Суть соотношения неопределенностей гейзенберга в том что?

11 ответов на вопрос “Суть соотношения неопределенностей гейзенберга в том что?”

  1. Мартина Штоссель Ответить

    В обыденной жизни нас окружают материальные объекты, размеры которых сопоставимы с нами: машины, дома, песчинки и т. д. Наши интуитивные представления об устройстве мира формируются в результате повседневного наблюдения за поведением таких объектов. Поскольку все мы имеем за плечами прожитую жизнь, накопленный за ее годы опыт подсказывает нам, что раз всё наблюдаемое нами раз за разом ведет себя определенным образом, значит и во всей Вселенной, во всех масштабах материальные объекты должны вести себя аналогичным образом. И когда выясняется, что где-то что-то не подчиняется привычным правилам и противоречит нашим интуитивным понятиям о мире, нас это не просто удивляет, а шокирует.
    В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях. Появление и бурное развитие квантовой механики открыло перед нами целый мир, системное устройство которого попросту не укладывается в рамки здравого смысла и полностью противоречит нашим интуитивным представлениям. Но нужно помнить, что наша интуиция основана на опыте поведения обычных предметов соизмеримых с нами масштабов, а квантовая механика описывает вещи, которые происходят на микроскопическом и невидимом для нас уровне, — ни один человек никогда напрямую с ними не сталкивался. Если забыть об этом, мы неизбежно придем в состояние полного замешательства и недоумения. Для себя я сформулировал следующий подход к квантово-механическим эффектам: как только «внутренний голос» начинает твердить «такого не может быть!», нужно спросить себя: «А почему бы и нет? Откуда мне знать, как всё на самом деле устроено внутри атома? Разве я сам туда заглядывал?» Настроив себя подобным образом, вам будет проще воспринять статьи этой книги, посвященные квантовой механике.
    Принцип Гейзенберга вообще играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира. Чтобы понять этот принцип, задумайтесь для начала о том, что значит «измерить» какую бы то ни было величину. Чтобы отыскать, например, эту книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат — зафиксировали ее пространственные координаты (определили местоположение книги в комнате). На самом деле процесс измерения происходит гораздо сложнее: источник света (Солнце или лампа, например) испускает лучи, которые, пройдя некий путь в пространстве, взаимодействуют с книгой, отражаются от ее поверхности, после чего часть из них доходит до ваших глаз, проходя через хрусталик, фокусируется, попадает на сетчатку — и вы видите образ книги и определяете ее положение в пространстве. Ключ к измерению здесь — взаимодействие между светом и книгой. Так и при любом измерении, представьте себе, инструмент измерения (в данном случае, это свет) вступает во взаимодействие с объектом измерения (в данном случае, это книга).
    В классической физике, построенной на ньютоновских принципах и применимой к объектам нашего обычного мира, мы привыкли игнорировать тот факт, что инструмент измерения, вступая во взаимодействие с объектом измерения, воздействует на него и изменяет его свойства, включая, собственно, измеряемые величины. Включая свет в комнате, чтобы найти книгу, вы даже не задумываетесь о том, что под воздействием возникшего давления световых лучей книга может сдвинуться со своего места, и вы узнаете ее искаженные под влиянием включенного вами света пространственные координаты. Интуиция подсказывает нам (и, в данном случае, совершенно правильно), что акт измерения не влияет на измеряемые свойства объекта измерения. А теперь задумайтесь о процессах, происходящих на субатомном уровне. Допустим, мне нужно зафиксировать пространственное местонахождение электрона. Мне по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит моим детекторам сигнал с информацией о его местопребывании. И тут же возникает сложность: иных инструментов взаимодействия с электроном для определения его положения в пространстве, кроме других элементарных частиц, у меня нет. И, если предположение о том, что свет, вступая во взаимодействие с книгой, на ее пространственных координатах не сказывается, относительно взаимодействия измеряемого электрона с другим электроном или фотонами такого сказать нельзя.
    В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Начав со сложных математических формул, описывающих мир на субатомном уровне, он постепенно пришел к удивительной по простоте формуле, дающий общее описание эффекта воздействия инструментов измерения на измеряемые объекты микромира, о котором мы только что говорили. В результате им был сформулирован принцип неопределенности, названный теперь его именем:

    неопределенность значения координаты x неопределенность скорости > h/m,

    математическое выражение которого называется соотношением неопределенностей Гейзенберга:

    Δx х Δv > h/m

    где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h — постоянная Планка, названная так в честь немецкого физика Макса Планка, еще одного из основоположников квантовой механики. Постоянная Планка равняется примерно 6,626 x 10–34 Дж·с, то есть содержит 33 нуля до первой значимой цифры после запятой.
    Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему рекогносцировки GPS, чтобы определить местоположение этой книги, система вычислит их с точностью до 2-3 метров. (GPS, Global Positioning System — навигационная система, в которой задействованы 24 искусственных спутника Земли. Если у вас, например, на автомобиле установлен приемник GPS, то, принимая сигналы от этих спутников и сопоставляя время их задержки, система определяет ваши географические координаты на Земле с точностью до угловой секунды.) Однако, с точки зрения измерения, проведенного инструментом GPS, книга может с некоторой вероятностью находиться где угодно в пределах указанных системой нескольких квадратных метров. В таком случае мы и говорим о неопределенности пространственных координат объекта (в данном примере, книги). Ситуацию можно улучшить, если взять вместо GPS рулетку — в этом случае мы сможем утверждать, что книга находится, например, в 4 м 11 см от одной стены и в 1м 44 см от другой. Но и здесь мы ограничены в точности измерения минимальным делением шкалы рулетки (пусть это будет даже миллиметр) и погрешностями измерения и самого прибора, — и в самом лучшем случае нам удастся определить пространственное положение объекта с точностью до минимального деления шкалы. Чем более точный прибор мы будем использовать, тем точнее будут полученные нами результаты, тем ниже будет погрешность измерения и тем меньше будет неопределенность. В принципе, в нашем обыденном мире свести неопределенность к нулю и определить точные координаты книги можно.
    И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью).
    В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами измерения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Вот почему в правой части соотношения Гейзенберга стоит не нулевая, а положительная величина. Чем меньше неопределенность в отношении одной переменной (например, Δx), тем более неопределенной становится другая переменная (Δv), поскольку произведение двух погрешностей в левой части соотношения не может быть меньше константы в правой его части. На самом деле, если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц.
    На самом деле, принцип неопределенности связывает не только пространственные координаты и скорость — на этом примере он просто проявляется нагляднее всего; в равной мере неопределенность связывает и другие пары взаимно увязанных характеристик микрочастиц. Путем аналогичных рассуждений мы приходим к выводу о невозможности безошибочно измерить энергию квантовой системы и определить момент времени, в который она обладает этой энергией. То есть, если мы проводим измерение состояния квантовой системы на предмет определения ее энергии, это измерение займет некоторый отрезок времени — назовем его Δt. За этот промежуток времени энергия системы случайным образом меняется — происходят ее флуктуация, — и выявить ее мы не можем. Обозначим погрешность измерения энергии ΔЕ. Путем рассуждений, аналогичных вышеприведенным, мы придем к аналогичному соотношению для ΔЕ и неопределенности времени, которым квантовая частица этой энергией обладала:

    ΔЕΔt > h

    Относительно принципа неопределенности нужно сделать еще два важных замечания:
    он не подразумевает, что какую-либо одну из двух характеристик частицы — пространственное местоположение или скорость — нельзя измерить сколь угодно точно;
    принцип неопределенности действует объективно и не зависит от присутствия разумного субъекта, проводящего измерения.
    Иногда вам могут встретиться утверждения, будто принцип неопределенности подразумевает, что у квантовых частиц отсутствуют определенные пространственные координаты и скорости, или что эти величины абсолютно непознаваемы. Не верьте: как мы только что видели, принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно. И, как и во многом другом, мы вынуждены идти на компромисс. Опять же, писатели-антропософы из числа сторонников концепции «Новой эры» иногда утверждают, что, якобы, поскольку измерения подразумевают присутствие разумного наблюдателя, то, значит, на некоем фундаментальном уровне человеческое сознание связано с Вселенским разумом, и именно эта связь обусловливает принцип неопределенности. Повторим по этому поводу еще раз: ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты. А тот факт, что при этом присутствует разумный наблюдатель в лице ученого, отношения к делу не имеет; инструмент измерения в любом случае влияет на его результаты, присутствует при этом разумное существо или нет.

  2. Irondragon Ответить

    Утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку меньше постоянной Планка h, называется соотношением неопределенностей Гейзенберга.
    Энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенностей:
    .
    (4.2.3)
    Это соотношение означает, что определение энергии с точностью должно занять интервал времени, равный, по меньшей мере,
    .
    Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличии у нее волновых свойств. Т.к. в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является, таким образом, квантовым ограничением применимости классической механики к микрообъектам.
    Соотношение неопределенностей указывает, в какой мере возможно пользоваться понятиями классической механики применительно к микрочастицам, в частности с какой степенью точности можно говорить о траекториях микрочастиц. Движение по траектории характеризуется вполне определенными значениями координат и скорости в каждый момент времени. Подставив в (4.2.1) вместо произведение , получим соотношение:
    .
    (4.2.4)
    Из этого соотношения следует, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости, следовательно тем с большей точностью можно применять к этой частице понятие траектории. Так, например, уже для пылинки массой кг и линейными размерами м, координата которой определена с точностью до 0,01 ее размеров ( м), неопределенность скорости, по (4.2.4),

    т.е. не будет сказываться при всех скоростях, с которыми пылинка может двигаться.
    Таким образом, для макроскопических тел их волновые свойства не играют никакой роли; координаты и скорости могут быть измерены достаточно точно. Это означает, что для описания движения макротел с абсолютной достоверностью можно пользоваться законами классической механики.
    Предположим, что пучок электронов движется вдоль оси x со скоростью м/с, определяемой с точностью до 0,01% ( м/с). Какова точность определения координаты электрона?
    По формуле (4.2.4) получим:
    .
    Таким образом, положение электрона может быть определено с точностью до тысячных долей миллиметра. Такая точность достаточна, чтобы можно было говорить о движении электронов по определенной траектории иными словами, описывать их движения законами классической механики.
    Применим соотношение неопределенностей к электрону, двигающемуся в атоме водорода. Допустим, что неопределенность координаты электрона м (порядка размеров самого атома), тогда, согласно (4.2.4),
    .
    Используя законы классической физики, можно показать, что при движении электрона вокруг ядра по круговой орбите радиуса приблизительно м его скорость м/с. Таким образом, неопределенность скорости в несколько раз больше самой скорости. Очевидно, что в данном случае нельзя говорить о движении электронов в атоме по определенной траектории. Иными словами, для описания движения электронов в атоме нельзя пользоваться законами классической физики.

  3. Mekree Ответить

    Основные условия публикации
    – Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.
    – Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.
    – Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.
    – Видеоматериалы должны иметь описание.
    – Названия должны отражать суть исследования.
    – Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.
    Не принимаются к публикации
    Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.
    – Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.
    – Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.
    Наказывается баном
    – Оскорбления, выраженные лично пользователю или категории пользователей.
    – Попытки использовать сообщество для рекламы.
    – Фальсификация фактов.
    – Многократные попытки публикации материалов, не удовлетворяющих правилам.
    – Троллинг, флейм.
    – Нарушение правил сайта в целом.
    Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество пикабу.

  4. Заманчивые строки Ответить

    Смотреть что такое “СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ” в других словарях:

    СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ — неравенство, выражающее фундаментальное положение квантовой (см.), согласно которому декартовая координата частицы ?x: и проекция её импульса ?рx на ось Ох не могут быть одновременно определены с произвольной точностью. Произведение неточностей… … Большая политехническая энциклопедия
    Соотношение неопределенностей — см. Неопределенностей соотношение Гейзенберга … Начала современного естествознания
    Соотношение неопределенностей — … Википедия
    Принцип (соотношение) неопределенностей Гейзенберга — см. Неопределенностей соотношение Гейзенберга … Начала современного естествознания
    НЕОПРЕДЕЛЕННОСТЕЙ СООТНОШЕНИЕ — (неопределённости принцип), фундаментальное положение квант. теории, утверждающее, что любая физ. система не может находиться в состояниях, в к рых координаты её центра инерции и импульс одновременно принимают вполне определённые, точные значения … Физическая энциклопедия
    Неопределенностей соотношение —  Неопределенностей соотношение  ¦ Incertitude, Relations d’    Своего рода принцип, иногда называемый принципом неопределенности, предложенный Гейзенбергом.    Именно он показал, что, поскольку с изменением условий наблюдения на квантовом уровне… … Философский словарь Спонвиля
    Неопределенностей соотношение Гейзенберга — фундаментальное свойство микрообъектов и микромира (микрофизики), в целом всей квантовой физики, квантового мировоззрения, состоящее в невозможности установить точные значения дополнительных друг другу физических величин (координат и импульса,… … Начала современного естествознания
    Неопределённостей соотношение — Квантовая механика Принцип неопределённости Введение … Математическая формулировка … Основа … Википедия
    СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ —     СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ математически формулируемый принцип квантовой теории, согласно которому запрещается существование таких состояний физической системы, в которых две динамические переменные (далее обозначаемые в общем виде А и В)… … Философская энциклопедия
    Принцип неопределённости —     Квантовая механика … Википедия

  5. niсе bоу Ответить

    Что-то мне не понравились ответы, а еще и в комментах наезжают. Так что давайте попробую.
    Основная проблема квантовой механики следующая: рассматриваемые частички настолько малы, что попытка измерить их характеристики ведет к изменению этих или других характеристик. (Пусть многие спорят, но это одна из первых фундаментальных идей)
    Поясню на примере. Вот мы смотрим на мяч. Это значит, что откуда-то там на него летит много фотонов, они от него отскакивают и попадают к нам в глаз. Таким образом мы видим мяч в таком-то месте.
    Теперь представьте, что мы странные роботы, которые бросают и ловят бильярдные шары. Мы пытаемся “увидеть” при помощи бильярдных шаров исходный мяч: то есть просто кидаемся шарами в мяч и смотрим, какие отскочили и куда. Но тут возникает маленькая проблема. Бильярдные шары довольно тяжелые, и каждый раз, когда мы попадаем в мяч, они его чуть-чуть разгоняют. Чем точнее мы хотим измерить расположение мяча, тем больше нам надо попавших в него шаров, тем сильнее мяч разгоняется.
    Теперь попробуем посмотреть на электрон. Тут возникает та же проблема. Мы, конечно, пускаем в него фотоны, но фотоны по сравнению с электроном уже довольно крупные и начинают его двигать. Таким образом, чем точнее мы пытаемся определить положение электрона, тем сильнее меняем его скорость (но если по честному, то импульс).
    Принцип неопределенности Гейзенберга говорит, что 1) это не наши методы плохи, а так устроена природа: какой бы опыт для определения положения электрона мы бы ни придумали, мы будем изменять импульс; 2) есть колличественная оценка, как сильно будет меняться импульс, и она не утешает. Если интересно, то количественная оценка: (точность измерения координаты)*(точность измерения импульса)? (постоянная Планка):(4*пи)
    Надеюсь, хуже не стало.

  6. Mavenis Ответить

    Согласно такому принципу, при полном описании квантово-механических явлений требуется применение двух дополнительных (взаимоисключающих) наборов классических понятий, совокупность которых позволяет получить исчерпывающую информацию о таких явлениях, как о целостных. Дополнительными в квантовой механике считаются энергетически-импульсная и пространственно-временная картины.
    Принцип дополнительности положен в основу копенгагенской интерпретации механики квантов и анализа измерительного процесса характеристик микрообъектов. Согласно данной интерпретации, позаимствованные из классической физики, динамические характеристики микрочастицы (энергия, импульс и др.) вовсе не свойственны частице как самой по себе.
    Смысл и определенные значения тех или иных характеристик электрона раскрываются в непосредственной взаимосвязи с классическими объектами. Для этих объектов такие величины одновременно могут иметь некоторое значение (условно подобный классический объект называется измерительным прибором). Роль вышеозначенного принципа дополнительности в физике оказалась настолько значимой, что Паули даже предложил назвать квантовую механик теорией дополнительности (как аналогия с теорией относительности).

    Обобщение принципа дополнительности

    Н. Бор предложил обобщение принципа дополнительности, придав ему гносеологический глубокий смысл. Так, всякое глубокое явление природы, к примеру, физическая система или атомный объект, не поддается однозначному определению с помощью слов нашего языка, поэтому требует для своего определения как минимум двух взаимоисключающих дополнительных понятий.
    Физическая картина явления, например, и его математическое описание являются дополняющими друг друга. Физическая картина явления не придает важное значение деталям и достаточно далека от математической точности, в то время как точное математическое описание явления, напротив, затрудняет его ясное понимание.
    Наука и искусство представляют два дополнительных способа исследования окружающего мира. Наука основывается на опыте и логике, а искусство – на прозрении и интуиции. Они не только не противоречат, но и дополняют друг друга.
    Применение обобщающего принципа дополнительности способствовало формированию со временем концепции дополнительности, охватывающей такие сферы, как физика, психология, биология, культурология и гуманитарное знание в целом.

  7. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *