathory Ответить

    Случайные ненаправленные изменения частот аллелей в популяциях называются дрейфом генов в широком смысле этого слова.
    Дрейфом генов в узком смысле слова Сьюэлл Райт назвал случайное изменение частоты аллелей при смене поколений в малых изолированных популяциях. В малых популяциях велика роль отдельных особей. Случайная гибель одной особи может привести к значительному изменению аллелофонда. Чем меньше популяция, тем больше вероятность флуктуации – случайного изменения частот аллелей. В сверхмалых популяциях по совершенно случайным причинам мутантный аллель может занять место нормального аллеля, т.е. происходит случайная фиксация мутантного аллеля.
    В отечественной биологии случайное изменение частоты аллеля в сверхмалых популяциях некоторое время называли генетико-автоматическими (Н.П. Дубинин) или стохастическими процессами (А.С. Серебровский). Эти процессы были открыты и изучались независимо от С. Райта.
    В природных популяциях наличие дрейфа генов до сих пор не доказано. Поэтому разные эволюционисты по-разному оценивают вклад дрейфа генов в общий процесс эволюции.
    Дрейф генов связан с утратой части аллелей и общим снижением уровня биоразнообразия. Следовательно, должны существовать механизмы, компенсирующие действие дрейфа генов.
    Частным случаем дрейфа генов является эффект Болдуина (или эффект «бутылочного горлышка») – изменение частот аллелей в популяции. Взаимоотношения между генами и поведением вовсе не исчерпываются однонаправленным влиянием первых на второе. Поведение тоже может влиять на гены, причем это влияние прослеживается как в эволюционном масштабе времени, так и на протяжении жизни отдельного организма. Изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление известно как «эффект Болдуина» — по имени американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими.
    Эффект Болдуина достигается за счет множества дополнительных ЭЭФ.
    Популяционные волны. Обеспечивают проявление эффекта Болдуина во времени. Периодические или апериодические колебания численности особей популяции характерны для всех без исключения живых организмов. Причинами таких колебаний могут быть различные абиотические и биотические факторы среды. Действие популяционных волн, или волн жизни, предполагает неизбирательное, случайное уничтожение особей, благодаря чему редкий перед колебанием численности генотип (аллель) может сделаться обычным и быть подхваченным естественным отбором. Если в дальнейшем численность популяции восстановится за счет этих особей, то это приведет к случайному изменению частот генов в генофонде данной популяции. Популяционные волны являются поставщиком эволюционного материала.
    Классификация популяционных волн
    Периодические колебания численности короткоживущих организмов характерны для большинства насекомых, однолетних растений, большинства грибов и микроорганизмов. В основном эти изменения вызваны сезонным колебанием численности.
    Непериодические колебания численности, зависящие от сложного сочетания разных факторов. В первую очередь они зависят от благоприятных для данного вида (популяции) отношений в пищевых цепочках: уменьшение хищников, увеличение кормовых ресурсов. Обычно такие колебания затрагивают несколько видов и животных, и растений в биогеоценозах, что может привести к коренным перестройкам всего биогеоценоза.
    Вспышки численности видов в новых районах, где отсутствуют их естественные враги.
    Резкие непериодические колебания численности, связанные с природными катастрофами (в результате засухи или пожаров). Влияние популяционных волн особенное заметно в популяциях очень малой величины (обычно при численности размножающихся особей не более 500). Именно в этих условиях популяционные волны могут как бы подставлять под действие естественного отбора редкие мутации или устранять уже довольно обычные варианты.

  2. n0panks Ответить


    Начало

    Поиск по сайту

    ТОПы

    Учебные заведения

    Предметы

    Проверочные работы

    Обновления

    Новости

    Переменка
    Отправить отзыв

  3. Velcom1968 Ответить

    Дрейф генов как фактор эволюции.
    Дрейф генов, или генетико-автоматические процессы, — это явление ненаправленного изменения частот аллельных вариантов генов в популяции.
    Мы можем рассматривать дрейф генов как один из факторов эволюции популяций. Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Поэтому результаты дрейфа оказываются разными в разных популяциях – в одних фиксируется один набор аллелей, в других – другой. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны – к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования. В ходе эволюции популяций дрейф генов взаимодействует с другими факторами эволюции, прежде всего с естественным отбором. Соотношение вкладов этих двух факторов зависит как от интенсивности отбора, так и от численности популяций. При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен. Как мы уже знаем, наиболее частым последствием дрейфа генов является обеднение генетического разнообразия внутри популяций за счет фиксации одних аллелей и утраты других. Мутационный процесс, напротив, приводит к обогащению генетического разнообразия внутри популяций. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования. Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А, а в другой а, то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие. Эффект бутылочного горлышка сыграл, по-видимому, очень значительную роль в эволюции популяций человека. Предки современных людей в течение десятков тысяч лет расселялись по всему миру. На этом пути, множество популяций полностью вымирало. Даже те, которые уцелели, часто оказывались на грани вымирания. Их численность падала до критического уровня. Во время прохождения через «бутылочное горлышко» численности частоты аллелей менялись по-разному в разных популяциях. Определенные аллели утрачивались полностью в одних популяциях и фиксировались в других. После восстановления численности популяций их измененная генетическая структура воспроизводилась из поколения в поколение. Эти процессы, по-видимому, и обусловили, то мозаичное распределение некоторых аллелей, которое мы сегодня наблюдаем в локальных популяциях человека. Ниже представлено распределение аллеля В по системе групп крови АВ0 у людей. Значительные отличия современных популяций друг от друга могут отражать последствия дрейфа генов, который происходил в доисторические времена в моменты прохождения предковых популяций через «бутылочное горлышко» численности.
    Популяционные волны и дрейф генов.
    Численность популяций редко остается постоянной во времени. За подъемами численности следуют спады. С.С.Четвериков одним из первых обратил внимание на периодические колебания численности природных популяций, популяционные волны. Они играют очень важную роль в эволюции популяций. Дрейф генов мало сказывается на частотах аллелей в многочисленных популяциях. Однако в периоды резкого спада численности его роль сильно возрастает. В такие моменты он может становиться решающим фактором эволюции. В период спада частота определенных аллелей может резко и непредсказуемо меняться. Может происходить утеря тех или иных аллелей и резкое обеднение генетического разнообразия популяций. Потом, когда численность популяции начинает возрастать, популяция будет из поколения в поколение воспроизводить ту генетическую структуру, которая установилась в момент прохождения через «бутылочное горлышко» численности. Примером могут служить ситуация с гепардами – представителями кошачьих. Ученые обнаружили, что генетическая структура всех современных популяций гепардов очень сходна. При этом генетическая изменчивость внутри каждой из популяций крайне низка. Эти особенности генетической структуры популяций гепардов можно объяснить, если предположить, что относительно недавно (пару сотен лет назад) данный вид прошел через очень узкое горлышко численности, и все современные гепарды являются потомками нескольких (по подсчетам американских исследователей, 7) особей.
    Эффект основателя.
    Животные и растения, как правило, проникают на новые для вида территории (на острова, на новые континенты) относительно малыми группами. Частоты тех или иных аллелей таких группах могут значительно отличаться от частот этих аллелей в исходных популяциях. За вселением на новую территорию следует увеличение численности колонистов. Возникающие многочисленные популяции воспроизводит генетическую структуру их основателей. Это явление американский зоолог Эрнст Майр, один их основоположников синтетической теории эволюции, назвал эффектом основателя. Эффект основателя играл, по-видимому, ведущую роль в формировании генетической структуры видов животных и растений, населяющих вулканические и коралловые острова. Все эти виды происходят от очень небольших групп основателей, которым посчастливилось достигнуть островов. Ясно, что эти основатели представляли собой очень маленькие выборки из родительских популяций и частоты аллелей в этих выборках могли сильно отличаться. Вспомним наш гипотетический пример с лисицами, которые, дрейфуя на льдинах, попадали на необитаемые острова. В каждой из дочерних популяций частоты аллелей резко отличались друг от друга и от родительской популяции. Именно эффект основателя объясняет удивительно разнообразие океанических фаун и флор и обилие эндемичных видов на островах. Эффект основателя сыграл важную роль и в эволюции человеческих популяций. Обратите внимание, что аллель В полностью отсутствует у американских индейцев и у аборигенов Австралии. Эти континенты были заселены небольшими группами людей. В силу чисто случайных причин среди основателей этих популяций могло не оказаться ни одного носителя аллеля В. Естественно, этот аллелей отсутствует и в производных популяциях.
    Дрейф генов и молекулярные часы эволюции.
    Конечным результатом дрейфа генов является полное устранение одного аллеля из популяции и закрепление (фиксация) в ней другого аллеля. Чем чаще тот или иной аллель встречается в популяции, тем выше вероятность его фиксации вследствие дрейфа генов. Расчеты показывают, что вероятность фиксации нейтрального аллеля равна его частоте в популяции. Каждый аллель из тех, что мы наблюдаем в популяциях, когда-то возник в результате мутации. Мутации происходят со средней частотой 10-5 на ген на гамету на поколение. Следовательно, чем меньше популяция, тем меньше вероятность, что в каждом поколении хотя бы одна особь в этой популяции окажется носителем новой мутации. В популяции, состоящей из 100000 особей, в каждом новом поколении с вероятностью близкой к единице найдется новый мутантный аллель, но частота его в популяции (1 на 200000 аллелей) и, следовательно, вероятность его фиксации будет очень низкой. Вероятность того, что эта же мутация в том же поколении возникнет у хотя бы одной особи в популяции, состоящей из 10 особей, ничтожно мала, но если такая мутация все же произойдет в этой популяции, то частота мутантного аллеля (1 на 20 аллелей) и шансы на его фиксацию будут относительно высокими. Большие популяции недолго «ждут» мутационного возникновения нового аллеля, но долго его фиксируют, а малые популяции очень долго «ждут» возникновения мутации, но после того, как она возникла, она может быть быстро зафиксирована. Из этого следует парадоксальный на первый взгляд вывод: вероятность фиксации нейтральных аллелей зависит только от частоты их мутационного возникновения и не зависит от численности популяций. Поскольку частоты возникновения нейтральных мутаций примерно одинаковы у разных видов, то и скорость фиксации этих мутаций должна быть примерно одинаковой. Отсюда следует, что число мутаций, накопленных в одном и том же гене, должно быть пропорционально времени независимой эволюции этих видов. Иными словами, чем больше времени прошло с момента выделения двух видов из общего передкового вида, тем больше нейтральных мутационных замен различают эти виды. На этом принципе строится метод «молекулярных часов эволюции» – определения времени, прошедшего с момента, когда предки разных систематических групп стали эволюционировать независимо друг от друга. Американские исследователи Э. Цукуркендл и Л.Поллинг впервые обнаружили, что количество различий в последовательности аминокислот в гемоглобине и цитохроме с у разных видов млекопитающих тем больше, чем раньше разошлись их эволюционные пути. В дальнейшем эта закономерность была подтверждена на огромном экспериментальном материале, включающем десятки разных генов и сотни видов животных, растений и микроорганизмов. Оказалось, что молекулярные часы идут, как и следует из теории дрейфа генов, с постоянной скоростью. Калибровка молекулярных часов производится для каждого гена в отдельности, поскольку разные гены могут различаться по частоте возникновения нейтральных мутаций. Для этого оценивают количество замен накопленных в определенном гене у представителей таксонов, время дивергенции которых надежно установлено по палеонтологическим данным. После того, как молекулярные часы откалиброваны, их можно использовать для того, чтобы измерять время дивергенции между разными таксонами, даже в том случае, когда их общий предок пока не обнаружен в палеонтологической летописи. 1. Почему популяционные волны численности усиливают эффекты дрейфа генов? 2. Какую роль играет дрейф генов в формировании островных фаун и флор? 3. Объясните принцип молекулярных часов эволюции и его применение в эволюционных исследованиях.
    Дрейф генов, или генетико-автоматические процессы, — это явление ненаправленного изменения частот аллельных вариантов генов в популяции.
    Мы можем рассматривать дрейф генов как один из факторов эволюции популяций. Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Поэтому результаты дрейфа оказываются разными в разных популяциях – в одних фиксируется один набор аллелей, в других – другой. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны – к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования. В ходе эволюции популяций дрейф генов взаимодействует с другими факторами эволюции, прежде всего с естественным отбором. Соотношение вкладов этих двух факторов зависит как от интенсивности отбора, так и от численности популяций. При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен. Как мы уже знаем, наиболее частым последствием дрейфа генов является обеднение генетического разнообразия внутри популяций за счет фиксации одних аллелей и утраты других. Мутационный процесс, напротив, приводит к обогащению генетического разнообразия внутри популяций. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования. Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А, а в другой а, то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие. Эффект бутылочного горлышка сыграл, по-видимому, очень значительную роль в эволюции популяций человека. Предки современных людей в течение десятков тысяч лет расселялись по всему миру. На этом пути, множество популяций полностью вымирало. Даже те, которые уцелели, часто оказывались на грани вымирания. Их численность падала до критического уровня. Во время прохождения через «бутылочное горлышко» численности частоты аллелей менялись по-разному в разных популяциях. Определенные аллели утрачивались полностью в одних популяциях и фиксировались в других. После восстановления численности популяций их измененная генетическая структура воспроизводилась из поколения в поколение. Эти процессы, по-видимому, и обусловили, то мозаичное распределение некоторых аллелей, которое мы сегодня наблюдаем в локальных популяциях человека. Ниже представлено распределение аллеля В по системе групп крови АВ0 у людей. Значительные отличия современных популяций друг от друга могут отражать последствия дрейфа генов, который происходил в доисторические времена в моменты прохождения предковых популяций через «бутылочное горлышко» численности.
    Популяционные волны и дрейф генов.
    Численность популяций редко остается постоянной во времени. За подъемами численности следуют спады. С.С.Четвериков одним из первых обратил внимание на периодические колебания численности природных популяций, популяционные волны. Они играют очень важную роль в эволюции популяций. Дрейф генов мало сказывается на частотах аллелей в многочисленных популяциях. Однако в периоды резкого спада численности его роль сильно возрастает. В такие моменты он может становиться решающим фактором эволюции. В период спада частота определенных аллелей может резко и непредсказуемо меняться. Может происходить утеря тех или иных аллелей и резкое обеднение генетического разнообразия популяций. Потом, когда численность популяции начинает возрастать, популяция будет из поколения в поколение воспроизводить ту генетическую структуру, которая установилась в момент прохождения через «бутылочное горлышко» численности. Примером могут служить ситуация с гепардами – представителями кошачьих. Ученые обнаружили, что генетическая структура всех современных популяций гепардов очень сходна. При этом генетическая изменчивость внутри каждой из популяций крайне низка. Эти особенности генетической структуры популяций гепардов можно объяснить, если предположить, что относительно недавно (пару сотен лет назад) данный вид прошел через очень узкое горлышко численности, и все современные гепарды являются потомками нескольких (по подсчетам американских исследователей, 7) особей.
    Эффект основателя.
    Животные и растения, как правило, проникают на новые для вида территории (на острова, на новые континенты) относительно малыми группами. Частоты тех или иных аллелей таких группах могут значительно отличаться от частот этих аллелей в исходных популяциях. За вселением на новую территорию следует увеличение численности колонистов. Возникающие многочисленные популяции воспроизводит генетическую структуру их основателей. Это явление американский зоолог Эрнст Майр, один их основоположников синтетической теории эволюции, назвал эффектом основателя. Эффект основателя играл, по-видимому, ведущую роль в формировании генетической структуры видов животных и растений, населяющих вулканические и коралловые острова. Все эти виды происходят от очень небольших групп основателей, которым посчастливилось достигнуть островов. Ясно, что эти основатели представляли собой очень маленькие выборки из родительских популяций и частоты аллелей в этих выборках могли сильно отличаться. Вспомним наш гипотетический пример с лисицами, которые, дрейфуя на льдинах, попадали на необитаемые острова. В каждой из дочерних популяций частоты аллелей резко отличались друг от друга и от родительской популяции. Именно эффект основателя объясняет удивительно разнообразие океанических фаун и флор и обилие эндемичных видов на островах. Эффект основателя сыграл важную роль и в эволюции человеческих популяций. Обратите внимание, что аллель В полностью отсутствует у американских индейцев и у аборигенов Австралии. Эти континенты были заселены небольшими группами людей. В силу чисто случайных причин среди основателей этих популяций могло не оказаться ни одного носителя аллеля В. Естественно, этот аллелей отсутствует и в производных популяциях.
    Дрейф генов и молекулярные часы эволюции.
    Конечным результатом дрейфа генов является полное устранение одного аллеля из популяции и закрепление (фиксация) в ней другого аллеля. Чем чаще тот или иной аллель встречается в популяции, тем выше вероятность его фиксации вследствие дрейфа генов. Расчеты показывают, что вероятность фиксации нейтрального аллеля равна его частоте в популяции. Каждый аллель из тех, что мы наблюдаем в популяциях, когда-то возник в результате мутации. Мутации происходят со средней частотой 10-5 на ген на гамету на поколение. Следовательно, чем меньше популяция, тем меньше вероятность, что в каждом поколении хотя бы одна особь в этой популяции окажется носителем новой мутации. В популяции, состоящей из 100000 особей, в каждом новом поколении с вероятностью близкой к единице найдется новый мутантный аллель, но частота его в популяции (1 на 200000 аллелей) и, следовательно, вероятность его фиксации будет очень низкой. Вероятность того, что эта же мутация в том же поколении возникнет у хотя бы одной особи в популяции, состоящей из 10 особей, ничтожно мала, но если такая мутация все же произойдет в этой популяции, то частота мутантного аллеля (1 на 20 аллелей) и шансы на его фиксацию будут относительно высокими. Большие популяции недолго «ждут» мутационного возникновения нового аллеля, но долго его фиксируют, а малые популяции очень долго «ждут» возникновения мутации, но после того, как она возникла, она может быть быстро зафиксирована. Из этого следует парадоксальный на первый взгляд вывод: вероятность фиксации нейтральных аллелей зависит только от частоты их мутационного возникновения и не зависит от численности популяций. Поскольку частоты возникновения нейтральных мутаций примерно одинаковы у разных видов, то и скорость фиксации этих мутаций должна быть примерно одинаковой. Отсюда следует, что число мутаций, накопленных в одном и том же гене, должно быть пропорционально времени независимой эволюции этих видов. Иными словами, чем больше времени прошло с момента выделения двух видов из общего передкового вида, тем больше нейтральных мутационных замен различают эти виды. На этом принципе строится метод «молекулярных часов эволюции» – определения времени, прошедшего с момента, когда предки разных систематических групп стали эволюционировать независимо друг от друга. Американские исследователи Э. Цукуркендл и Л.Поллинг впервые обнаружили, что количество различий в последовательности аминокислот в гемоглобине и цитохроме с у разных видов млекопитающих тем больше, чем раньше разошлись их эволюционные пути. В дальнейшем эта закономерность была подтверждена на огромном экспериментальном материале, включающем десятки разных генов и сотни видов животных, растений и микроорганизмов. Оказалось, что молекулярные часы идут, как и следует из теории дрейфа генов, с постоянной скоростью. Калибровка молекулярных часов производится для каждого гена в отдельности, поскольку разные гены могут различаться по частоте возникновения нейтральных мутаций. Для этого оценивают количество замен накопленных в определенном гене у представителей таксонов, время дивергенции которых надежно установлено по палеонтологическим данным. После того, как молекулярные часы откалиброваны, их можно использовать для того, чтобы измерять время дивергенции между разными таксонами, даже в том случае, когда их общий предок пока не обнаружен в палеонтологической летописи. 1. Почему популяционные волны численности усиливают эффекты дрейфа генов? 2. Какую роль играет дрейф генов в формировании островных фаун и флор? 3. Объясните принцип молекулярных часов эволюции и его применение в эволюционных исследованиях.”/>
    2017-03-22
    2017-11-29
    Vetatlas

  4. vd153 Ответить

    Генетико-автоматические процессы, или дрейф генов, приводят к сглаживанию изменчивости внутри группы и появлению случайных, не связанных с отбором различий между изолятами. Именно это выявили наблюдения за особенностями фенотипов малочисленных групп населения в условиях, например, географической изоляции. Так, среди жителей Памира резус-отрицательные индивидуумы встречаются в 2—3 раза реже, чем в Европе. В большинстве кишлаков такие люди составляют 3—5% популяции. В некоторых изолированных селениях, однако, их насчитывается до 15%, т.е. примерно как в европейской популяции.
    В крови человека имеются гаптоглобины, которые связывают свободный гемоглобин после разрушения эритроцитов, чем предотвращают его выведение из организма. Синтез гаптоглобина Нр1-1 контролируется геном Нр1. Частота этого гена у представителей двух соседних племен на Севере Южной Америки составляет 0,205 и 0,895, отличаясь более чем в 4 раза.
    Примером действия дрейфа генов в человеческих популяциях служит эффект родоначальника. Он возникает, когда несколько семей порывают с родительской популяцией и создают новую на другой территории. Такая популяция обычно поддерживает высокий уровень брачной изоляции. Это способствует случайному закреплению в ее генофонде одних аллелей и утрате других. В результате частота очень редкогоаллеля может стать значительной.
    Так, члены секты амишей в округе Ланкастер штата Пенсильвания, насчитывающей к середине девятнадцатого века примерно 8000 человек, почти все произошли от трех супружеских пар, иммигрировавших в Америку в 1770 г. В этом изоляте обнаружено 55 случаев особой формы карликовости с многопалостью, которая наследуется по аутосомно-рецессивному типу. Эта аномалия не зарегистирирована среди амишей штатов Огайо и Индиана. В мировой медицинской литературе описано едва ли 50 таких случаев. Очевидно, среди членов первых трех семей, основавших популяцию, находился носитель соответствующего рецессивного мутантного аллеля — «родоначальник» соответствующего фенотипа.
    В XVIII в. из Германии в США иммигрировало 27 семей, основавших в штате Пенсильвания секту дункеров. За 200-летний период существования в условиях сильной брачной изоляции генофонд популяции дункеров изменился в сравнении с генофондом населения Рейнской области Германии, из которой они произошли. При этом степень различий во времени увеличивалась. У лиц в возрасте 55 лет и выше частоты аллелей системы групп крови MN ближе к цифрам, типичным для населения Рейнской области, чем у лиц в возрасте 28—55 лет. В возрастной группе 3—27 лет сдвиг достигает еще больших значений (табл. 1).
    Рост среди дункеров лиц с группой крови М и снижение — с группой крови N нельзя объяснить действием отбора, так как направление изменений не совпадает с таковым в целом для населения штата Пенсильвания. В пользу дрейфа генов говорит также то, что в генофонде американских дункеров увеличилась концентрация аллелей, контролирующих развитие заведомо биологически нейтральных признаков, например оволосения средней фаланги пальцев, способности отставлять большой палец кисти (рис. 4).
    Таблица 1. Прогрессивное изменение концентрации аллелей системы групп крови MN в популяции дункеров
    Возраст членов изолята, лет
    Концентрация аллеляLM
    LN
    Более 55 От 28 до 55 От 3 до 27
    0,55 0,66 0,735
    0,45 0,34 0,265
    На протяжении большей части истории человечества дрейф генов оказывал влияние на генофонды популяций людей. Так, многие особенности узкоместных типов в пределах арктической, байкальской, центрально-азиатской, уральской групп населения Сибири являются, по-видимому, результатом генетико-автоматических процессов в условиях изоляции малочисленных коллективов. Эти процессы, однако, не имели решающего значения в эволюции человека.

    Рис. 4. Распространение нейтральных признаков в изолятедункеров штата Пенсильвания: а—рост волос на средней фаланге пальцев кисти, б—способность отставлять большой палец кисти
    Последствия дрейфа генов, представляющие интерес для медицины, заключаются в неравномерном распределении по группам населения Земного шара некоторых наследственных заболеваний. Так, изоляцией и дрейфом генов объясняется, по-видимому, относительно высокая частота церебромакулярной дегенерации1 в Квебеке и Ньюфаундленде, детского цестиноза во Франции, алкаптонурии в Чехии, одного из типов порфирии среди европеоидного населения в Южной Америке, адреногенитального синдрома у эскимосов. Эти же факторы могли быть причиной низкой частоты фенилкетонурии у финнов и евреев-ашкенази.
    Изменение генетического состава популяции вследствие генетико-автоматических процессов приводит к гомозиготизации индивидуумов. При этом чаще фенотипические последствия оказываются неблагоприятными. Гомозиготизация – это перевод гетерозигот в гомозиготы при близкородствснном скрещивании. Ч. Дарвин описывает явление, которое вполне можно объяснить дрейфом генов. «Кролики, одичавшие на острове Порто-Санто, близ о. Мадейры», заслуживают более полного описания*. Вместе с тем следует помнить, что возможно образование и благоприятных комбинаций аллелей. В качестве примера рассмотрим родословные Тутанхамона (рис.5) и Клеопатры VII (рис. 6), в которых близкородственные браки были правилом на протяжении многих поколений.
    Тутанхамон умер в возрасте 18 лет. Анализ его изображения в детском возрасте и подписи к этому изображению позволяют предположить, что он страдал генетическим заболеванием — целиакией, которая проявляется в изменении слизистой оболочки кишечника, исключающем всасывание клейковины.
    ________________________________________________________
    1церебромакулярная дегенерация, болезнь Тея – Сакса. Относится к группе наследственных липидных болезней мозга . На основании возраста начала болезни, клинических проявлений, картины глазного дна и данных биохимического исследования выделяют 5 форм амавротическойидиотии: врожденную, раннюю детскую, позднюю детскую, ювенильную и позднюю. Некоторые из этих форм отличаются и по характеру наследования.Характерный признак заболевания – диффузная дегенерация ганглиозных клеток во всех отделах нервной системы. Процесс распада ганглиозных клеток и превращения многих из них в зернистую массу – шафферовская дегенерация – является патогномоничным признаком амавротическойидиотии. Отмечаются также распад миелиновых волокон, особенно в зрительных и пирамидных путях, дегенеративные изменения глии.Врожденная форма – редкое заболевание. У ребенка уже при рождении отмечается микро- или гидроцефалия, параличи, судороги. Быстро наступает смерть. В мозговой ткани увеличено содержание ганглиозида Gm3.
    Тутанхамон родился от брака Аменофиса III и Синтамоне, которая была дочерью Аменофиса III. Таким образом, мать фараона была его сводной сестрой. В могильном склепе Тутанхамона обнаружены мумии двух, по всей видимости мертворожденных, детей от брака с Анкесенамон, его племянницей.
    Первая жена фараона была или его сестрой, или дочерью. Брат Тутанхамона Аменофис IV предположительно страдал болезнью Фрелиха и умер в 25—26 лет. Его дети от браков с Нефертити и Анкесенамон (его дочерью) были бесплодны. С другой стороны, известная своим умом и красотой Клеопатра VII была рождена в браке сына Птоломея Х и его родной сестры, которому предшествовали кровнородственные браки на протяжении по крайней мере шести поколений.
    ________________________________________________________________
    *Это интересно
    В 1418 или 1419 г. у ГонзалесаЗарко на корабле случайно оказалась беременная крольчиха, которая родила во время путешествия. Все детеныши были выпущены на остров. Кролики уменьшились почти на три дюйма в длину и почти вдвое в весе тела. По окраске кролик с Порто-Санто значительно отличается от обыкновенного. Они необычайно дики и проворны. По своим привычкам они более ночные животные. Производят от 4 до 6 детенышей в помете. Не удалось спарить с самками других пород”. Примером воздействия дрейфа генов могут быть кошки о. Вознесения. Более 100 лет назад на острове появились крысы. Они расплодились в таком количестве, что английский комендант решил избавиться от них с помощью кошек. По его просьбе привезли кошек. Но они сбежали в отдаленные уголки острова и стали уничтожать не крыс, а домашнюю птицу и диких цесарок.
    Другой комендант, чтобы избавиться от кошек, завез собак. Собаки не прижились — они ранили лапы об острые кромки шлака. Кошки со временем стали свирепыми и кровожадными. За столетие они отрастили себе почти собачьи клыки и стали сторожить дома островитян, ходить по пятам за хозяином и бросаться на посторонних.

    Рис. 5. Родословная фараона XVIII династии Тутанхамона

    Рис. 6. Родословная Клеопатры VII
    Заключение и выводы:
    Традиционно волны численности (жизни, популяционные) — присущие всем видам периодические и апериодические изменения численности особей в результате влияния абиотических и биотических факторов, воздействующих на популяцию, считаются “поставщиком” элементарного эволюционного материала.
    Наилучшим доказательством значения дрейфа генов в микроэволюции
    служит характер случайной локальной дифференциации в серии перманентноили периодически изолированных маленьких колоний. Дифференциация подобного типа многократно обнаруживалась в различных группах животных ирастений, популяции которых представляют собой систему колоний. Этадифференциация, если и не доказывает, то по крайней мере сильно склоняет кмнению о том, что дрейф генов играет важную роль в популяционных системах такого типа.
    Использованная литература:
    1. Гинтер Е.К Медицинская генетика: Учебник. – М.: Медицина, 2003. – 448 с.: ил
    2. Грин Н., Стаут У., Тейлор Д «Биология» в 3 томах Москва «Мир» 2000г
    3. Гуттман Б., Гриффитс Э., Сузуки Д., Кулис Т. Генетика. М.: ФАИР – ПРЕСС, 2004., 448 с
    4. Жимулев И.Ф Генетика. Издательство Сибирского университета., 2007. – 480 с.:ил.
    5. Курчанов, Н.А. Генетика человека с основами общей генетики. / Н.А. Курчанов. – СПб.: СпецЛит, 2006. – 174 с.
    6. Мамонтов С.Г. Биология – М., 2004
    7. Шевченко В.А., Топорнина Н.А., Стволинская Н.С. Генетика человека: Учеб.для студ. Высш. учеб. заведений. – М.: ВЛАДОС, 2002. – 240 с.9.
    8. Ярыгин В.Н, В.И. Васильева, И.Н. Волков, В.В. Синелыцикова Биология. В 2 кн.: Учеб.для медиц. спец. Вузов М.: Высш. шк., 2003.— 432с.: ил.

  5. Ben Gunn Ответить

    Изменение генофондов популяций происходит как на подъеме, так и на спаде популяционной волны. При росте численности организмов наблюдается слияние ранее разобщенных популяций и объединение их генофондов. Так как популяции по своему генетическому составу уникальны, в результате такого слияния возникают новые генофонды с измененными по сравнению с исходными частотами аллелей.
    Рост количества организмов сопровождается расширением занимае­мой территории. На гребне популяционной волны некоторые группы особей выселяются за пределы ареала вида, оказываются в нетипичных условиях существования и испытывают действие новых факторов естественного отбора. Повышение концентрации особей в связи с ростом их численности усиливает внутривидовую борьбу за существо­вание.
    При спаде численности наблюдается распад крупных популяций. Возникающие малочисленные популяции характеризуются измененны­ми генофондами. В условиях массовой гибели организмов редкие мутантные аллели могут быть генофондом вида потеряны. При сохранении редкого аллеля его концентрация в генофонде мало­численной популяции автоматически возрастает. На спаде «волны жизни» часть популяций, как правило, небольших по размерам, остается за пределами обычного ареала вида и, испытывая действие необычных условий жизни, вымирает. Иногда, благодаря благоприятному генети­ческому составу, такие популяции переживают период спада численно­сти. Будучи изолированными от основной массы вида, существуя в необычной среде, они нередко служат родоначальниками новых видов.
    Действияпопуляционных волн на генофонды не являются направленными, поэтому они, так же как и мутационный процесс, подготавливают эволюционный материал к действию других элементарных эволюционных факторов.
    Изоляция. Только в результате прекращения панмиксии, т. е. благодаря изо­ляции, из одной исходной популяции или из групп могут сформироваться две или более генетически отличающи­еся группы организмов, а в дальней­шем — новые подвиды и виды. Изоля­ция сама по себе не создает новых форм. Для их создания необходимы генети­ческая неоднородность и отбор, но изоляция способствует дивергенции.
    Выше уже говорилось, что, как пра­вило, между видами отсутствует гибри­дизация, а следовательно, не происхо­дит обмена генами. В этом смысле каж­дый вид представляет собой генетиче­ски закрытую систему. Представители различных популяций и подвидов, вхо­дящих в состав вида, легко скрещи­ваются между собой, обмениваются генами и, следовательно, являются ге­нетически открытыми системами. Потенциально каждый подвид может дать на­чало новому виду, т. е. из генетически открытой системы перейти в генетиче­ски закрытую. В большинстве случаев, по-видимому, такому процессу способ­ствует изоляция.
    Различают следующие основные фор­мы изоляции: географическую, эколо­гическую и генетическую.
    Географическая изоляция возникает в результате фрагментации ареала материнского вида. Она может быть следствием разграничения физически­ми барьерами (горными хребтами, водными пространствами и др.). Так возникли, например, эндемичные бай­кальские виды ресничных червей, ра­кообразных, рыб.
    Экологическая изоляция достига­ется тем, что две группы организмов, хотя и обитают в одной географи­ческой области, расселяются в раз­личных экологических условиях или сроки размножения их не совпадают. Озерная и прудовая лягушки, нередко обитающие в одних водоемах, раз­множаются при различной температуре воды: первая приступает к икро­метанию тогда, когда у второй оно закончено. Этим обеспечивается не­возможность скрещивания между ними.
    Генетическая изоляция нередко обу­словлена особенностями числа и фор­мы хромосом, в силу чего у гибридов не может осуществляться мейоз (на­пример, у мулов). Причинами изоли­рующего механизма становятся полиплоидия и хромосомные перестройки. В результате физиологической не­совместимости тканей матери и гиб­ридного эмбриона могут возникнуть препятствия для гибридизации у мле­копитающих.
    В зависимости от характера изоля­ции различают две основные формы видообразования : аллопатрическое и симпатрическое.
    Аллопатрическое (гр. allo — разный и patris — родина) видообразование встречается в тех случаях, когда но­вый вид возникает из популяций, ока­завшихся территориально разобщен­ными. Это может быть следствием по­явления географических преград либо в результате расселения популяций исходного вида от прежнего центра существования и преобразования в но­вых условиях.
    Симпатрическое (гр. sym — вместе) видообразование — возникновение но­вых видов внутри прежнего ареала. Чаще всего эта форма видообразова­ния связана с изменением в числе или структурах хромосом (т. е. генетиче­ской изоляцией), но может быть и в результате сезонной изоляции. Сим­патрическое видообразование нередко приводит к формированию видов-двойников, морфологически почти не­отличимых, но изолированных гене­тически. Так, на территории европей­ской части нашей страны обитает несколько видов-двойников комара Аnophelesmaculipennis морфологи­чески не отличимых, но разнящихся некоторыми экологическими призна­ками и кариотипом.
    Дрейф генов. Мутации и комбинативная изменчивость, периодические колебания численности организмов, изоляция изменяют генофонды популяций случайным образом. Их действие совместно с естественным отбором в процессе видообразования придает биологической изменчивости в це­лом приспособительный характер. Выполнению отбором упорядочива­ющей роли препятствуют изменения концентрации аллелей, зависящие от случайных причин, которые обусловливают преимущественное размножение генотипов вне связи с их адаптивной ценностью. Динамика концентрации аллелей в генофондах последовательных поко­лений носит статистический характер, поэтому размах случайных колебаний частот аллелей увеличивается по мере сокращения численно­сти популяции.
    Расчеты показывают, что при воспроизведении 5000 потом­ков родительской популяцией с частотой некоего аллеля р = 0,50 в 99,994% вариантов дочерних популяций колебания концентрации этого аллеля в силу случайных причин (в отсутствии отбора по этому аллелю) не выйдут за пределы 0,48—0,52. Если же родительская популяция мала и воспроизводит 50 потомков, то диапазон случайных колебаний концентрации наблюдаемого аллеля в том же проценте вариантов дочерних популяций составит 0,30—0,70. Случайные, не обусловленные действием естественного отбора колебания частот аллелей называют генетико-автоматическими процессами или дрейфом генов.
    При значительном размахе колебаний в последовательных поколениях создаются условия для потери популяцией некоторых аллелей и закрепления других. В результате происходит гомозиготизация особей и затухание изменчивости. Предположим, что популяция состоит из четырех особей и имеет аллель с частотой р= 0,125. Это оз­начает, что указанный аллель присутствует в генофонде в единственном экземпляре у одной из особей, гетерозиготной по соответствующему локусу.
    Любое случайное стечение обстоятельств, исключающее такую особь из размножения, приведет к утрате аллеля и генофонд дочерней популяции будет его лишен.
    Дрейф генов обусловливает утрату (р = 0) или фиксацию (р = 1) аллелей в гомозиготном состоянии у всех членов популяции вне связи с их адаптивной ценностью. Он играет важную роль в формировании генофондов малочисленных групп организмов, изолированных от остальной части вида.
    ЕО. В популяции организмов, размножающихся половым способом, существует большое разнообразие генотипов и, следовательно, феноти­пов. Благодаря индивидуальной изменчивости в условиях конкретной среды обитания приспособленность разных генотипов (фенотипов) различна. Различия между организмами по приспособленности, оцениваемой по передаче аллелей следующему поколению, выявляются в природе с помощью есте­ственного отбора. Главный результат отбора заключается в относительном вкладе особей в генофонд дочерней популяции.
    Необходимой предпосылкой отбора служит борьба за существова­ние — конкуренция за пищу, жизненное пространство, партнера для спаривания. Естественный отбор происходит на всех стадиях онтогене­за организмов и обеспечивает в конечном итоге дифференциальное (избирательное) воспроизведение (размножение) генотипов. Благодаря естественному отбору аллели (признаки), повышающие выживаемость и репродуктивную способность, накапливаются в ряду поколений, изменяя генетический состав популяций в биологически целесообразном направлении. В природных условиях естественный отбор осуществля­ется исключительно по фенотипу. Отбор генотипов происходит вторично через отбор фенотипов, которые отражают генетическую конституцию организмов.
    Как элементарный эволюционный фактор естественный отбор действует в популяциях. Популяция является полем действия, отдельные особи — объектами действия, а конкретные признаки — точками приложения отбора.
    Эффективность отбора по качественному и количественному изменению генофонда популяции зависит от величины давления и направления его действия. Величина давления выражается коэффици­ентом отбора (S), который характеризует интенсивность элиминации из репродуктивного процесса или сохранения, соответственно, менее или более приспособленных форм по сравнению с формой, принятой за стандарт приспособленности.
    Отбор особенно эффективен в отношении доминантных аллелей при условии их полного фенотипичного проявления. Он идет медленно в отношении рецессивных аллелей и при неполном доминировании. На эффективность отбора влияет исходная концентрация аллеля в гено­фонде.
    В теории, упрощая ситуацию, допускают, что отбор действует на генотипы благодаря различиям в адаптивном значении отдельных аллелей. В реальности приспособительная ценность генотипов зависит от действия и взаимодействия всей совокупности генов. Оценка величины давления отбора по изменению концентрации конкретных аллелей технически часто невыполнима. Поэтому расчет проводят по изменению концентрации организмов определенного фенотипа.

  6. medyankins910@gmail.com Ответить

    Популяционные волны, или «волны жизни», – изменения численности особей в популяциях, возникающие под влиянием среды и ведущие к изменению интенсивности естественного отбора и генетической структуры популяции. Причинами наблюдаемых популяционных волн обычно являются обильная кормовая база или, наоборот, недостаток пищи, давление хищников, паразитов или воздействие болезней. Иногда популяционные волны провоцируются и климатическими факторами: наводнениями, сильными морозами, ураганами и т. п. Эволюционное значение популяционных волн состоит в том, что при росте численности особей в популяции увеличивается концентрация мутаций и, соответственно, мутантных особей. Следовательно, доля наследственной изменчивости в такой популяции возрастает. Если же численность особей в популяции сокращается, то её генетический состав может стать менее разнообразным – в ней остаются особи с определёнными генотипами, и в дальнейшем восстановление её численности будет происходить только за их счёт. Некоторые гены в таком случае могут навсегда исчезнуть из генофонда популяции, т. е. генофонд популяции обеднеет. Такие процессы в популяции получили название дрейфа генов – случайного ненаправленного изменения частот аллелей в популяции при её небольшой численности.

  7. qwaker62 Ответить

    В природных условиях постоянно происходят периодические колебания численности популяций, их называют популяционными волнами, или волнами жизни. Численность популяций претерпевает значительные изменения, связанные с сезонными изменениями, годовыми колебаниями абиотических факторов среды, с биотическими факторами, с природными явлениями, катастрофами, др. Масштабы колебаний численности популяций являются различными и могут быть значительными. Например, нередки случаи резкого сокращения численности популяции, связанные с пожарами, наводнениями, длительными засухами, извержениями вулканов. Известны случаи массового размножения популяций отдельных видов, например, саранчи, грибов, болезнетворных бактерий (эпидемии). Есть примеры резкой вспышки численности видов, представители которых оказались в новых для них условиях, где нет врагов, и имеется хорошая кормовая база (колорадский жук в Европе, кролики в Австралии). Процессы эти носят случайный характер, приводя к гибели одни генотипы и вызывая развитие других, вследствие чего происходят существенные перестройки генофонда популяции. Редкий перед колебанием численности генотип (аллель) может сделаться обычным и будет подхвачен естественным отбором. Влияние популяционных волн может быть особенно заметно в популяциях очень малой величины, обычно при численности размножающихся особей не более 500. В этих условиях популяционные волны могут подставлять под действие естественного отбора редкие мутации или устранять обычные варианты. Явления перестройки генофонда и изменения частот встречаемости существующих аллелей (гена), связанные с резким и случайным изменением численности популяций, утраты генов, получили название дрейфа генов. Популяционные волны и связанные с ними явления дрейфа генов случайно изменяют концентрацию разных генотипов и мутаций, приводят к отклонениям от генетического равновесия в популяциях. Эти изменения могут быть подхвачены отбором и способны повлиять на дальнейшие процессы эволюционных преобразований.
    Классификация популяционных волн: 1) периодические колебания численности короткоживущих организмов – сезонные колебания численности микроорганизмов, большинства насекомых, однолетних растений, грибов; 2) непериодические колебания численности, зависящие от сложного сочетания разных факторов (ослабление пресса хищников для жертв, увеличение кормовых ресурсов), обычно такие колебания численности касаются многих видов в экосистемах и порой ведут к коренным перестройкам всей экосистемы; 3) вспышки численности видов в новых районах, где отсутствуют их естественные враги (элодея канадская в водоёмах Европы, американская норка и ондатра в Евразии); 4) резкие непериодические колебания численности, связанные с природными «катастрофами» (несколько засушливых лет). Действие популяционных волн, как и действие другого элементарного эволюционного фактора – мутационного процесса, статистично и ненаправленно. Популяционные волны служат поставщиком элементарного эволюционного материала.

  8. Vlastil Ответить

    Изоляция. Эволюционным фактором для популяций, особи которой размножаются половым путём, является ограничение свободы скрещивания. Изолированные группы всегда начинают эволюционировать самотоятельно. Находясь в различающихся условиях среды и испытывая давление разных эволюционных факторов, новые популяции будут всё более отличаться по своим генофондам.
    Дрейф генов – изменение генетической структуры популяции в результате любых случайных причин. Обычно дрейф генов проявляется при небольшой численности популяции и ведет к уменьшению наследственной изменчивости в ней.
    Все эволюционные факторы, такие как мутационный процесс, изо­ляция, популяционные волны, оказывают значительное, но ненаправ­ленное и случайное влияние на популяцию. Главное их значение в том, что они способны создать эволюционный материал и включить в действие основной направляющий фактор эволюции – естественный отбор.Естественный отбор, сохраняя фенотипы, изменяет генотипический состав популяции в определенном направлении и с опреде­ленной интенсивностью. Эти два показателя отбора (направление и сила давления) всегда соответствуют условиям внешней среды, вприроде естественный отбор выступает как единый фактор, но его формы могут меняться. Механизм действия при всех формах остаётся неизменным – выживание и размножение особей, наиболее приспособленных к конкретным условиям существования. Выделяют три формы отбора – стабилизирующий, движущий и дизруптивный.
    Генетический полиморфизм человечества: масштабы, факторы формирования. Значение генетического разнообразия в прошлом, настоящем и будущем человечества (медико-биологический и социальный аспекты).
    Генетический полиморфизм(наследственное разнообразие) – это сохранение в генофонде популяции различных аллелей одного и того же гена в концентрации, превышающей по наиболее редкой форме 1%. Это разнообразие поддерживается отбором, но создается мута­ционным процессом. Естественный отбор в этом случае может иметь два механизма: отбор против гомозигот в пользу гетерозигот и отбор против гетерозигот в пользу гомозигот.
    В первом случае отбором сохраняются гетерозиготные генотипы популяции и устраняются доминантные и рецессивные гомозиготы. Во втором случае накапливаются в генофонде гомозиготные геноти­пы и происходит устранение гетерозигот. При действии первого меха­низма возникает балансированный полиморфизм, при действии вто­рого – адаптационный.
    Адаптационныйполиморфизм возникает в том случае, когда в различных, но закономерно изменяющихся условиях среды отбор благоприятствует разным генотипам. В человеческих пуляциях это более редкая форма полиморфизма. Наиболее часто проявляется балансированныйполиморфизм. Он очень распрост­ранен в человеческих популяциях, усиливает гетерозиготизацию, а значит, устойчивость организмов к воздействию факторов среды. Сред-няя степень гетерозиготности в человеческих популяциях составляет 6,7%. Генетическое разнообразие в популяциях человека приводит к фенотипическому разнообразию. Наиболее значительно оно по бел­ковому составу, например по ферментам в генетической системе че­ловека 30% локусов имеют разнообразные гены. У человека имеется около ста полиморфных систем. Значение балансированного полиморфизма заключается в том, что он поддерживает беспредельную генетическую гетерогенность популяции, обеспечивает генетическую индивидуальность каждого человека.
    Для медицины изучение балансированного полиморфизма пред­ставляет особую важность в связи с тем, что, во-первых, проявляется неравномерность распределения наследственных заболеваний в по­пуляциях; во-вторых, различается степень предрасположенности к болезням;в-третьих, отмечается индивидуальный характер течения болезни и разная ее тяжесть; в-четвертых, имеет место различная ответная реакция на лечебные мероприятия. Отрицательное прояв­ление балансированного полиморфизма проявляется, прежде всего, в наличии генетического груза.
    74 Микро- и макроэволюция. Характеристика механизмов и основных результатов.
    Эволюционный процесс подразделяют на микро- и макроэволюцию. Микроэволюция – это совокупность внутривидовых процессов, приводящих к образованию новых популяций, подвидов и заканчивающихся образованием новых видов. Таким образом, микроэволюция – это начальный этап эволюционного процесса, она может происходить в относительно короткие промежутки времени и ее можно наблюдать и изучать непосредственно. В результате мутационной (наследственной) изменчивости происходят случайные изменения генотипа. Самопроизвольная частота мутаций довольно высока, и 1–2% половых клеток имеет мутировавшие гены или измененные хромосомы. Как уже говорилось, мутации чаще всего рецессивны и, кроме того, редко бывают полезными для вида. Однако если в результате мутации возникают полезные для какой-либо особи изменения, то она получает некоторые преимущества перед другими особями популяции.

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *