Какая характеристика атома была положена менделеевым в основу его системы?

5 ответов на вопрос “Какая характеристика атома была положена менделеевым в основу его системы?”

  1. Sergedjan Ответить

    1. Какая характеристика атома была предложена Д. И. Менделеевым в основу его системы элементов? Как Менделеев формулировал периодический закон? Какие трудности возникали у него при обосновании этого закона?
    В качестве основы своей системы химических элементов Менделеев положил атомный вес (относительную атомную массу). Он решил расположить все элементы в порядке возрастания их атомных масс.
    В 1869 году Менделеев сформулировал закон, называющийся периодическим: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.
    При выведении этого закона Менделеев столкнулся с такими трудностями как малое число известных в то время элементов и неправильные массы некоторых химических элементов.
    2. Почему Д. И. Менделеев назвал открытый им закон периодическим? Ответ подтвердите анализом свойств химических элементов.
    Закон называется периодическим в силу того, что у химических элементов наблюдается периодичность их свойств. На основании этой периодичности Менделеев разместил все элементы по группам и периодам.
    Если мы рассмотрим I период, то от лития ко фтору наблюдается усиление неметаллических свойств. Литий — активный щелочной металл, оксид и гидроксид бериллия — амфотерны, бор — уже неметалл, а фтор — самый сильный окислитель. Заканчивается период благородным газом неоном.
    Во втором периоде мы можем наблюдать похожую закономерность. Натрий — активный щелочной металл, а магний уже не так активен. Оксид и гидроксид алюминия амфотерны, а углерод — типичный неметалл. Хлор, подобно фтору, обладает сильными окислительными свойствами и относится к галогенам. И заканчивается период так же благородным газом — аргоном.
    Если мы будем и дальше спускаться вниз по периодам, то увидим те же основные закономерности — усиление неметаллических свойств элементов от 1 группы к 7-й группе, и завершение периода благородным газом.
    3. Произведено сплавление 4,05 г оксида цинка ZnO с гидроксидом натрия, взятым в избытке. Определите массу и количество вещества образовавшейся соли.
    Решение:
    ZnO + Na2O (сплавление) = Na2ZnO2
    Как видно из уравнения реакции, вещества взаимодействуют в пропорции 1 к 1. То есть μ (ZnO) = μ (Na2ZnO2) Найдем количество вещества для оксида цинка:
    μ (ZnO) = m (ZnO) / M (ZnO) = 4,05 / 81 = 0,05 (моль)
    Теперь найдем массу соли:
    m (Na2ZnO2) = μ (Na2ZnO2) * M (Na2ZnO2) = 0,05 * 143 = 7,15 (г)
    Ответ: μ (ZnO) = 0,05 моль, m (Na2ZnO2) = 7,15 г

    Тестовые задания

    1. В ряду Na — Mg — Al — Si металлические свойства
    1) усиливаются
    3) не изменяются
    2) ослабевают
    4) изменяются периодически

    В периодической таблице слева направо металлические свойства элементов ослабевают.
    Ответ: 2) ослабевают
    2. В ряду Si — P — S — Cl неметаллические свойства
    1) усиливаются
    3) не изменяются
    2) ослабевают
    4) изменяются периодически

    В периодической таблице слева направо неметаллические свойства элементов усиливаются.
    Ответ: 1) усиливаются
    3. Подчеркните в каждом ряду элемент, который в большей степени проявляет неметаллические свойства.
    1) углерод, фтор
    3) кремний, фосфор
    2) кальций, бром
    4) кислород, фтор

    В пределах одного периода, неметаллические свойства будут более ярко выражены у того элемента, который стоит правее.
    Ответ:
    1) углерод, фтор
    3) кремний, фосфор
    2) кальций, бром
    4) кислород, фтор

  2. Ruslan35 Ответить

    Периодический закон Д.И. Менделеева и его значение
    Основной закон химии – Периодический закон – был открыт великим русским ученым Д.И. Менделеевым в 1869 году.
    За основу классификации элементов Д.И. Менделеев положил атомный вес элемента – как единственную количественную меру, характеризующие атомы данного элемента, независимо от того, находятся они в составе простых или сложных веществ. Расположив элементы в порядке возрастания атомного веса, он отметил периодичность в изменении свойств элементов и на основе этого формулирует периодический закон: «Свойства простых тел, так же формы и свойства соединений находятся в периодической зависимости от величины атомных весов элементов».
    Д.И. Менделеев не только обобщил свойства уже изученных элементов, но и оставил места в Периодической системе для ещё не открытых элементов и заранее описал их свойства. Д.И. Менделеев предсказал существование галлия, германия, гафния и скандия.
    Последующие исследования в XX веке показали, что периодический закон нерушим. В таблицу периодической системы были внесены только небольшие уточнения местоположения некоторых элементов, а также новые данные, углубившие понимание закона.
    Было установлено, что только заряд ядра является характеристикой, определяющей электронное строение атомов, и, следовательно, и свойства образованных из них простых и сложных веществ. Поэтому была уточнена формулировка периодического закона Д.И. Менделеева: «Свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от заряда ядра их атомов».
    Открытие Периодического закона имеет огромное научное и практическое значение не только для развития химии, физики, но и для других смежных естественных и технических наук. Периодический закон является фундаментальным законом химии. На его основе решают задачи синтеза веществ, разрабатывают новые материалы и сплавы, подбирают катализаторы для химических и металлургических процессов.
    Структура Периодической системы Д.И. Менделеева
    Периодическая система элементов состоит из периодов, групп и подгрупп. Период — это ряд элементов, имеющих одинаковое значение главного квантового числа n.
    3Li: 1s22s1; 10Ne: 1s22s22р6 для этих элементов n=2.
    Элементы в периоде размещены в порядке возрастания заряда ядра атомов. Их электронная конфигурация изменяется от ns1 до ns2nр6 (или пs2 у элементов первого периода). Периоды начинаются с s-элемента и заканчиваются р-элементом (у первого периода s-элементом). Периоды делятся на большие и малые. Малые периоды содержат 2 и 8 элементов, большие 18 и 32 элемента; седьмой период остается незавершенным.
    Группа – это совокупность элементов, атомы которых характеризуются одинаковым количеством валентных электронов. В системе имеется 8 групп, что соответствует максимальному числу электронов во внешних подоболочках. Группы делятся на главные и побочные подгруппы. Подгруппы включают в себя элементы с аналогичными электронными структурами (элементы-аналоги).
    К главным подгруппам (подгруппам А) относятся подгруппы элементов второго периода (лития, бериллия, бора, углерода, азота, кислорода, фтора) и подгруппа благородных газов. К побочным подгруппам (подгруппам В) относятся d- и f- элементы.
    Радиусы атомов и ионов
    Атомы не имеют строго определенных границ из-за корпускулярно-волнового характера электронов. Поэтому абсолютное значение радиуса атома определить невозможно. Можно условно принять за радиус атома теоретически рассчитанное значение расстояния от ядра до наиболее удаленного от него максимума электронной плотности, или половину расстояния между центрами двух атомов в кристаллах.
    Пример. Алмаз С C ; г = 0,77А°
    1,54 A0
    Атомные радиусы металлов в периодах с ростом порядкового номера элемента уменьшаются, так как при одинаковом числе электронных слоев возрастает заряд ядра, который сжимает электронные оболочки. В пределах каждой подгруппы элементов, как правило, радиусы атомов увеличиваются сверху вниз, так как возрастает число энергетических уровней.
    Радиусы ионов отличаются от радиусов атомов, так как они или лишились электрона(-ов), или их присоединили. Поэтому радиусы положительно заряженных ионов меньше, а радиусы отрицательно заряженных ионов больше, чем радиусы соответствующих атомов. Радиусы ионов также находятся в периодической зависимости от порядкового номера элемента. Например, в пределах одной подгруппы радиусы ионов одинакового заряда возрастают с увеличением заряда ядра (порядкового номера) элемента.
    Ионизационный потенциал
    Одним из важнейших свойств химического элемента, непосредственно связанным с электронной структурой атома, является ионизационный потенциал. Ионизационным потенциалом (Еu) называется та наименьшая энергия, которую необходимо затратить, чтобы отделить электрон от атома и удалить его на бесконечно большое расстояние.
    Величину ионизационного потенциала принято выражать в электрон-вольтах на атом или килоджоулях на моль. Атомы элементов – восстановителей, теряя электроны, превращаются в положительно заряженные ионы. Для данного атома или молекулы энергия, необходимая для удаления первого электрона, называется первым ионизационным потенциалом E1, второго – вторым ионизационным потенциалом Е2 и так далее.
    Атомы с небольшим потенциалом ионизации проявляют восстановительные свойства. Атомы с высоким потенциалом ионизации находятся в нейтральном состоянии. Потенциал ионизации возрастает по периоду. В пределах главных подгрупп потенциал ионизации убывает с увеличением порядкового номера элементов. Это обусловлено увеличением размеров атомов и расстоянием внешних подоболочек от ядра.
    Сродство к электрону
    Сродством к электрону называется энергия, которая выделяется при присоединении электрона к атому, молекуле или радикалу. Сродство к электрону выражается в тех же единицах, что и ионизационный потенциал.
    Атомы элементов-окислителей, принимая электроны, превращаются в отрицательно заряженные ионы. Энергия сродства к электрону изменяется в соответствии с характером электронных структур атомов элементов. В периодах слева направо сродство к электрону и окислительные свойства элементов возрастают. Наибольшие значения сродства к электрону имеют галогены, кислород, сера, наименьшие – элементы с электронной конфигурацией s2 (Не, Ве, Мg, Zn) или наполовину заполненными р-подоболочками (Ne, Аг, Кг, N, Р, Аs).
    Электроотрицательность

  3. PuxTa Ответить

    По собственным словам Менделеева, он структурировал свое мышление, записав каждый из 63 известных тогда элементов на отдельной карточке. Затем, посредством своего рода игры в химический пасьянс, он нашел закономерность, которую искал. Располагая карточки в вертикальных столбцах с атомными массами от низкой к более высокой, он разместил элементы со схожими свойствами в каждом горизонтальном ряд. Периодическая таблица Менделеева родилась. Он набросал черновую версию 1 марта, отправил ее в печать и включил в свой учебник, который скоро должен был быть опубликован. Также он быстро подготовил работу для представления Российскому химическому обществу.
    «Элементы, упорядоченные по размерам их атомных масс, показывают четкие периодические свойства», писал Менделеев в своей работе. «Все сравнения, которые я провел, привели меня к выводу, что размер атомной массы определяет природу элементов».
    Тем временем, немецкий химик Лотар Мейер также работал над организацией элементов. Он подготовил таблицу, похожую на менделеевскую, возможно, даже раньше, чем Менделеев. Но Менделеев издал свою первым.
    Тем не менее, гораздо более важным, чем победа над Мейером, было то, как Менделеев использовал свою таблицу, чтобы сделать смелые прогнозы о неоткрытых элементах. В подготовке свой таблицы Менделеев заметил, что некоторых карточек недоставало. Он должен был оставить пустые места, чтобы известные элементы могли выровняться правильно. Еще при его жизни три пустых места были заполнены ранее неизвестными элементами: галлий, скандий и германий.
    Менделеев не только предсказал существование этих элементов, но также правильно описал их свойства в подробностях. Галлий, например, открытый в 1875 году, имел атомную массу 69,9 и плотность в шесть раз превышающую воды. Менделеев предсказал этот элемент (он назвал его экаалюминий), только по этой плотности и атомной массе 68. Его прогнозы для экакремния близко соответствовали германию (открытому в 1886 году) по атомной массе (72 предсказано, 72,3 фактически) и плотности. Он также верно предсказал плотность германиевых соединений с кислородом и хлором.
    Таблица Менделеева стала пророческой. Казалось, что в конце этой игры этот пасьян из элементов раскроет тайны Вселенной. При этом сам Менделеев был мастером в использовании своей же таблицы.
    Успешные предсказания Менделеева принесли ему легендарный статус мастера химического волшебства. Но сегодня историки спорят о том, закрепило ли открытие предсказанных элементов принятие его периодического закона. Принятие закона могло быть в большей степени связано с его способностью объяснять установленные химические связи. В любом случае, прогностическая точность Менделеева, безусловно, привлекла внимание к достоинствам его таблицы.
    К 1890-м годам химики широко признали его закон как веху в химическом познании. В 1900-м году будущий нобелевский лауреат по химии Уильям Рамсей назвал это «величайшим обобщением, которое когда-либо проводилось в химии». И Менделеев сделал это, сам не понимая как.

    Математическая карта

    Во многих случаях в истории науки великие предсказания, основанные на новых уравнениях, оказывались верными. Каким-то образом математика раскрывает некоторые природные секреты, прежде чем экспериментаторы их обнаружат. Один из примеров — антиматерия, другой — расширение Вселенной. В случае Менделеева, предсказания новых элементов возникли без какой-либо творческой математики. Но на самом деле Менделеев открыл глубокую математическую карту природы, поскольку его таблица отражала значение квантовой механики, математических правил, управляющих атомной архитектурой.
    В своей книге Менделеев отметил, что «внутренние различия материи, которую составляют атомы», могут быть ответственны за периодически повторяющиеся свойства элементов. Но он не придерживался этой линии мышления. По сути, многие годы он размышлял о том, насколько важна атомная теория для его таблицы.
    Но другие смогли прочитать внутреннее послание таблицы. В 1888 году немецкий химик Йоханнес Вислицен объявил, что периодичность свойств элементов, упорядоченных по массе, указывает на то, что атомы состоят из регулярных групп более мелких частиц. Таким образом, в некотором смысле таблица Менделеева действительно предвидела (и предоставила доказательства) сложную внутреннюю структуру атомов, в то время как никто не имел ни малейшего представления о том, как на самом деле выглядел атом или имел ли он какую-нибудь внутреннюю структуру вовсе.
    К моменту смерти Менделеева в 1907 году ученые знали, что атомы делятся на части: электроны, переносящие отрицательный электрический заряд, плюс некоторый положительно заряженный компонент, делающий атомы электрически нейтральными. Ключом к тому, как эти части выстраиваются, стало открытие 1911 года, когда физик Эрнест Резерфорд, работающий в Манчестерском университете в Англии, обнаружил атомное ядро. Вскоре после этого Генри Мозли, работавший с Резерфордом, продемонстрировал, что количество положительного заряда в ядре (число протонов, которое он содержит, или его «атомное число») определяет правильный порядок элементов в периодической таблице.

  4. Oril Ответить

    Таким образом, Менделеев взялся за тему, которая в то время не только не представлялась актуальной, но и вызывала насмешки. Иначе и быть не могло, поскольку даже после Первого международного химического конгресса в Карлсруэ (сентябрь 1860 г.) далеко не все химики приняли предложенную С. Канниццаро шкалу атомных весов, практически совпадающую с современной*. Характерный пример — учебник Менделеева «Органическая химия» (второе издание: август 1863 г.). Отметив прогресс в решении вопроса об атомных весах элементов, Дмитрий Иванович предложил таблицу, в которой среди прочего приведены и такие величины атомных весов: Si = 14, Ca = 20, Ba = 68,5, Fe = 28, Zn = 32,7, Cu = 31,7 и т. д. В оправдание своего выбора он привел весьма странный аргумент: «Эти изменения столь недавно обратили на себя внимание, что не успели войти в общее употребление» [3, с. 39] Более того, в его курсе лекций по общей и неорганической химии (октябрь 1867 г.!) снова приводятся все те же Ca = 20, Al = 13,5, Cd = 56 и т. д. [4].
    Но этого мало. Атом в 19-м столетии понимали не как некий «кирпич мироздания», нечто неделящееся, но как минимальное количество элемента, которое присутствует во всех его соединениях и сохраняется в ходе химических превращений. Иными словами, словом «атом» фактически обозначали стехиометрический минимум для данного элемента. При этом подразумевалось (теми, кто вообще принимал атомную гипотезу), что кроме этих «химических» атомов есть еще атомы истинные, «физические», о которых мало что известно, и одновременно молчаливо допускалась принципиальная возможность открытия ранее неизвестного соединения элемента такого состава, что придется принятый атомный вес элемента уменьшить в разы (скажем, для азота принять N = 7 или какое-то иное значение). Менделеев, вполне осознававший это обстоятельство, пошел дальше. Он всю свою научную жизнь предостерегал окружающих против увлечения атомистикой. Вот несколько подтверждающих это цитат.
    «…Химики постоянно употребляют атомическую гипотезу для более ясного представления многих фактов, хотя можно было бы обойтись и без нее. Но атомическую теорию не нужно принимать как настоящую гипотезу о структуре тела, в этом отношении она не привела еще почти ни к каким результатам. Она должна быть принята как облегчение рассуждений» (1864) [5, с. 25].
    «…Само название (атомный вес) заключает в себе, конечно, гипотезу об атомном строении тел, но… речь идет не о названии (мне кажется, что, заменяя название „атомный вес“ названием „элементарный вес“, можно достичь устранения представления об атомах, когда речь идет об элементах), а о понятии, которое им условлено означать» (1871) [6, с. 104].
    «…В атомах есть простота представления, но нет уверенности» (1906 г. — последнее издание учебника Д. И. Менделеева «Основы химии») [7, с. 485].
    Итак, ученый, открывший периодический закон, согласно которому «физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, стоят в периодической зависимости… от их атомного веса» [8, с. 907], не верил в атомную теорию. В этом состоит первая странность или загадка менделеевского открытия. Что же он тогда классифицировал? Что заложил в основание своей классификации?
    Прежде всего, Менделеев еще до создания Периодической системы строго разграничил понятия «элемент» и «простое тело». Он с самого начала строил именно систему химических элементов, а не простых тел. Понятие элемента соотносилось им с наименьшим весовым количеством материи определенного вида, входящим в частицы (молекулы) тел. Элемент в понимании Менделеева — это «отвлеченное понятие», «материя, содержащаяся в простом теле и могущая без изменения в весе переходить во все тела, получающиеся из этого тела» [9, с. 199].
    Менделеев подчеркивает, что элемент может принимать различные конкретные формы (например, элемент углерод может находиться в форме угля, алмаза и графита, а также входить в состав разнообразных соединений). Элемент, по мысли Менделеева, будучи «не конкретным телом», но «материально однородным» «весомым веществом с суммою ему одному принадлежащих свойств» [10, с. 239], потенциально содержит в себе весь спектр возможных форм, свойств и состояний, которые этот «стехиометрический минимум» способен выявлять и развертывать в определенных условиях. Возможность (или невозможность) образования тех или иных соединений, аллотропных модификаций, металлических или иных состояний и т. п. — все это в «свернутом» виде включено, «втянуто» в понятие элемента, в силу чего систематика элементов обретает общехимическое (а потому и общенаучное) значение. Скажем, простое тело озон — одна из актуализаций того, что потенциально наличествует в идеальном химическом объекте, — элементе кислород. Таким образом, Менделеев классифицировал «элементарные индивидуумы», природа которых определялась их атомным весом (Дмитрий Иванович предпочел бы говорить об «элементарном весе», но не пошел против устоявшейся терминологии).
    Такая постановка задачи наряду с другими факторами позволила ученому создать Периодическую систему, но представление об элементарных индивидуумах помешало ему принять открытие радиоактивности, электронов и многие крупные достижения науки конца XIX — начала XX вв. Он корил современную ему научную мысль за то, что она «запуталась в ионах и электронах» [9, с. 436].

    Дыра от сыра

  5. ferritua Ответить

    Псевдонаука, которая занимается поисками инопланетян на Земле, «летающих тарелок», – это
    (*ответ*) уфология
    астрономия
    парапсихология
    астрология
    Псевдонаука, предметом изучения которой является взаимодействие человека с потусторонним миром, – это
    (*ответ*) парапсихология
    психология
    философия
    астрология
    Рассмотрение естествознанием предметов и явлений природы в их взаимосвязи и целостности характерно для _ подхода
    (*ответ*) системного
    дифференцированного
    индивидуального
    интегрированного
    Самым высоким значением энергии взаимодействия обладает _ взаимодействие
    (*ответ*) сильное
    слабое
    гравитационное
    электромагнитное
    Самым малым значением энергии взаимодействия обладает _ взаимодействие
    (*ответ*) гравитационное
    электромагнитное
    сильное
    слабое
    Силы межмолекулярного взаимодействия в газообразных телах являются примером _ взаимодействия
    (*ответ*) гравитационного
    электромагнитного
    слабого
    сильного
    Сильным называется взаимодействие, которое
    (*ответ*) определяет внутреннюю структуру элементарных частиц и ядер
    имеет универсальный характер и может выступать в зависимости от знака заряда либо, как притяжение либо как отталкивание
    действует только в микромире, описывает некоторые виды ядерных процессов, в том числе все виды бета-превращений
    имеет универсальный характер и выступает в виде притяжения, является самым слабым на ядерных расстояниях
    Система, состоящая из большой совокупности молекул одного вида, представляет собой
    (*ответ*) вещество
    смесь веществ
    элемент
    тело
    Систематизированные знания в их совокупности – это научная(-ый)
    (*ответ*) теория
    гипотеза
    концепция
    факт
    Систематизирующий фактор, который был взят за основу Д.И. Менделеевым при разработке им периодической системы химических элементов, – это
    (*ответ*) атомная масса
    заряд ядра атома
    масса ядра атома
    заряд атома

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *