Сколько звеньев может быть в пищевых цепях и от чего зависит их число?

11 ответов на вопрос “Сколько звеньев может быть в пищевых цепях и от чего зависит их число?”

  1. Heisen_Berg Ответить

    Энергия, содержащаяся в органическом веществе одних организмов, потребляется другими организмами. Перенос веществ и заключенной в них энергии от автотрофов к гетеротрофам, что происходит в результате поедания одними организмами других, называется пищевой цепью (цепью питания, трофической цепью) (рис. 1).
    Огромную роль в воспроизводстве жизни играет энергия Солнца. Количество этой энергии очень велико (примерно 55 ккал на 1 см2 в год). Из этого количества продуценты — зеленые растения — в результате фотосинтеза фиксируют не более 1-2 % энергии, а пустыни и океан — сотые доли процента.
    Число звеньев в пищевой цепи может быть различным, но обычно их 3-4 (реже 5). Дело в том, что к конечному звену пищевой цепи поступает так мало энергии, что ее не хватит в случае увеличения числа организмов.

    Рис. 1. Пищевые цепи в наземной экосистеме
    Совокупность организмов, объединенных одним типом питания и занимающих определенное положение в пищевой цепи, носит название трофический уровень. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.
    Первый трофический уровень занимают автотрофы, зеленые растения (продуценты), первичные потребители солнечной энергии; второй – растительноядные животные (фитофаги, консументы первого порядка); третий – хищники, питающиеся растительноядными животными (консументы второго порядка), и паразиты первичных консументов; вторичные хищники (консументы третьего порядка) и паразиты вторичных консументов образуют четвертый трофический уровень. Организмы, стоящие на каждом трофическом уровне, приспособлены природой для потребления определенного вида пищи, в качестве которой выступают организмы предыдущего трофического уровня (или нескольких предыдущих уровней).
    Простейшая пищевая цепь (или цепь питания) может состоять из фитопланктона, затем идут более крупные травоядные планктонные ракообразные (зоопланктон), а заканчивается цепь китом (или мелкими хищниками), которые фильтруют этих ракообразных из воды.
    Природа сложна. Все ее элементы, живые и неживые, — одно целое, комплекс приспособленных друг к другу, взаимодействующих и взаимосвязанных явлений и существ. Это звенья одной цепи. И если удалить из общей цепочки хотя бы одно такое звено, результаты могут быть непредвиденными.
    Особенно негативно разрыв цепей питания может сказаться на биоценозах леса — будь то лесные биоценозы умеренной зоны либо отличающиеся богатым видовым разнообразием биоценозы тропического леса. Многие виды деревьев, кустарников или травянистых растений пользуются услугами определенного опылителя — пчелы, осы, бабочки или колибри, обитающих в пределах ареала данного растительного вида. Как только погибнет последнее цветущее дерево или травянистое растение, опылитель вынужден будет покинуть данное местообитание. В результате погибнут питающиеся этими растениями или плодами дерева фитофаги (травоядные). Без пиши останутся охотившиеся на фитофагов хищники, а далее изменения последовательно коснутся остальных звеньев пищевой цепи. В итоге они скажутся и на человеке, поскольку у него есть свое определенное место в пищевой цепи.
    Пищевые цепи можно разделить на два основных типа: пастбищную и детритную. Пищевые цени, которые начинаются с автотрофных фотосинтезирующих организмов, называются пастбищными, или цепями выедания. На вершине пастбищной цепи стоят зеленые растения. На втором уровне пастбищной цепи обычно находятся фитофаги, т.е. животные, питающиеся растениями. Примером пастбищной пищевой цепи могут служить взаимоотношения между организмами на пойменном лугу. Начинается такая цепь с лугового цветкового растения. Следующее звено — бабочка, питающаяся нектаром цветка. Затем идет обитатель влажных местообитаний — лягушка. Ее покровительственная окраска позволяет ей подстеречь жертву, но не спасает от другого хищника — обыкновенного ужа. Цапля, поймав ужа, замыкает пищевую цепь на пойменном лугу.
    Если пищевая цепь начинается с отмерших остатков растений, трупов и экскрементов животных — детрита, она называется детритной, или цепью разложения. Термин «детрит» означает продукт распада. Он позаимствован из геологии, где детритом называют продукты разрушения горных пород. В экологии детрит — это органическое вещество, вовлеченное в процесс разложения. Такие цепи характерны для сообществ дна глубоких озер, океанов, где многие организмы питаются за счет оседания детрита, образованного отмершими организмами верхних освещенных слоев водоема.
    В лесных биоценозах детритная цепь начинается с разложения мертвого органического вещества животными-сапрофагами. Наиболее активное участие в разложении органики здесь принимают почвенные беспозвоночные животные (членистоногие, черви) и микроорганизмы. Присутствуют и крупные сапрофаги — насекомые, которые готовят субстрат для организмов, осуществляющих процессы минерализации (для бактерий и грибов).
    В отличие от пастбищной цепи размеры организмов при движении вдоль детритной цепи не возрастают, а, наоборот, уменьшаются. Так, на втором уровне могут стоять насекомые-могильщики. Но наиболее типичными представителями детритной цепи являются грибы и микроорганизмы, питающиеся мертвым веществом и довершающие процесс разложения биоорганики до состояния простейших минеральных и органических веществ, которые затем в растворенном виде потребляются корнями зеленых растений на вершине пастбищной цепи, начиная тем самым новый круг движения вещества.
    В одних экосистемах преобладают пастбищные, в других — детритные цепи. Например, лес считается экосистемой с преобладанием детритных цепей. В экосистеме гниющего пня пастбищная цепь вообще отсутствует. В то же время, например, в экосистемах поверхности моря практически все продуценты, представленные фитопланктоном, потребляются животными, а их трупы опускаются на дно, т.е. уходят изданной экосистемы. В таких экосистемах преобладают пастбищные пищевые цепи, или цепи выедания.
    Общее правило, касающееся любой пищевой цепи, гласит: на каждом трофическом уровне сообщества большая часть поглощаемой с пищей энергии тратится на поддержание жизнедеятельности, рассеивается и больше не может быть использована другими организмами. Таким образом, потребленная пища на каждом трофическом уровне ассимилируется не полностью. Значительная ее часть расходуется на обмен веществ. При переходе к каждому последующему звену пищевой цепи общее количество пригодной для использования энергии, передаваемой на следующий, более высокий трофический уровень, уменьшается.

  2. Нахарис Ответить

    5. Детритофаги (детритные пищевые цепи). Выше приведенные цепи – пастбищные пищевые цепи, в которых 1 трофический уровень – растения, 2 уровень – пастбищные животные, 3 уровень – хищники и т.д.
    Кусочки частично разложившегося органического материала – детрит. Многие животные питаются им, ускоряя процесс разложения – эти животные являются детритофагами. Детритофагами могут питаться более крупные организмы, что ведет к образованию детритной пищевой цепи:
    Детрит детритофаг хищник.
    Пример: Мертвое животное личинки падальных мух травяная лягушка > уж обыкновенный.
    Реальные пищевые цепи в экосистеме намного сложнее, т. к. животное может питаться организмами разных типов из одной и той же пищевой цепи или из разных пищевых цепей. Некоторые питаются и растениями и животными – всеядные (человек). В действительности пищевые цепи переплетаются т.о., что образуется пищевая сеть.
    Билет 30
    18. Хищничество и комменсализм.
    Хищничество (+ -) – все взаимодействия, при которых одни организмы (хищники) используют в пищу другие (жертвы).
    Хищничество – главная сила, обеспечивающая передвижение вещества и энергии в экосистеме.
    3 способа классификации хищников:
    а) Таксономический:
    – энтомофаги – едят беспозвоночных животных;
    – плотоядные хищники – едят позвоночных животных;
    – растительноядные – растения;
    – всеядные.
    б) Функциональный:
    истинные хищники – убивают за свою жизнь множество жертв (сразу при нападении), поедая ее целиком, либо частично (тигры, волки, божьи коровки, насекомоядные растения, киты-фильтраторы, дафнии, циклопы).
    пастбищные хищники – в течение жизни используют большое число жертв, съедая, как правило, часть от них. Чаще вредны, но редко приводят к гибели (травоядные позвоночные, двукрылые насекомые, пиявки).
    паразиты – поедают только часть своей жертвы (хозяина), с такими же, как и во втором случае, последствиями. Отличаются тем, что проводят свою жизнь в одной или очень немногих особях, с которыми они живут всю жизнь (печеночная двуустка, ленточные черви, вирус кори, туберкулезная палочка, фитопатогенные грибы, омела, тля и т.д.).
    паразитоиды – организмы, ведущие паразитический образ жизни только на стадии личинки (перепончатокрылые и многие виды двукрылых насекомых).
    в) По избирательности питания:
    неспециализированные хищники – животные, у которых отсутствует или почти отсутствует избирательность питания. Большинство пастбищных хищников (кролики, жвачные копытные). Значение: вследствие безвыборочного питания поддерживается высокое биологическое разнообразие жертв, т.к. снижается конкуренция между разными видами жертв.
    специализированные хищники – питаются одним или немногими видами. Жертва определяется ее возможной доступностью. Уничтожаются жертвы больные, травмированные, либо особи низшего ранга, поэтому, эту функцию хищников рассматривают как санитарную.
    Комменсализм (нахлебничество) (+ 0) – вид взаимоотношений, когда один из партнеров (комменсал) питается остатками пищи или продуктами выделения другого (хозяина), не причиняя последнему вреда.
    Комменсал может использовать хозяина для защиты, средства передвижения, питания за его счет.
    Пример: песцы в тундре следуют за белыми медведями, доедая остатки его пищи; многие птицы кормятся на крупных копытных животных.
    Если поедание пищи хозяина начинает вредить хозяину, то комменсализм переходить в конкуренцию или паразитизм.
    21. Отношение между видами в биоценозе.

  3. Moratius Ответить

    пастбищные (цепь выедания);
    детритные (цепь разложения).
    Пастбищные цепи свойственны лугам, полям, морям, водоёмам. Началом цепи выедания являются автотрофные организмы – фотосинтезирующие растения.
    Далее звенья цепочки располагаются следующим образом:
    консументы первого порядка – растительноядные животные;
    консументы второго порядка – хищники;
    консументы третьего порядка – более крупные хищники;
    редуценты.
    В морских и океанических экосистемах цепи выедания более длинные, чем на суше. Они могут включать до пяти порядков консументов. Основу морских цепей составляет фотосинтезирующий фитопланктон.
    Следующие звенья образует несколько консументов:
    зоопланктон (рачки);
    мелкая рыба (шпроты);
    крупные хищные рыбы (сельдь);
    крупные хищные млекопитающие (тюлени);
    высшие хищники (касатки);
    редуценты.
    Детритные цепи характерны для лесов и саванн. Цепь начинается с редуцентов, которые питаются органическими останкам (детритом) и называются детриофагами. К ним относятся микроорганизмы, насекомые, черви. Все эти живые организмы становятся пищей для хищников высшего порядка, например, птиц, ежей, ящериц.
    Примеры пищевых цепей двух типов:
    пастбищные: клевер – заяц – лисица – микроорганизмы;
    детритные: детрит – личинки мух – лягушка – уж – ястреб – микроорганизмы.

    Рис. 3. Пример пищевой цепочки.

  4. GroveStret Ответить

    Пищевая цепь – это путь движения вещества (источник энергии и строительный материал) в экосистеме от одного организма к другому.
    Трофический уровень — это совокупность организмов, занимающих определенное положение в общей цепи питания. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

    1.1 Группы организмов, участвующие в биогеоцинозе

    Биотический круговорот происходит в природной системе, объединяющей на основе обмена веществ и энергии сообщество живых организмов (биоценоз) с неживыми компонентами — условиями обитания. Такая система получила название биогеоценоз (греч. geo — земля). В ней обмен веществом и энергией обеспечивается взаимодействием трех групп организмов.
    Первая группа — продуценты, или производители (от лат. produsent— производить). К ним относятся автотрофные организмы, производящие пищу в процессе фото- или хемосинтеза, т. е. первичные органические вещества.
    Вторая группа представлена консументами, т. е. потребителями (от лат. consume — потреблять), — гетеротрофными организмами, главным образом животными, поедающими другие организмы. Различают первичных консументов (животных, питающихся зелеными растениями, травоядных) и вторичных консументов (хищников, плотоядных, которые поедают растительноядных). Вторичный консумент может служить источником пищи для другого хищника — консумента третьего порядка и т. д.
    Третья группа — редуценты, или деструкторы (reducens — возвращать). Это гетеротрофные организмы, разлагающие органические остатки всех трофических уровней (остатки пищи, мертвые организмы). К ним относятся грибы, бактерии, беспозвоночные (например, черви). Минеральные вещества и диоксид углерода, образующиеся при деятельности редуцентов, опять поступают в воду, воздух и почву, а затем — в распоряжение продуцентов.

    Рисунок 1.1. Схема трансформации энергии в биоцинозе

    1.2 Трофическая структура экосистемы

    В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или их биомассой, или заключенной в них энергией, рассчитанными на единицу площади в единицу времени.
    Органическое вещество, производимое автотрофами, называется
    первичной продукцией. Скорость накопления энергии первичными продуцентами называется
    валовой первичной продуктивностью, а скорость накопления органических веществ –
    чистой первичной продуктивностью. ВПП примерно на 20 % выше, чем ЧПП, так как часть энергии растения тратят на дыхание. Всего растения усваивают около процента солнечной энергии, поглощённой ими.
    При поедании одних организмов другими вещество и пища переходят на следующий трофический уровень. Количество органического вещества, накопленного гетеротрофами, называется
    вторичной продукцией. Поскольку гетеротрофы дышат и выделяют непереваренные остатки, в каждом звене часть энергии теряется. Это накладывает существенное ограничение на длину пищевых цепей; количество звеньев в них редко бывает больше 6. Отметим, что эффективность переноса энергии от одних организмов к другим значительно выше, чем эффективность производства первичной продукции. Средняя эффективность переноса энергии от растения к животному составляет около 10 %, а от животного к животному – 20 %. Обычно растительная пища энергетически менее ценна, так как в ней содержится большое количество целлюлозы и древесины, не перевариваемых большинством животных.
    Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой поток вещества и энергии в экосистеме, основу ее организации.
    Изучение продуктивности экосистем важно для их рационального использования. Эффективность экосистем может быть повышена за счёт повышения урожайности, уменьшения помех со стороны других организмов (например, сорняков по отношению к сельскохозяйственным культурам), использования культур, более приспобленных к условиям данной экосистемы. По отношению к животным необходимо знать максимальный уровень добычи (то есть количество особей, которые можно изъять из популяции за определённый промежуток времени без ущерба для её дальнейшей продуктивности).
    1.3 Типы пищевых цепей
    Существует 2 основных типа трофических цепей — пастбищные и детритные.
    В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон, питающийся фитопланктоном), потом хищники (консументы) 1-го порядка (например, рыбы, потребляющие зоопланктон), хищники 2-го порядка (например, щука, питающаяся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка.
    В детритных трофических цепях (цепи разложения), наиболее распространенных в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации. Таким образом, детритные трофические цепи начинаются от детрита, идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям — хищникам. В водных экосистемах (особенно в эвтрофных водоемах и на больших глубинах океана) часть продукции растений и животных также поступает в детритные трофические цепи.

    Рисунок 1.2. Поток энергии через пастбищную пищевую цепь. Все цифры даны в кДж/м2
    ·год.
    2. Пищевые сети
    В схемах пищевых цепей каждый организм представлен питающимся организмами какого-то определённого типа. Действительность намного сложнее, и организмы (особенно, хищники) могут питаться самыми разными организмами, даже из различных пищевых цепей. Таким образом, пищевые цепи переплетаются, образуя
    пищевые сети.

    Рисунок 2. Пример пищевой сети
    3. Экологические пирамиды
    Пищевые сети служат основой для построения
    экологических пирамид. Эту графическую модель разработал в 1927 г. американский зоолог Чарльз Элтон. Основанием пирамиды служит первый трофический уровень — уровень продуцентов, а следующие этажи пирамиды образованы последующими уровнями — консументами различных порядков. Высота всех блоков одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

    Рисунок 3.1. Пример пищевой сети.

    3.1 Пирамида чисел

    Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами — насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

    3.2 Пирамида биомасс

    Пирамида биомасс — соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70—90 кг свежей травы.
    В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски). Пирамида биомасс отражает статику системы, т. е. характеризует биомассу организмов в определенный промежуток времени. Она не дает полной информации о трофической структуре экосистемы, хотя позволяет решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

    Рисунок 3.2. Слева изображена прямая пирамида биомасс, справа – перевёрнутая.

    Рисунок 3.3. Пример сезонного изменения в пирамиде биомассы

    3.3 Пирамида энергии

    Пирамида энергии отражает величину потока энергии, скорость прохождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.
    Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.
    В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.
    Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.
    Вот почему цепи питания обычно не могут иметь более 3—5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей. К конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.
    Этому утверждению можно найти объяснение, проследив, куда тратится энергия потребленной пищи (С). Часть ее идет на построение новых клеток, т.е. на прирост (Р). Часть энергии пищи расходуется на обеспечение энергетического обмена (R) или на дыхание (i) . Поскольку усвояемость пищи не может быть полной, т.е. 100 %, то часть неусвоенной пищи в виде экскрементов удаляется из организма (F). Балансовое равенство будет выглядеть следующим образом:
    С = Р + R + F .
    Учитывая, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы, становится ясным, почему каждый последующий уровень всегда будет меньше предыдущего.
    Именно поэтому большие хищные животные всегда редки. Поэтому также нет хищников, которые питались бы волками. В таком случае они просто не прокормились бы, поскольку волки немногочисленны.
    Экологические пирамиды чисел, биомассы и энергии, изображенные в виде графических моделей, выражают количественные соотношения разных по способу питания организмов: продуцентов, консументов и редуцентов.
    4. Пищевые связи пресного водоема
    Цепи питания пресного водоема состоят из нескольких последовательных звеньев. Например, растительными остатками и развивающимися на них бактериями питаются простейшие, которых поедают мелкие рачки. Рачки, в свою очередь, служат пищей рыбам, а последних могут поедать хищные рыбы. Почти все виды питаются не одним типом пищи, а используют разные пищевые объекты. Пищевые цепи сложно переплетены. Отсюда следует важный общий вывод: если какой-нибудь член биогеоценоза выпадает, то система не нарушается, так как используются другие источники пищи. Чем больше видовое разнообразие, тем система устойчивее.
    Первичным источником энергии в водном биогеоценозе, как и в большинстве экологических систем, служит солнечный свет, благодаря которому растения синтезируют органическое вещество. Очевидно, биомасса всех существующих в водоеме животных полностью зависит от биологической продуктивности растений.
    Часто причиной низкой продуктивности естественных водоемов бывает недостаток минеральных веществ (в особенности азота и фосфора), необходимых для роста автотрофных растений, или неблагоприятная кислотность воды. Внесение минеральных удобрений, а в случае кислой среды известкование водоемов способствуют размножению растительного планктона, которым питаются животные, служащие кормом для рыб. Таким путем повышают продуктивность рыбохозяйственных прудов.
    5. Пищевые связи леса
    Богатство и разнообразие растений, производящих громадное количество органического вещества, которое может быть использовано в качестве пищи, становятся причиной развития в дубравах многочисленных потребителей из мира животных, от простейших до высших позвоночных – птиц и млекопитающих.
    Среди млекопитающих пищевую цепь, например, составляют растительноядные мышевидные грызуны и зайцы, а также копытные, за счет которых существуют хищники: ласка, горностай, куница, лиса, волк. Все виды позвоночных служат средой обитания и источником питания для различных наружных паразитов, преимущественно насекомых и клещей, а также внутренних паразитов: плоских и круглых червей, простейших, бактерий.
    Пищевые цепи в лесу переплетены в очень сложную пищевую сеть, поэтому выпадение какого-нибудь одного вида животных обычно не нарушает существенно всю систему. Значение разных групп животных в биогеоценозе неодинаково. Исчезновение, например, в большинстве наших дубрав всех крупных растительноядных копытных: зубров, оленей, косуль, лосей – слабо отразилось бы на общей экосистеме, так как их численность, а следовательно, биомасса никогда не была большой и не играла существенной роли в общем круговороте веществ. Но если бы исчезли растительноядные насекомые, то последствия были бы очень серьезными, так как насекомые выполняют важную в биогеоценозе функцию опылителей, служат основой существования многих последующих звеньев пищевых цепей.
    Процесс саморегуляции в дубраве проявляется в том, что все разнообразное население леса существует совместно, не уничтожая полностью друг друга, а лишь ограничивая численность особей каждого вида определенным уровнем. Насколько велико в жизни леса значение такой регуляции численности, можно видеть из следующего примера. Листьями дуба питается несколько сотен видов насекомых, но в нормальных условиях каждый вид представлен столь малым количеством особей, что даже их общая деятельность не наносит существенного вреда дереву и лесу. Между тем все насекомые обладают большой плодовитостью. Количество яиц, откладываемых одной самкой, редко бывает менее 100. Многие виды способны давать 2-3 поколения за лето. Следовательно, при отсутствии ограничивающих факторов численность любого вида насекомых возросла бы очень быстро и привела бы к разрушению экологической системы. Некоторая часть потомства погибает под влиянием различных неблагоприятных условий погоды. Но основную массу уничтожают другие члены биогеоценоза: хищные и паразитические насекомые, птицы, болезнетворные микроорганизмы.
    Ограничивающее действие экологической системы все же не исключает полностью случаев массового размножения отдельных видов, которое бывает связано с сочетанием благоприятных факторов среды. Однако после массовой вспышки особенно интенсивно проявляются регулирующие факторы (паразиты, болезнетворные бактерии и др.), которые снижают численность вредителей до средней нормы.
    Огромное значение в жизни леса имеют процессы разложения и минерализации массы отмирающих листьев, древесины, остатков животных и продуктов их жизнедеятельности. Из общего ежегодного прироста биомассы надземных частей растений около 3-4 т на 1 га естественно отмирает и опадает, образуя так называемую лесную подстилку. Значительную массу составляют также отмершие подземные части растений. С опадом возвращается в почву большая часть потребленных растениями минеральных веществ и азота.
    Животные остатки очень быстро уничтожаются жуками-мертвоедами, кожеедами, личинками падальных мух и другими насекомыми, а также гнилостными бактериями. Труднее разлагается клетчатка и другие прочные вещества, составляющие значительную часть растительного опада. Но и они служат пищей для ряда организмов, например грибков и бактерий, имеющих специальные ферменты, которые расщепляют клетчатку и другие вещества до легкоусвояемых сахаров.
    Как только растения погибают, их вещество полностью используется разрушителями. Значительную часть биомассы составляют дождевые черви, производящие огромную работу по разложению и перемещению органических веществ в почве. Общее число особей насекомых, панцирных клещей, червей и других беспозвоночных достигает многих десятков и даже сотен миллионов на гектар. В разложении опада особенно велика роль бактерий и низших, сапрофитных грибков.
    Заключение
    Функциональная система, включающая в себя сообщество живых существ и их среду обитания, называется экологической системой (или экосистемой). В такой системе связи между ее компонентами возникают прежде всего на пищевой основе. Пищевая цепь указывает путь движения органических веществ, а также содержащихся в ней энергии и неорганических питательных веществ.
    В экологических системах в процессе эволюции сложились цепи взаимосвязанных видов, последовательно извлекающих материалы и энергию из исходного пищевого вещества. Такая последовательность называется пищевой цепью, а каждое ее звено – трофическим уровнем. Первый трофический уровень занимают организмы автотрофы, или так называемые первичные продуценты. Организмы второго трофического уровня называются первичными консументами, третьего – вторичными консументами и т. д. Последний уровень обычно занимают редуценты или детритофаги.
    Пищевые связи в экосистеме не являются прямолинейными, так как компоненты экосистемы находятся между собой в сложных взаимодействиях.
    Список использованной литературы
    1. Лисов Н.Д., Камлюк Л.В., Лемеза Н.А. Общая биология: Учебное пособие для 11-го класса 11-летней общеобразовательной школы, для базового и повышенного уровней. Мн.: Беларусь, 2002.
    2. Амос У.Х. Живой мир рек. – Л.: Гидрометеоиздат, 1986.
    3. Биологический энциклопедический словарь. – М.: Советская энциклопедия, 1986.
    4. Риклефс Р. Основы общей экологии. – М.: Мир, 1979.
    5. Спурр С.Г., Барнес Б.В. Лесная экология. – М.: Лесная промышленность, 1984.
    6. Стадницкий Г.В., Родионов А.И. Экология. – М.: Высшая школа, 1988.
    7. Яблоков А.В. Популяционная биология. – М.: Высшая школа, 1987.
    8. http://ru.wikipedia.org
    9. http://www.ekologia-v-vuz.ru
    содержание ..
    379
    380
    381 ..

  5. O:DеТk0O Ответить

    1. Продуценты (производители) производят органические вещества из неорганических. Это растения, а так же фото- и хемосинтезирующие бактерии.
    2. Консументы (потребители) потребляют готовые органические вещества.
    консументы 1 порядка питаются продуцентами (корова, карп, пчела)
    консументы 2 порядка питаются консументами первого (волк, щука, оса)
    и т. д.
    3. Редуценты (разрушители) разрушают (минерализуют) органические вещества до неорганических – бактерии и грибы.
    Пример пищевой цепи: капуста > гусеница капустной белянки > синица > ястреб. Стрелка в пищевой цепи направлена от того, кого едят в сторону того, кто ест. Первое звено пищевой цепи – продуцент, последнее – консумент высшего порядка или редуцент.
    Пищевая цепь не может содержать больше 5-6 звеньев, потому что при переходе на каждое следующее звено 90% энергии теряется (правило 10%, правило экологической пирамиды). Например, корова съела 100 кг травы, но потолстела только на 10 кг, т.к.
    а) часть травы она не переварила и выбросила с калом
    б) часть переваренной травы была окислена до углекислого газа и воды для получения энергии.
    Каждое последующее звено в пищевой цепи весит меньше предыдущего, поэтому пищевую цепь можно представить в виде пирамиды биомассы (внизу производители, их больше всего, на самом верху – консументы высшего порядка, их меньше всего). Кроме пирамиды биомассы, можно построить пирамиду энергии, численности и т.п.

  6. моя верность твоя гордость Ответить

    Эффективность передачи энергии по пищевой цепи зависит от двух показателей:
    1. от полноты выедания (доли организмов предшествующего трофического уровня, которые были съедены живыми);
    2. от эффективности усвоения энергии (удельной доли энергии, которая перешла на следующий трофический уровень в пересчете на каждую единицу съеденной биомассы).
    Полнота выедания и эффективность усвоения энергии возрастают с повышением трофического уровня и меняются в зависимости от типа экосистемы.
    Так в лесной экосистеме фитофаги потребляют менее 10% продукции растений (остальное достается детритофагам), а в степи – до 30%. В водных экосистемах выедание фитопланктона растительноядным зоопланктоном еще выше – до 40%. Этим объясняются основные краски Земли на космических снимках: леса зеленые именно потому, что фитофаги съедают мало фитомассы, а океан голубой, оттого что фитофаги выедают достаточно много фитопланктона (Polis, 1999).
    С повышением трофического уровня полнота выедания еще более возрастает, хищники высших порядков выедают до 90% своих жертв, и потому доля животных, которым удается дожить до естественной смерти, очень невелика. В водных экосистемах, к примеру, в детрит переходит 100% биомассы хищных рыб (их есть некому и плотность популяции контролируют только паразиты), но лишь 1/4 часть биомассы планктоноядных рыб, которые умерли «своей смертью». Этот детрит опускается на дно. Лишь часть его поедается детритофагами бенотоса, а остальная – попадает в донные осадки. Доля детрита, поступающего в осадки, тем больше, чем выше продуктивность водной экосистемы.
    При оценке коэффициента усвоения энергии в пищевых цепях часто используют «число Линдемана»: с одного трофического уровня на другой в среднем передается 10% энергии, а 90% – рассеивается. Однако это «число» чрезмерно упрощает и даже искажает реальную картину. «Закон 10%» действует только при переходе энергии с первого трофического уровня на второй, и то не во всех случаях. Эффективность усвоения энергии в следующих звеньях пищевой цепи – от фитофагов к зоофагам или к хищникам высших порядков – может достигать 60%.
    Высокой эффективностью усвоения энергии в «плотоядных» звеньях пищевых цепей объясняется сравнительно небольшое количество экскрементов хищников и ограниченность состава сапротрофов (редуцентов, копрофагов), питающихся ими. Основная фауна копрофагов связана с экскрементами растительноядных животных. Кстати, о том, что при хищничестве эффективность усвоения энергии выше, чем при фитофагии, знает каждый из личного опыта: вегетарианский обед из овощей или картофеля велик по объему, но малокалориен, а сравнительно небольшой по весу бифштекс утолит голод и надолго обеспечит ощущение сытости.
    Таким образом, в пищевой цепи на каждом следующем трофическом уровне относительное количество передаваемой энергии возрастает, так как одновременно увеличивается и потребление живой биомассы, и ее усвоение (уменьшается доля биомассы, которая возвращается в экосистему с экскрементами).
    Поведение энергии подчиняется действию первого и второго законов термодинамики.
    Первый закон (сохранения энергии) – о сохранении ее количества при переходе из одной формы в другую. Энергия не может появиться в экосистеме сама собой, она поступает в нее извне с солнечным светом или вследствие химических реакций и усваивается продуцентами. Далее она будет частично использована консументами и симбиотрофами, «обслуживающими» растения, частично – редуцентами, которые разлагают мертвые части растений, и частично – затрачена на дыхание. Если суммировать все эти фракции расхода энергии, усвоенной растениями в фотоавтотрофной экосистеме, то сумма будет равна той потенциальной энергии, которая накоплена при фотосинтезе.
    Второй закон – о неизбежности рассеивания энергии (т.е. снижения ее «качества») при переходе из одной формы в другую. В соответствии с этим законом энергия теряется при ее передаче по пищевым цепям. В наиболее общем виде эти потери отражает «число Линдемана».
    Контрольные вопросы
    1. Что такое энергия?
    2. Какое количество солнечной энергии может усвоить экосистема?
    3. Что такое пищевая цепь?
    4. Что такое трофический уровень?
    5. Приведите примеры пастбищных и детритных пищевых цепей.
    6. Из какого числа звеньев состоят пищевые цепи в наземных и водных экосистемах?
    7. Чем отличаются понятия «пищевая цепь» и «пищевая сеть»?
    8. В каких пределах меняется полнота выедания организмов на разных трофических уровнях и в разных экосистемах?
    9. Как меняется эффективность усвоения энергии организмами с повышением их трофического уровня?
    10. Проиллюстрируйте действие законов термодинамики при «работе» экосистемы.

  7. VideoAnswer Ответить

Добавить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *