Что такое симметрия в математике 6 класс определение?

10 ответов на вопрос “Что такое симметрия в математике 6 класс определение?”

  1. Delahuginn Ответить

    Смотреть что такое “Симметрия” в других словарях:

    СИММЕТРИЯ — (от греч. symmetria соразмерность) законов физики. Если законы, устанавливающие соотношение между величинами, характеризующими физ. систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях… … Физическая энциклопедия
    СИММЕТРИЯ —         (от греч. соразмерность), понятие, характеризующее переход объектов в самих себя или друг в друга при осуществлении над ними оп редел. преобразований (преобразований С.); в широком смысле свойство неизменности (инвариантности) некоторых… … Философская энциклопедия
    СИММЕТРИЯ — (греч. соразмерность, от syn вместе, и metron мера). Соответствие между собою величины и формы частей, которым предназначено быть вместе. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. СИММЕТРИЯ большая или… … Словарь иностранных слов русского языка
    СИММЕТРИЯ — [????????? ?оразмерность] закономерная повторяемость равных частей, слагающих фигуру. С. описывается с помощью элементов симметрии, дающих понятие о соответственных симметрических преобразованиях … Геологическая энциклопедия
    симметрия — и, ж. symetrie f., нем. Symmetrie < гр. symmetria соразмерность. 1. Соразмерное, пропорциональное расположение частей чего л. по отношению к центру, середине; соразмерность, пропорциональность чего л. БАС 1. Достаточный рисовальщик, дабы мог… … Исторический словарь галлицизмов русского языка СИММЕТРИЯ SU — (2). В физике обычно реализуется как инвариантность относительно группы матричных преобразований над полями , где Uji матричное представление группы SU(2). Группа SU(2) совокупность унитарных унимодулярных матриц2 го порядка (образующая группу по … Физическая энциклопедия
    симметрия — См. соответствие… Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. симметрия согласие, соответствие; неизменность, билатеральность, соразмерность, гармония, равноудаленность,… … Словарь синонимов
    СИММЕТРИЯ — (от греческого symmetria соразмерность), в широком смысле инвариантность (неизменность) структуры, свойств, формы (например, в геометрии, кристаллографии) материального объекта относительно его преобразований (т.е. изменений ряда физических… … Современная энциклопедия
    СИММЕТРИЯ — (от греч. symmetria соразмерность) в широком смысле инвариантность (неизменность) структуры, свойств, формы материального объекта относительно его преобразований (т. е. изменений ряда физических условий). Симметрия лежит в основе законов… … Большой Энциклопедический словарь
    СИММЕТРИЯ — СИММЕТРИЯ, в биологии анатомическое описание формы тела или геометрического рисунка растения или животного. Может быть использована в классификации живых организмов (ТАКСОНОМИИ). В математике симметрией является схожесть, или соответствие, между… … Научно-технический энциклопедический словарь
    СИММЕТРИЯ — СИММЕТРИЯ, симметрии, мн. нет, жен. (греч. symmetria). Пропорциональность, соразмерность в расположении частей целого в пространстве, полное соответствие (по расположению, величине) одной половины целого другой половине. Симметрия в планировке… … Толковый словарь Ушакова

  2. Mauzuru Ответить

    Понимать, что такое симметрия в математике, необходимо, чтобы в дальнейшем освоить базовые и продвинутые темы алгебры, геометрии. Немаловажно это и для понимания черчения, архитектуры, правил построения рисунка. Несмотря на тесную связь с самой точной наукой – математикой, симметрия важна и для артистов, художников, творцов, и для тех, кто занимается научной деятельностью, причем в любой области.

    Общая информация

    Не только математика, но и естественные науки во многом основаны на понятии симметрии. Более того, оно встречается в повседневной жизни, является одним из базовых для природы нашей Вселенной. Разбираясь, что такое симметрия в математике, необходимо упомянуть, что существует несколько типов этого явления. Принято говорить о таких вариантах:
    Двустороннем, то есть такой, когда симметрия зеркальная. Это явление в ученой среде принято именовать «билатеральным».
    Эн-ном порядке. Для этого понятия ключевое явление – это угол поворота, вычисляемый разделением 360 градусов на некоторую заданную величину. Кроме того, заранее определяется ось, вокруг которой эти повороты совершаются.
    Падиальная, когда явление симметрии наблюдают, если повороты совершатся произвольно на некоторый случайный по величине угол. Ось также выбирается независимым образом. Для описания такого явления применяют группу SO(2).
    Сферическая. В этом случае речь идет о трех измерениях, в которых объект вращают, выбирая произвольные углы. Выделяют конкретный случай изотропии, когда явление становится локальным, свойственным среде либо пространству.
    Вращательная, соединившая в себе две описанные ранее группы.
    Лоренц-инвариативная, когда имеют место произвольные вращения. Для этого типа симметрии ключевым понятием становится «пространство-время Минковского».
    Супер, определяемая как замена бозонов фермионами.
    Высшая, выявляемая в ходе группового анализа.
    Трансляционная, когда имеются сдвиги пространства, для которых ученые выявляют направление, расстояние. На основе полученных данных проводят сравнительный анализ, позволяющий выявить симметрию.
    Калибровочная, наблюдаемая в случае независимости калибровочной теории при соответствующих преобразованиях. Здесь особенное внимание обращают на теорию поля, в том числе фокусируются на идеях Янга-Миллса.
    Кайно, принадлежащая к классу электронных конфигураций. О том, что представляет собой такая симметрия, математика (6 класс) представления не имеет, ведь это наука высшего порядка. Явление обусловлено вторичной периодичностью. Было открыто в ходе научной работы Е. Бирона. Терминология введена С. Щукаревым.

    Зеркальная

  3. Bongo Ответить

    Симметрия (в математике)
    Симметрия (от греч. symmetria ? соразмерность) в математике,
    1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости a в пространстве (относительно прямой а на плоскости), ? преобразование пространства (плоскости), при котором каждая точка М переходит в точку M’ такую, что отрезок MM’ перпендикулярен плоскости a (прямой а) и делится ею пополам. Плоскость a (прямая а) называется плоскостью (осью) С.
    Отражение ? пример ортогонального преобразования, изменяющего ориентацию (в отличие от собственного движения). Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений ? этот факт играет существенную роль в исследовании С. геометрических фигур.
    2) Симметрия (в широком смысле) ? свойство геометрической фигуры Ф, характеризующее некоторую правильность формы Ф, неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой, называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).
    Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой ? оси С. (рис.
    1); здесь группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n, n ? целое число ³ 2, переводят её в себя, то Ф обладает С. n-го порядка относительно точки О ? центра С. Примером таких фигур являются правильные многоугольники (рис. 2); группа С. здесь ? т. н. циклическая группа n-го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).
    Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.
    а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О ? середина отрезка, соединяющего симметричные точки Ф (рис. 3). б) В случае осевой симметрии, или С. относительно прямой n-го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/n. Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD ? осью С. четвёртого порядка (рис. 3); вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых. Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB, называется зеркально-поворотной осью С. порядка 2k, является осью С. порядка k (рис. 4). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) (рис. 5). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток.
    В искусстве С. получила распространение как один из видов гармоничной композиции. Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей ? плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется также в качестве основного приёма построения бордюров и орнаментов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) (рис. 6, 7).
    Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания. Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений (рис. 8) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже). Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория), позволяет установить т. н. сохранения законы; обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).
    3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований. Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.
    Поскольку такой объект можно представить элементами некоторого пространства Р, наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями Р. Т. о. получается представление группы G в группе преобразований Р (или просто в Р), а исследование С. объекта сводится к исследованию действия G на Р и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства Р, определяется действием G на такие уравнения.
    Так, например, если некоторое уравнение линейно на линейном же пространстве Р и остаётся инвариантным при преобразованиях некоторой группы G, то каждому элементу g из G соответствует линейное преобразование Tg в линейном пространстве R решений этого уравнения. Соответствие g ® Tg является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения. Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.
    Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. ? Л., 1940; Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966; Вейль Г., Симметрия, пер. с англ., М., 1968; Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.
    М. И. Войцеховский.
    Большая советская энциклопедия. — М.: Советская энциклопедия.
    1969—1978.

  4. JonaH Ответить

    Понятие симметрии встречается как во многих областях человеческой жизни, культуры и искусства, так и в сфере научных знаний. Но что такое симметрия? В переводе с древнегреческого языка это – соразмерность, неизменность, соответствие. Говоря о симметрии, мы часто имеем в виду пропорциональность, упорядоченность, гармоничную красоту в расположении элементов некоей группы или составляющих какого-то предмета.
    В физике симметрии в уравнениях, описывающих поведение системы, помогают упростить решение с помощью нахождения сохраняющихся величин.
    В химии симметрия в расположении молекул объясняет ряд свойств кристаллографии, спектроскопии или квантовой химии.
    В биологии симметрией называются закономерно расположенные относительно центра или оси симметрии формы живого организма или одинаковые части тела. Симметрия в природе не бывает абсолютной, в ней обязательно содержится некоторая асимметрия, т.е. подобные части могут не совпадать со стопроцентной точностью.
    Симметрию часто можно встретить в символах мировых религий и в повторяющихся моделях социальных взаимодействий.

    Что такое симметрия в математике

    В математике симметрию и ее свойства описывает теория групп. Симметрией в геометрии является способность фигур к отображению, при сохранении свойств и формы.
    В широком смысле фигура F обладает симметрией, если существует линейное преобразование, которое переводит эту фигуру в саму себя.
    В более узком смысле симметрией в математике называется зеркальное отражение относительно прямой с на плоскости или относительно плоскости с в пространстве.

    Что такое ось симметрии

    Преобразование пространства относительно плоскости с или прямой с считается симметричным, если при этом каждая точка В переходит в точку В’ так, чтобы отрезок В В’ оказался перпендикулярен этой плоскости или прямой и делился бы ею пополам. В этом случае плоскость с называется плоскостью симметрии, прямая с – осью симметрии. Геометрические фигуры, например правильные многоугольники, могут иметь по несколько осей симметрии, а окружность и шар обладают бесконечным числом таких осей.
    К простейшим типам пространственной симметрии относятся:
    зеркальная (порожденная отражениями);
    осевая;
    центральная;
    симметрия переноса.

    Что такое осевая симметрия

    Симметрия относительно оси или линии пересечения плоскостей называется осевой. Она предполагает, что если через каждую точку оси симметрии провести перпендикуляр, то на нем всегда можно найти 2 симметричные точки, расположенные на одинаковом расстоянии от оси. В правильных многоугольниках осями симметрии могут являться их диагонали или средние линии. В окружности оси симметрии – ее диагонали.

    Что такое центральная симметрия

    Симметрия относительно точки называется центральной. В этом случае на равном расстоянии от точки по обе ее стороны находятся другие точки, геометрические фигуры, прямые или кривые линии. При соединении симметричных точек прямой, проходящей через точку симметрии, они будут расположены на концах этой прямой, а серединой ее явится как раз точка симметрии. А если вращать эту прямую, закрепив точку симметрии, то симметричные точки опишут кривые так, что каждая точка одной кривой линии будет симметрична такой же точке другой кривой линии.

  5. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *