Почему в середине периодической системы появляется группа лантаноидов?

6 ответов на вопрос “Почему в середине периодической системы появляется группа лантаноидов?”

  1. Het_Shot Ответить

    К(-) Tb3+ +3?–> Tb 3 2
    A(+) Cl2 -2?–> 2Cl– 2 3
    Благодаря внедрению передовых технологий получения лантаноидов, такие как ионный обмен, зонная плавка, экстракция, получают металлы с большим выходом и высокой чистоты.
    Теоретически из бромида самария (II) возможно выделить чистый металл. Однако при взаимодействии с активными металлами основная масса исходного вещества сублимируется:
    SmBr2 + Ba > Sm + BaBr2
    Лантан получают из монацита в несколько стадий. Первая стадия концентрирования происходит уже на драге. Плотность монацита 4,9—5,3, а обычного песка — в среднем 2,7 г/см3. При такой разнице в весе гравитационное разделение не представляет особого труда. Но кроме монацита в тех же песках есть другие тяжелые минералы. Поэтому, чтобы получить монацитовый концентрат чистотой 92—96%, применяют комплекс гравитационных, магнитных и электростатических методов обогащения. В результате попутно получают ильменитовый, рутиловый, цирконовый и другие ценные концентраты.
    Как и всякий минерал, монацит надо “вскрыть”. Чаще всего монацитовый концентрат обрабатывают для этого концентрированной серной кислотой. Образующиеся сульфаты редкоземельных элементов и тория выщелачивают обычной водой. После того как они перейдут в раствор, в осадке остаются кремнезем и не отделившаяся на предыдущих стадиях часть циркона.
    На следующей стадии разделения извлекают короткоживущий радий-228, а затем и торий — иногда вместе с церием, иногда отдельно. Отделение церия от лантана и смеси лантаноидов не особенно сложно: в отличие от них, он способен проявлять валентность 4+ и в виде гидроксида Се(ОН)4 переходить в осадок, тогда как его трехвалентные аналоги остаются в растворе. Отметим только, что операция отделения церия, как, впрочем, и предыдущие, проводится многократно — чтобы как можно полнее “выжать” дорогой редкоземельный концентрат.
    После того как выделен церий, в растворе больше всего лантана (в виде нитрата La(NO3)3, так как на одной из промежуточных стадий серная кислота была заменена азотной, чтобы облегчить дальнейшее разделение). Из этого раствора и получают лантан, добавляя аммиак, нитраты аммония и кадмия. В присутствии Cd(NO3)2 разделение более полно. С помощью этих веществ все лантаноиды переходят в осадок, в фильтрате же остаются лишь кадмий и лантан. Кадмий осаждают сероводородом, отделяют осадок, а раствор нитрата лантана еще несколько раз очищают дробной кристаллизацией от примесей лантаноидов.
    В конечном счете, получают хлорид лантана LаС13. Электролиз расплавленного хлорида дает лантан чистотой до 99,5%. Еще более чистый лантан (99,79% и выше) получают кальциетермическим способом. Такова традиционная классическая технология.
    Как видим, получение элементарного лантана — дело сложное.
    Разделение лантаноидов — от празеодима до лютеция — требует еще больших затрат сил и средств, и времени. Поэтому в последние десятилетия химики и технологи многих стран мира стремились создать новые, более совершенные методы разделения этих элементов. Такие методы — экстракционные и ионообменные — были созданы и внедрены в промышленность. Уже в начале 60-х годов на, установках, работающих по принципу ионного обмена, достигли 95%-ного выхода редкоземельных продуктов чистотой до 99,9%.
    К 1965 году внешнеторговые организации нашей страны могли предложить покупателям все лантаноиды в виде металлов чистотой выше 99% кроме прометия. Хотя радиоактивные препараты этого элемента — продукты ядерного распада урана — тоже стали вполне доступны.
    Применение лантаноидов:
    Несмотря на то, что лантаноиды очень мало распространены в земной коре, тем не менее, они нашли очень широкое распространение в промышленности, технике и металлургии. С лантаноидами связано одно из самых значительных событий последних десятилетий в чёрной металлургии.
    Дело в том, что высокопрочный чугун обычно получали, модифицируя его магнием. Физический смысл этой добавки станет ясным, если вспомнить, что в чугуне 2—4,5% углерода в виде чешуйчатого графита, который и придаёт чугуну главный его технический недостаток – хрупкость. Добавка магния заставляет графит перейти в более равномерно распределяющуюся в металле шаровидную или глобулярную форму. В результате значительно улучшается структура, а с ней и механические свойства чугуна. Однако легирование чугуна магнием требует дополнительных затрат: реакция идёт очень бурно, расплавленный металл брызжет во все стороны, в связи с чем приходилось сооружать для этого процесса специальные камеры.
    Лантаноиды действую на металл аналогично: “убирают” оксидные примеси, связывают и выводят серу, способствуют переходу графита в глобулярную форму. И при этом нет специальных камер – реакция протекает спокойно.
    На тонну чугуна вводят всего 4 кг (0,4%) сплава ферроцерия с магнием, и прочность чугуна увеличивается вдвое. Такой чугун во многих случаях можно использовать вместо стали, в частности при изготовления коленчатых валов. Мало того, высокопрочный чугун на 20-25 % дешевле остальных отливок и в 3 – 4 раза дешевле стальных поковок. Стойкость против истирания у чугунных шеек валов оказалась в 2 – 3 раза выше, чем у стальных. Коленчатые валы из высокопрочного чугуна уже работают в тепловозах, тракторах и других тяжёлых машинах.
    Редкоземельные элементы добавляют в таль разных сортов в основном в виде сплава с железом (ферроцерий), либо в виде мишметалла (49,5 – 65% Се, до 44% La, Pr, Nd, 4,5 – 5% Fe, 0,5% Al и др.). Во всех случаях эта добавка работает как сильный раскислитель, превосходный дегазатор и десульфатор. В некоторых случаях лантаноидами легируют легированную сталь. Хромоникелевые стали трудно прокатывать. Всего 0,03% мишметалла, введённые в такую сталь, намного увеличивает её пластичность. Это облегчает обработку металла резанием и изготовление поковок.
    Редкоземельные элементы вводят и в состав легких сплавов. Известен, например, жаропрочный сплав алюминия с 11% мишметалла. Добавки лантана, церия, неодима и празеодима позволили в три с лишним раза поднять температуру размягчения магниевых сплавов и одновременно повысили их коррозионную стойкость. После этого сплавы магния с редкоземельными элементами стали применять для изготовления деталей сверхзвуковых самолетов, оболочек искусственных спутников Земли, управляемых снарядов. На основе церия и мишметалла изготавливают пирофорные сплавы, дающие искру при трении. Такие сплавы применяют при создании трассирующих пуль, снарядов. На снаряд надевают насадку из пирофорного сплава, а роль диска, высекающего искру, играет трение о воздух.
    Редкоземельные добавки улучшают свойства и других важных металлов – меди, хрома, ванадия, титана и др. Неудивительно, что металлурги год от года всё шире используют лантаноиды. В России созданы магниевые и алюминиевые сверхпрочные стали, легированные неодимом и цирконием. Из всех лантаноидов эти два лучше всего на свойства магниевых, титановых и алюминиевых сплавов. 5%-ная добавка неодима вдвое увеличивает предел прочности алюминия (с 5 до 10 кг/мм2). Во много раз возрастает и твёрдость сплава. Подобным образом действует неодим и на свойства тана: добавка 1,2% добавка неодима увеличивает предел прочности титана до 48—50 кг/мм2. Для сравнения, примерно такая же добавка циркония увеличивает предел прочности титана с 32 до 38—40 кг/мм2. В данном случае используют оксид неодима очень высокой чистоты (99,996%). Предел длительной прочности таких сплавов при повышенных температурах намного больше, чем магниевых сплавов, легированных иными элементами. Эффективное действие, по мнению специалистов, объясняется тем, что неодим обладает максимальной растворимостью в магнии, которая способствует наибольшему эффекту упрочнения сплава в результате термической обработки. Скорость диффузии неодима в магнии по сравнению с другими лантаноидами оказывается наименьшей – это служит причиной меньшей скоростью разупрочнения сплава при повышенных температурах, а, следовательно, более высокой жаропрочности. Алюминий, легированный неодимом, химически взаимодействует с ним, образуя соединения состава NdAl2 и NdAl4.
    Пятипроцентная добавка гадолиния заметно повышает прочность и предел текучести сплавов на титановой основе. Диспрозиевые добавки (вместе с эрбием и самарием) применяют к сплавам на основе циркония. Такие сплавы намного лучше, чем чистый цирконий, подаются обработке давлением. Возможно также и легирование цинка диспрозием.
    Соединения гадолиния сохраняют магнитные свойства. При сверхнизких температурах сплав гадолиния с церием и рутения приобретает сверхпроводимость, являясь идеальным проводником электричества. Оксид гадолиния (III), добавленный к ферритам, позволяет увеличить контрастность рентгеновских снимков, а борид (GdB) позволяет создавать катоды электронных приборов с очень большими сроками действия. Таким образом, для магнетохимии представляют непреходящий интерес и сам гадолиний, и его соединения, и сплавы. Другой сплав гадолиния — с титаном — применяют в качестве активатора в стартерах люминесцентных ламп. Этот сплав впервые получен в нашей стране.
    Интерметаллиды самария являются превосходным материалом для создания сильных постоянных магнитов – SmCo5, входящие в состав сплава самария с кобальтом. Такой магнит размером с кулак может поднять “Жигули” с четырьмя пассажирами! Сплавы лантаноидов весьма многочисленны. Их сплавы с тяжёлыми металлами приводят к резкому улучшению качества жаропрочных сталей. Немаловажное значение имеет применение лантаноидов как раскислителей и для удаления вредных примесей. Добавка всего 3% лантаноидов позволяет из лёгких магниевых сплавов готовить детали, способные работать при повышенных температурах.
    Вторая не менее важная область применения лантаноидов – атомная энергетика. У гадолиния – 157 (его доля в природной смеси — 15,68%) сечение захвата превышает 150 000 барн. Это “рекордсмен” среди всех стабильных изотопов. Большое сечение захвата гадолиния дает возможность применять его при управлении цепной ядерной реакцией и для защиты от нейтронов. Ещё в начале 60 – Х годов управляющие стержни для некоторых атомных реакторов в США начали делать из нержавеющей стали с присадками гадолиния. Однако, активно захватывающие нейтроны изотопы гадолиния (Gd – 155 и Gd – 157) в реакторах довольно быстро “выгорают” — превращаются в “соседние” ядра, у которых сечение захвата намного порядков меньше. Самарию также свойственно большое поперечное сечение захвата тепловых нейтронов — около 6500 барн. Это больше, чем у традиционных материалов регулирующих стержней атомных реакторов — бора и кадмия, поэтому его применяют как замену гадолинию в стержнях атомных реакторов.
    Прометий – 147 используют в миниатюрных (не более канцелярской кнопки) атомных батарейках. Они способны давать энергию в течение нескольких лет. На одну батарейку расходуется всего 5 мг прометия-147. Такие батарейки используют как источники энергии в космических кораблях, радиоустройствах, слуховых аппаратах, часах. Прометиевые батарейки предполагалось использовать на космических кораблях, в управляемых снарядах, радиоустройствах, часах и даже слуховых аппаратах. В такой атомной батарейке происходит двукратное преобразование энергии. Сначала излучение прометия заставляет светиться специальный люминесцирующий состав (фосфор), а эта световая энергия преобразуется в электрическую в кремниевом фотоэлементе. Оксид прометия – 147 (Pr2O3) в количестве 5 мг смешивается с тонко измельчённым фосфором, который поглощает ? – излучение и превращает его энергию в красный или инфракрасный поток. Особенность прометия-147 в том, что он практически не дает ? – лучей, а лишь мягкое ? – излучение, задерживаемое даже тонким слоем фосфора и корпусом батарей.
    Радиоактивные изотопы диспрозия короткоживущи, за исключением диспрозия-159 (его период полураспада 134 дня). Используется и другой радиоактивный изотоп диспрозия с массовым числом 165 в качестве радиоактивного индикатора при химических исследованиях. Для атомной энергетики диспрозий представляет ограниченный интерес, поскольку сечение захвата тепловых нейтронов у него достаточно велико (больше 1000 барн) по сравнению с бором или кадмием, но намного меньше, чем у некоторых других лантаноидов — гадолиния, самария… Правда, диспрозий более тугоплавок, чем они, и это в какой-то мере уравнивает шансы.
    Несколько лет назад учёные открыли, что ион Но3+ может быть употреблен для возбуждения лазерного излучения в инфракрасной области. Но подобными же свойствами обладают ионы других лантаноидов — разница лишь в длине излучаемых волн. В лазерах также применяют и микропримеси тулия. Такие же микропримеси тулия вводят и в полупроводниковые материалы (в частности, в арсенид галлия) Но, как это ни странно, важнее, чем стабильный природный изотоп тулия (Тu – 169), оказался радиоактивный тулий-170. Данный изотоп образуется в атомных реакторах при облучении нейтронами природного тулия. Этот изотоп с периодом полураспада 129 дней излучает сравнительно мягкие ? – лучи с энергией 84 Кэв. На основе этого изотопа были созданы компактные рентгено-просвечивающие установки, имеющие массу преимуществ перед обычными рентгеновскими аппаратами. В отличие от них тулиевые аппараты не нуждаются в электропитании, они намного компактнее, легче, проще по конструкции. Миниатюрные тулиевые приборы пригодны для рентгенодиагностики в тех тканях и органах, которые трудно, а порой и невозможно просвечивать обычными рентгеновскими аппаратами. ? – лучами тулия просвечивают не только живые ткани, но и металл. Тулиевые гамма – дефектоскопы очень удобны для просвечивания тонкостенных деталей и сварных швов. При работе с образцами толщиной не больше 6 мм эти дефектоскопы наиболее чувствительны. С помощью тулия-170 были обнаружены совершенно незаметные письмена и символические знаки на бронзовой прокладке ассирийского шлема IX века до н. э. Шлем обернули фотопленкой и стали просвечивать изнутри мягкими ? – лучами тулия. На проявленной пленке появились стертые временем знаки. Кроме дефектоскопов препараты тулия-170 используют в приборах, называемых мутнометрами. По рассеянию ? – лучей этими приборами определяют количество взвешенных частиц в жидкости. Для тулиевых приборов характерна компактность, надежность, быстродействие. Единственный их недостаток — сравнительно малый период полураспада тулия-170. Тулиевые ? – источники становятся дешевле по мере увеличения их производства. Сегодня этот элемент (и его соединения) довольно важен для атомной энергетики.
    Сплавы церия с плутонием и торием используется в качестве ядерного топлива.
    Оптическая промышленность тоже является хорошим потребителем лантаноидов и их соединений. Широко используют оксид лантана – главный компонент оптических стёкол. Добавление оксида лантана в стёкла повышает их показатель преломления и даёт возможность уменьшить размеры фотообъектива при той же светосиле и намного улучшить качество цветной съёмки. Радиационно-оптическую устойчивость стекол повышает CeO2. Он же увеличивает прозрачность стекла, а порошком полиритом, где церия более 45%,шлифуют оптические и зеркальные стёкла. Содержащие примеси церия стёкла не тускнеют под действием радиации, отсюда его применение в атомной технике. Оптическое действие СеО2 объясняется его способностью переводить ионы Fe2+ в ионы Fe3+. Оксид празеодима окрашивает стёкла в зелёный цвет. Вместе с неодимом и церием празеодим входит в состав защитных стёкол для сварочных работ. Неодимовые стёкла используют в лазерах. Оксид неодима (III) при содержании его не ниже 4,3% придаёт стеклу так называемый “александритовый” эффект – способность менять свою окраску в зависимости от освещения. Художественные изделия из сортового неодимового стекла российского производства не раз с успехом демонстрировались на международных выставках. Неодимовое стекло используют не только для изготовления красивых ваз и художественных изделий. Ион Nd3+ дает лазерное излучение в инфракрасной области спектра. Для специальных стекол получают окись неодима чрезвычайно высокой чистоты—99,996% Nd2O3. Самарий вводят в состав стекол, способных люминесцировать и поглощать инфракрасные лучи. Празеодим окрашивает стекло в светло – зелёный цвет, церий – в светло – жёлтый. Важное значение приобрел европий как активатор люминофоров. В частности, окись, оксисульфид и ортованадат иттрия YVO4, используемые для получения красного цвета на телевизионных экранах, активируются микропримесями европия. Имеют практическое значение и другие люминофоры, активированные европием. Основу их составляют сульфиды цинка и стронция, фториды натрия и кальция, силикаты кальция и бария.
    Многие лантаноиды применяют и в керамике. Керамику с добавками церия используют в ракетостроении: она тугоплавка. На основе иттрия с добавлением циркония делается жаропрочная керамика. Некоторые её разновидности прозрачны как стекло. Керамические материалы, в которые входит окись самария (порошок бледно-кремового цвета), стали использовать в качестве защитных материалов в реакторостроении. Оксиды гадолиния, самария и европия входят в состав защитных керамических покрытий от тепловых нейтронов в ядерных реакторах. Церий используется в газокалильных лампах. Колпачки, пропитанные оксидами церия и тория, надевают на газовые рожки, что значительно улучшает освещение. Чтобы сделать свет ярче, в состав углей, между которыми вспыхивает дуга, вводят CeF3. Радиоактивность некоторых изотопов лантаноидов нашла применение в медицине. Радиоактивный европий, получающийся в атомных реакторах, используется при лечении некоторых форм рака, так как обладает очень мягким излучением. Соли эрбия способствуют увеличению гемоглобина и количества эритроцитов, а также входит в состав некоторых мазей для бальзамирования. Радиоактивный изотоп европий – 155 (Т1\2=1,81г) применяется в медицинской диагностике. Салициловокислый дидим — смесь соответствующих солей празеодима и неодима — входит в состав антисептического средства “дималь”.
    Не обделили лантаноиды и химическую отрасль. Соединения лантаноидов используются в качестве катализаторов. Способность их соединяться с атмосферными газами используется для создания высокого вакуума. Оксид празеодима (III) полезен для каталитического процесса низкотемпературного окисления аммиака. Этот же оксид применяют как диэлектрик с минимальным коэффициентом теплового расширения. Радиоактивный изотоп Но – 166 используют в аналитической химии в качестве радиоактивного индикатора. С помощью сульфата гадолиния [Gd2(SO4)3•8H2O] и хлорида гадолиния удалось получить температуру, лишь на 0,0002К отличающееся от абсолютного нуля.
    Весьма крупной областью применения оксидов лантаноидов являются абразивные материалы, например, хорошо известный состав “полирит”. Это самый эффективный порошок для полировки.
    Лантан и его аналоги нашли применение и в других областях современной техники – радиоэлектронике, электротехнике, лазерах, ЭВМ, телевидении, светотехнике, кожевенной и текстильной промышленностях. Без сомнения через некоторое время область применения лантаноидов намного расширится, поскольку они обладают набором таких уникальных свойств, которыми не обладает ни один из химических элементов периодической системы Д. И. Менделеева.
    Заключение
    В данной курсовой раскрыты основные аспекты знакомства с лантаноидами: общая характеристика, нахождение в природе, физические и химические свойства, характеристические соединения, их получение и применение.
    Данная тема не включена в школьную программу по химии и вынесена на факультативные занятия или на самостоятельное изучение. Впервые с лантаноидами учащиеся знакомятся при изучении строения атома и периодического закона. Больше о лантаноидах в программе ничего нет.
    В ВУЗах данная тема хоть и включена в программу изучения химии элементов, но она вынесена на самостоятельное изучение.
    Не надо считать, однако, что все проблемы, связанные с “узлом” в периодической системе, уже разрешены. В наши дни особенно актуально звучат слова Дмитрия Ивановича Менделеева о лантаноидах: “Тут скопилось за последние годы очень много нового”… Однако считать, что познано все и вся, что редкоземельная тематика себя исчерпала, могут только дилетанты. Специалисты же, напротив, уверены, что познание лантана и его команды только начинается, что эти элементы еще не раз удивят научный мир.
    Список литературы
    1) Ахметов Н. С. “Общая и неорганическая химия” М.: Высшая школа, 2001 г.
    2) Большой Энциклопедический словарь М.: Просвещение, 2001г.
    3) Комкова Е. Г. “Группа химических астероидов” кн.3 из серии “Элементы периодической системы Менделеева” М.: Просвещение, 1984г.
    4) Леенсон И. А. “Чёт или нечёт? Занимательные очерки по химии” М.:Химия, 1987г
    5) Любимов И. М. “Редкие элементы” М.: Просвещение, 1977г.
    6) Рич В. “В поисках элементов” М.: Просвещение, 1985г
    7) CD – ROM “ы и курсовые по химии” ( – “лантан”)
    8) Угай Я. А. “Общая и неорганическая химия” М.: Высшая школа, 2002г.
    содержание ..
    33
    34
    35 ..

  2. ПЕРТО Ответить

    Все представители обеих групп являются металлами, у которых достраиваются 4f-, 5f-, а также d-подуровни. Лантан и элементы его семейства называют редкоземельными. Их физические и химические характеристики настолько близки, что по отдельности в лабораторных условиях они разделяются с большим трудом. Проявляя чаще всего степень окисления +3, элементы ряда лантана имеют много сходных черт со щелочноземельными металлами (барием, кальцием, стронцием). Актиноиды также являются чрезвычайно активными металлами, к тому же еще и радиоактивными.
    Особенности строения лантаноидов и актиноидов касаются и таких свойств, как, например, пирофорность в мелкодисперсном состоянии. Наблюдается также уменьшение размеров гранецентрированных кристаллических решеток металлов. Добавим, что все химические элементы обоих семейств – это металлы с серебристым блеском, из-за высокой реакционной способности быстро темнеющие на воздухе. Они покрываются пленкой соответствующего оксида, защищающей от дальнейшего окисления. Все элементы достаточно тугоплавки, за исключением нептуния и плутония, температура плавления которых значительно ниже 1000 °С.

    Характерные химические реакции

    Как было отмечено ранее, лантаноиды и актиноиды являются химически активными металлами. Так, лантан, церий и другие элементы семейства легко соединяются с простыми веществами – галогенами, а также с фосфором, углеродом. Лантаноиды могут также взаимодействовать как с монооксидом углерода, так и с углекислым газом. Они также способны разлагать воду. Кроме простых солей, например таких как SeCl3 или PrF3, они образуют двойные соли. В аналитической химии важное место занимают реакции металлов-лантаноидов с аминоуксусной и лимонной кислотами. Образующиеся в результате таких процессов комплексные соединения применяются для разделения смеси лантаноидов, например в рудах.

    При взаимодействии с нитратной, хлоридной и сульфатной кислотами, металлы образуют соответствующие соли. Они хорошо растворимы в воде и легко способны к образованию кристаллогидратов. Нужно отметить, что водные растворы солей лантаноидов окрашены, что объясняется присутствием в них соответствующих ионов. Растворы солей самария или празеодима зеленого цвета, неодима – красно-фиолетового, прометия и европия – розового. Так как ионы со степенью окисления +3 окрашены, это используется в аналитической химии для распознавания ионов металлов-лантаноидов (так называемые качественные реакции). Для этой же цели применяют еще и такие методы химического анализа, как дробная кристаллизация и ионообменная хроматография.
    У актиноидов можно выделить две группы элементов. Это берклий, фермий, менделевий, нобелий, лоуренсий и уран, нептуний, плутоний, омереций. Химические свойства первой из них подобны лантану и металлам из его семейства. Элементы второй группы обладают очень похожими химическими характеристиками (практически идентичны друг другу). Все актиноиды быстро взаимодействуют с неметаллами: серой, азотом, углеродом. С кислородсодержащими легандами они образуют комплексные соединения. Как видим, металлы обоих семейств близки между собой по химическому поведению. Вот почему лантаноиды и актиноиды часто называют металлами-близнецами.

    Положение в периодической системе водорода, лантаноидов, актиноидов

    Нужно учитывать тот факт, что водород является достаточно реакционноспособным веществом. Он проявляет себя в зависимости от условий химической реакции: как восстановителем, так и окислителем. Именно поэтому в периодической системе водород располагается одновременно в главных подгруппах сразу двух групп.

    В первой водород играет роль восстановителя, как и щелочные металлы, расположенные здесь. Место водорода в 7-й группе наряду с элементами галогенами указывает на его восстановительную способность. В шестом периоде находится, как уже ранее было сказано, семейство лантаноидов, вынесенное в отдельный ряд для удобства и компактности таблицы. Седьмой период содержит группу радиоактивных элементов, по своим характеристикам подобным актинию. Актиноиды располагаются вне таблицы химических элементов Д.И Менделеева под рядом семейства лантана. Эти элементы наименее изучены, так как ядра их атомов очень неустойчивы по причине радиоактивности. Напомним, что лантаноиды и актиноиды относятся к элементам внутренним переходным, а их физико-химические характеристики очень близки между собой.

    Общие способы получения металлов в промышленности

    За исключением тория, протактиния и урана, которые добывают прямым путем из руд, остальные актиноиды можно получить путем облучения образцов металлического урана быстродвижущимися потоками нейтронов. В промышленных масштабах нептуний и плутоний добывают из отработанного топлива ядерных реакторов. Отметим, что получение актиноидов – это достаточно сложный и дорогостоящий процесс, основными методами которого являются ионный обмен и многостадийная экстракция. Лантаноиды, которые называют редкоземельными элементами, получают путем электролиза их хлоридов или фторидов. Чтобы добыть сверхчистые лантаноиды, используют металлотермический метод.

    Где применяют внутренние переходные элементы

    Спектр использования изучаемых нами металлов достаточно широк. Для семейства актиния – это, прежде всего, ядерное оружие и энергетика. Важное значение имеют актиноиды и в медицине, дефектоскопии, активационном анализе. Нельзя обойти вниманием применение лантаноидов и актиноидов в качестве источников захвата нейтронов в ядерных реакторах. Лантаноиды же применяют в качестве легирующих добавок к чугуну и стали, а также в производстве люминофоров.

    Распространение в природе

    Оксиды актиноидов и лантаноидов часто называют циркониевой, ториевой, иттриевой землями. Они являются основным источником для получения соответствующих металлов. Уран, как главный представитель актиноидов, находится в наружном слое литосферы в форме четырёх видов руд или минералов. Прежде всего, это урановая смолка, представляющая собой двуокись урана. В ней содержание металла самое высокое. Часто диоксиду урана сопутствуют радиевые месторождения (жилы). Они встречаются в Канаде, Франции, Заире. Комплексы ториевой и урановой руды часто содержат руды других ценных металлов, например золота или серебра.

    Запасами такого сырья богаты Россия, Южно-Африканская республика, Канада и Австралия. В некоторых осадочных породах содержится минерал карнотит. В его состав, кроме урана, входит еще и ванадий. Четвертый вид уранового сырья – это фосфатные руды и железоурановые сланцы. Их запасы находятся в Марокко, Швеции и США. В настоящее время перспективными считаются также залежи лигнитов и каменного угля, содержащие примеси урана. Их добывают в Испании, Чехии, а также в двух американских штатах – Северной и Южной Дакоте.

  3. Adorargas Ответить

    Как мы уже говорили ранее, положение лантаноидов и актиноидов в периодической системе напрямую определяет их физические и химические характеристики. Так, ионы церия, гадолиния и других элементов семейства лантаноидов имеют высокие магнитные моменты, что связано с особенностями строения f-подуровня. Это позволило использовать металлы в качестве легирующих добавок для получения полупроводников с магнитными свойствами. Сульфиды элементов семейства актиния (например, сульфид протактиния, тория) в составе своих молекул имеют смешанный тип химической связи: ионно-ковалентный или ковалентно-металлический. Эта особенность строения привела к появлению нового физико-химического свойства и послужила ответом на вопрос о том, почему лантаноиды и актиноиды обладают люминесцентными свойствами. Например, образец актиния серебристого цвета в темноте светится голубоватым свечением. Это объясняется действием на ионы металлов электрического тока, фотонов света, под влиянием которых происходит возбуждение атомов, а электроны в них «перескакивают» на более высокие энергетические уровни и затем возвращаются на свои стационарные орбиты. Именно по этой причине лантаноиды и актиноиды относятся к люминофорам.

    Последствия уменьшения ионных радиусов атомов

    У лантана и актиния, как и у элементов из их семейств, наблюдается монотонное снижение величины показателей радиусов ионов металлов. В химии в таких случаях принято говорить о лантаноидном и актиноидном сжатии. В химии установлена следующая закономерность: с увеличением заряда ядра атомов, в случае если элементы относятся к одному и тому же периоду, их радиусы уменьшаются. Объяснить это можно следующим образом: у таких металлов, как церий, празеодим, неодим, количество энергетических уровней в их атомах неизменно и равно шести. Однако заряды ядер соответственно увеличиваются на единицу и составляют +58, +59, +60. Это значит, что возрастает сила притяжения электронов внутренних оболочек к положительно заряженному ядру. Как следствие происходит уменьшение радиусов атомов. В ионных соединениях металлов с увеличением порядкового номера ионные радиусы также уменьшаются. Аналогичные изменения наблюдаются и у элементов семейства актиния. Вот почему лантаноиды и актиноиды называют близнецами. Уменьшение радиусов ионов приводит в первую очередь к ослаблению основных свойств гидроксидов Се(ОН)3, Pr(OH)3, а основание лютеция уже проявляет амфотерные свойства.
    К неожиданным результатам приводит заполнение 4f-подуровня неспаренными электронами до половины орбиталей у атома европия. У него радиус атома не уменьшается, а, наоборот, увеличивается. У следующего за ним в ряду лантаноидов гадолиния на 5d-подуровне появляется один электрон 4f-подуровня аналогично Eu. Такое строение вызывает скачкообразное уменьшение радиуса атома гадолиния. Подобное явление наблюдается в паре иттербий – лютеций. У первого элемента радиус атома большой по причине полного заполнения 4f-подуровня, а у лютеция он скачкообразно уменьшается, так как на 5d-подуровне наблюдается появление электронов. У актиния и других радиоактивных элементов этого семейства радиусы их атомов и ионов изменяются не монотонно, а, так же как и у лантаноидов, скачкообразно. Таким образом, лантаноиды и актиноиды являются элементами, у которых свойства их соединений коррелятивно зависят от ионного радиуса и строения электронных оболочек атомов.

    Валентные состояния

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *